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Abstract

The variable responses of sensory neurons tend to be weakly correlated (spike-count correlation, 

rsc). This is widely thought to reflect noise in shared afferents, in which case rsc can limit the 

reliability of sensory coding. However, it could also be due to feedback from higher-order brain 

regions. Currently, the relative contribution of these sources is unknown. We addressed this by 

recording from populations of V1 neurons in macaques performing different discrimination tasks 

involving the same visual input. We found that the structure of rsc (the way rsc varied with 

neuronal stimulus preference) changed systematically with task instruction. Therefore, even at the 

earliest stage in the cortical visual hierarchy, rsc structure during task performance primarily 

reflects feedback dynamics. Consequently, previous proposals for how rsc constrains sensory 

processing need not apply. Furthermore, we show that correlations between the activity of single 

neurons and choice depend on feedback engaged by the task.

Judgments made about sensory events (i.e. perceptual decisions) rely on the spiking 

discharge of sensory neurons. For this reason, there has been longstanding interest in the 

observation that this discharge tends to be variable given a fixed stimulus1,2. In principle, 

this variability could confound perceptual judgments, impairing the fidelity of sensory 

information in the brain. Even worse, this variability tends to be weakly correlated amonst 

sensory neurons (spike-count correlation; rsc)3, meaning it cannot trivially be averaged 

away4. For this reason, rsc is widely referred to as “correlated noise”5–8.

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence: Adrian Bondy, Princeton Neuroscience Institute, Washington Road, Princeton, New Jersey 08540, 
adrian.bondy@gmail.com, 202-460-4821. 

Author Contribution
A.G.B. and B.G.C. conceived and designed the experiments. A.G.B. performed the experiments and all aspects of the analysis. A.G.B. 
and B.G.C. wrote the paper. R.H. advised and assisted with the data analysis and the paper. B.G.C. advised at all stages.

Competing Financial Interests
The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Nat Neurosci. Author manuscript; available in PMC 2018 August 26.

Published in final edited form as:
Nat Neurosci. 2018 April ; 21(4): 598–606. doi:10.1038/s41593-018-0089-1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This way of thinking has underlied several influential lines of research in systems 

neuroscience. One has sought to understand the magnitude of the perceptual impairment 

introduced by rsc in different behavioral contexts5,8–15. When rsc is distributed in such a way 

that correlated fluctuations mimic the sensory events being detected or discriminated, it 

could severely impair perceptual accuracy11,15,16. A related line of research has sought to 

understand how correlated variability affects the choices subjects make in perceptual 

discrimination tasks from trial to trial17–19. These studies have shown that rsc structure can 

give rise to a weak correlation between variability in single neurons and perceptual reports 

(Choice Probability; CP), consistent with the notion that CP observed in real neurons 

reflects the causal influence of correlated sensory neuronal variability on perception.

However, we currently know very little about the origin of rsc, making it unclear to what 

degree these conclusions are correct. A frequent (although typically unstated) assumption is 

that rsc in sensory neurons is generated by shared variability in common afferent inputs. 

Consistent with this idea, rsc correlates with the physical proximity and similarity in 

stimulus preference of neuronal pairs8,20–23, which are also predictive of the degree of 

feedforward input convergence. If this explanation is correct, it supports the traditional view 

of rsc as “confounding noise” since it arises from stochastic processes in the sensory 

encoding pathway. However, the bulk of synaptic inputs to sensory cortical neurons are not 

strictly “feedforward” in nature24,25. Consequently, variation over time in shared inputs from 

downstream areas (i.e. “top-down”; “feedback”), may make a significant contribution to rsc. 

These signals may reflect endogenous processes like attention, arousal, or perceptual state, 

and could be under voluntary control. In principle, this source of correlated variability need 

not confound perceptual judgments, but instead reflect ongoing neuronal computations.

Several recent studies have shown that rsc does change to some degree with task 

context12,14,26,27, suggesting a top-down component. These studies have shown that rsc in 

populations of sensory neurons can either increase or decrease depending on attentional state 

or other task demands. However, prior studies have made only limited measures of rsc 

structure and how this changes with task, yet these are critical for understanding how rsc 

arises and how it relates to task performance. Furthermore, the relative magnitude of 

feedforward versus top-down contributions to rsc has not been determined. It also unknown 

whether task-dependent changes in rsc reflect an adaptive reduction of sensory noise or 

whether rsc is, in the first instance, generated by variability over time in top-down inputs 

reflecting downstream computations.

In the present study, we used large-scale neuronal population recordings in behaving 

macaques, along with careful behavioral control and a novel analytical approach, to 

significantly advance our understanding of these fundamental questions. Subjects performed 

different orientation discrimination tasks using the same set of stimuli. The only difference 

between tasks was the set of orientations being discriminated. If rsc primarily reflects noisy 

sensory encoding, it should be invariant to changes in the task given fixed retinal input. 

Alternatively, if it changes dynamically with the task, this would indicate that it reflects top-

down signals. This experimental approach, inspired by a previous study27, was combined 

with large-scale population recordings, allowing us to estimate the full rsc matrix – that is, 

how rsc varies as a function of all possible combinations of pairwise orientation preference. 
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This made it possible to directly infer which components were fixed and which changed 

with the task. Strikingly, we could not identify a component that remained fixed. Instead we 

observed a pattern of task-dependent changes that was highly systematic, and could be 

modeled as the effect of a single modulatory input that targets the two task-relevant 

subpopulations of V1 neurons in an alternating fashion across trials.

These data give unprecedented insight into the functional role of rsc structure in task 

performance. First, they show that the task-dependent changes in rsc structure appear to 

degrade the task performance of an ideal observer of V1 activity alone, because they mimic 

task-relevant stimulus changes. However, our discovery of the feedback origin of these 

correlations means that they need not degrade performance, and points to the possibility that 

they may instead be a signature of ongoing neuronal computations. Indeed, recent circuit 

models of perceptual inference predict feedback signals whose statistics reflect the subject’s 

prior beliefs about the task, yielding predictions which closely match our obervations28,29. 

Second, we show quantitatively that these feedback dynamics are the primary source of the 

choice-related activity we observed in V1, clarifying an ongoing debate30 about the 

interpretation of choice-related signals in sensory neurons. We conclude that rsc in sensory 

neurons reveals less than previously thought about the encoding of sensory information in 

the brain, but potentially much more about the interareal computations underlying sensory 

processing.

Results

We trained two rhesus monkeys (Macaca mulatta) to perform a two-alternative forced choice 

(2AFC) coarse orientation discrimination task (Fig. 1), used previously31. On a given trial, 

the subject was shown a dynamic, 2D filtered noise stimulus for 2 seconds, after which it 

reported the stimulus orientation by making a saccade to one of two choice targets (oriented 

Gabor patches). Different task contexts were defined by the pair of discriminandum 

orientations. The stimuli were bandpass filtered in the Fourier domain to include only 

orientations within a predetermined range. The stimulus filter was centered on one of the 

two task orientations and its orientation bandwidth was used to control task difficulty. We 

included 0%-signal trials, for which the stimuli were unfiltered for orientation (and thus the 

same regardless of context), to examine the effect of task context on rsc in the presence of a 

fixed retinal input.

In order to detect any effect of task context on rsc structure, it is critical that subjects based 

their choices on the presence of the correct orientation signals. To ensure this, we used 

psychophysical reverse correlation31–33 to directly measure the influence of different 

stimulus orientations on the subject’s choices (the “psychophysical kernel”). We found that 

subjects required multiple days of retraining after a change in the task context to fully update 

their psychophysical kernel. For this reason, we kept the task context fixed for the duration 

of each recording session, and only undertook recordings in a new task context after subjects 

had updated their kernel (Supplementary Fig. 1). This is a significant advance over past 

studies of the effect of task context on neuronal responses, which typically have not 

quantified the extent to which behavioral strategy truly matches task instruction.
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We recorded spiking activity in populations of single V1 neurons using multi-electrode 

arrays while the subjects performed the task. We determined the preferred orientation of 

each neuron by measuring its response to oriented stimuli (see Methods) in separate blocks 

of trials during which subjects passively fixated. Neurons were excluded from analysis if 

they were not well orientation tuned. The final dataset includes 811 simultaneously recorded 

pairs from 200 unique cells across 41 recording sessions. For each pair, we calculated its rsc 

value as the Pearson correlation between the set of trial-duration spike-counts across trials of 

the same stimulus condition. While measuring rsc only across 0%-signal trials isolated any 

changes due to the task context, we found similar results within each signal level (Fig. 6). 

Therefore, to increase statistical power, we report rsc values measured across all trials, after 

normalizing spike counts to remove the effect of stimulus drive on firing rates.

Rsc structure changes systematically with task context

Recording large populations gave us the power to measure the full “rsc matrix”: that is, how 

rsc varied as a function of all possible combinations of orientation preference. This is the 

first time that such detailed measures of rsc structure have been made while animals perform 

a discrimination task. To assess the presence of task-dependent rsc structure in the data, we 

we first divided the recording sessions into two groups based on the task context used (Fig. 

2b). We estimated the smoothed, average rsc matrix associated with each subset (Fig. 2a,c) 

by pooling rsc values measured across the subset of sessions along with measures of the 

neuronal preferred orientation. Across both subsets of sessions, we observed a tendency 

towards higher values of rsc for pairs of neurons with more similar orientation preferences 

(i.e. higher values closer to the diagonal of the matrix), consistent with numerous prior 

observations3 (Fig. 2d). Traditionally, such observations were presumed to reflect “limited-

range correlations” that depend only on similarity in stimulus preference5,9,10, equivalent to 

a rotationally-symmetric (Toeplitz) correlation matrix. In contrast, in our data this was due 

to distinct patterns in the two matrices: we observed the highest values of rsc amongst pairs 

that shared a preferred orientation close to a discriminandum, and the lowest values of rsc 

tended to occur amongst pairs preferring opposite task orientations. Because the task context 

differed between the two subsets, this yielded matrices with a lattice-like pattern offset along 

the diagonal by an amount reflecting the task context. In other words, rsc structure changed 

dramatically with task context, consistent with the presence of task-dependent feedback and 

inconsistent with a fixed rsc structure primarily driven by sensory afferent noise.

To summarize this task-dependent structure across the entire dataset (Fig. 2e) we expressed 

each neuron’s preferred orientation relative to the task orientations on its respective 

recording session, such that 0º and 90º always indexed the task orientations. This combined 

matrix clearly illustrates the task-dependent pattern of rsc structure in the V1 population, a 

pattern that was consistent across both subjects (Supplementary Fig. 2). As in previous 

studies, there was a great deal of variability between individual rsc values, even amongst 

pairs with similar orientation preferences and task (Fig. 2d,f) demonstrating that factors not 

considered here also contribute to rsc.

Importantly, we observed a different result during separate blocks of trials in the same 

recording sessions, during which the subject fixated passively for reward but the same set of 
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stimuli was shown. During these blocks, the highest values of rsc tended to occur along the 

diagonal, independent of orientation preference or task (Supplementary Fig. 3). This 

demonstrates that the task-dependent pattern observed during task performance depends on 

active task engagement, and cannot be explained, for instance, simply as an effect of 

adaptation to task experience. We performed a number of additional analyses to rule out any 

possibility that our findings could be explained merely as an effect of changing retinal input 

across task contexts, such as effects related to stimulus history or eye movements (see 

Supplementary Figs. 4–7). Taken together, these controls strengthen our interpretation that 

centrally-generated signals reflecting task engagement underlie the task-dependent rsc 

structure we observed.

Segregating fixed and task-dependent components of rsc structure

Our dataset of rsc measurements made in large, heterogeneous populations across diverse 

task contexts allowed us to directly estimate the rsc structure that was fixed versus 

dynamically changing with task. To do this, we modeled the raw rsc values using two 

structured components: 1) a fixed rsc matrix describing the dependence of rsc on pairwise 

orientation preference regardless of task, and 2) a task-dependent rsc matrix capturing the 

dependence of rsc on pairwise orientation preference relative to the task orientations. We 

used ridge regression to find the form of these two component matrices that best predicted 

the raw rsc measurements. To reduce the number of regressors without constraining the form 

these two components could take, we parametrized the matrices as 8×8 grids of basis 

functions (see schematic in Fig. 3a and Methods).

This modeling approach allowed us to address two related questions. First, the form of the 

fitted components serves to identify the nature of the dynamic and fixed rsc structure in the 

V1 population. Second, comparing models that included either or both components provides 

a quantitative test for the origin of the rsc structure we observed. When we jointly fit both 

components to the data, the inferred task-dependent component (Fig. 3c) recapitulated the 

lattice-like structure we observed in the average data (Fig. 2e). The fixed component (Fig. 

3d) was smaller in amplitude and, interestingly, appeared also to contain a weak lattice-like 

structure, offset by approximately 30º. This is likely due to the fact that we did not 

uniformly sample across all possible task contexts, with tasks discriminating orientations 

near 30º/120º being overrepresented (see Fig. 2b). Next, we compared reduced models in 

which only one of the two components was used. Strikingly, cross-validated model accuracy 

was increased when we removed the fixed component entirely, but reduced by about half 

when we removed the task-dependent component (Fig. 3b). This suggests that the 

dependence of rsc on orientation preference in our data can be explained as a completely 

dynamic phenomenon, with no additional dependence that is invariant to the task. We found 

that that all of these modeling results could be replicated when the fixed and task-dependent 

components were parametrized in a different way (using a variable number of basis 

functions with locations fit to the data, instead of a fixed grid of basis functions; see 

Methods and Supplementary Fig. 8), suggesting the conclusions do not depend on the 

particular parametric assumptions that were made.
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We were interested in the effect of task context on rsc structure, so it made sense to focus on 

the dependence of rsc on orientation preference. However, rsc depends on a large number of 

factors irrelevant to the present study, such as physical proximity between pairs and 

similarity in tuning along many stimulus dimensions apart from orientation3,22. This implies 

that a model that describes the dependency on orientation preference correctly will only 

explain a small fraction of the variance in rsc. (This can be appreciated in Fig. 2d and f, 

where pairs with similar locations on the abscicca have substantial variation in rsc.) To 

estimate this fraction, we assessed the accuracy with which we could predict individual rsc 

values from a smoothed matrix built with other pairs. This showed that, in principle, 3.6% of 

the variance is explainable, of which the majority was explained by the regression model 

above. We also found that, across cross-validation folds, the fitted model components were 

highly consistent (mean correlation of 0.99), suggesting the inferred structure is robust to 

noise in the data despite the low absolute value of variance explained. Additionally, as we 

will discuss, the task-dependent pattern of rsc we identify is likely to be critically important 

during performance of the task despite the low fraction of total variance in rsc it explains. 

However, it is important to point out that our data cannot directly speak to the origin of rsc 

structure in V1 except as it varies as a function of preferred orientation.

Rsc structure during task performance reflects a single mode of variability

In the modeling discussed so far, we aimed to describe a fixed and task-dependent 

component of rsc structure with as few assumptions as possible. Having established that the 

observed rsc structure can be best described assuming it is entirely task-dependent, we next 

sought to identify a more parsimonious and intuitive description of this task-dependency. We 

started with the observation that the pattern we observed – increased correlation between 

pairs preferring the same task orientation and decreased correlation for pairs preferring 

opposing task orientations – would be consistent with feature-selective feedback which 

varied in its allocation from trial to trial between the two task-relevant orientations, as has 

been shown in recent theoretical studies29,34. To quantify this observation, we performed an 

eigendecomposition of the smoothed, average rsc matrix (Fig. 4a). We found that it had a 

single eigenvalue significantly larger than would be predicted by chance, consistent with the 

correlation structure being determined largely by a single mode. Moreover, the first 

eigenvector contained a peak and trough at the two task orientations, respectively, suggesting 

a mode of variability which increases the firing rate of neurons supporting one choice and 

decreases the firing rate of neurons supporting the other choice (Fig. 4b). To model this, we 

assumed all observed rsc values could be predicted by a single eigenvector which we 

constrained to be the difference of two von Mises functions centered 90° apart with variable 

amplitude and width (see Fig. 4c). We found that this simpler model in fact performed better 

than the more complex regression model in predicting individual rsc values, capturing about 

80% of the explainable variance in rsc (see Fig. 4e). This suggests that the rsc structure we 

observed in V1 could indeed be well described as the result of a single source of 

covariability that changed dynamically with the task.

We compared the “single eigenvector” model with another simple model that more closely 

reflected standard assumptions about rsc structure in sensory brain areas. This model 

predicted that rsc depends only on the difference in preferred orientation between pairs of 
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neurons regardless of task5,9,10 (“limited-range correlations” yielding an rsc matrix with a 

diagonal ridge) and would be consistent with rsc structure due to common afferent inputs. 

We modeled this dependence as a von Mises function of preferred orientation difference 

(Fig. 4d). This model performed much worse in predicting the observed set of rsc values, in 

fact not exceeding chance performance (Fig. 4e). (This qualitative difference in model 

performance was replicated in both subjects individually; see Supplementary Fig. 2). 

Importantly, both of these simple models predict a dependence of rsc on preferred orientation 

difference similar to what we found in the data (Fig. 2d) and has been observed 

previously8,20–23 – however, in the case of the “single eigenvector” model, this is due to 

task-dependent changes in rsc while for the “diagonal ridge” model, there is no effect of task 

context. Notably, we found that during the passive fixation blocks, the “diagonal ridge” 

model performed better (Supplementary Fig. 3c), quantitively supporting the observation 

that the task-dependent correlations we observed require active task engagement.

Effect of task-dependent rsc structure on neural coding

We next sought to address the functional importance of the rsc we observed on sensory 

coding. Many studies have shown that rsc in sensory neurons can decrease the sensory 

information that can be decoded, particularly when rsc resembles correlations due to task-

related stimulus changes5,8–15. We estimated this task-related stimulus correlation as the 

product of the slopes of a pair’s mean response functions along the task axis (i.e. as a 

function of orientation signal strength; Fig. 5a)16, normalized by the product of the neuronal 

variances. When we plotted these values as a smooth, task-aligned matrix (Fig. 5b), we 

observed a lattice-like pattern strikingly similar to the observed rsc matrix (Fig. 2e). 

Confirming this similarity, the task-dependent component of rsc structure identified by the 

regression model was highly correlated on a pair-by-pair basis with the stimulus-induced 

correlations (r=0.61, Fig. 5c). This matches our earlier observation that rsc structure was 

consistent with feedback that alternatingly targeted the task-relevant neuronal pools, which 

is similar to the effect of varying the stimulus along the axis defining the task.

Thus, the observed rsc structure appears not to improve, but rather to degrade, the sensory 

representation. However, our results highlight a problem with this interpretation and any 

purely feedforward account of the functional role of rsc. Namely, rsc that is generated 

endogenously need not be problematic at all (e.g. if the decoder had access to those 

endogenous signals). Indeed, the propagation of feedback signals that are matched to the 

statistics of the relevant sensory stimuli may be an adaptive strategy for bringing prior 

knowledge to bear, as predicted by recent models of probabilistic perceptual inference28,29. 

Rsc resembling stimulus-induced correlations emerge in such models28 as a consequence of 

the subject developing the appropriate priors about the task, yielding predictions that both 

match our empirical findings and offer a normative explanation.

Relationship between rsc structure and perceptual choice

Correlations between trial-to-trial variability of single neurons and choice35,36 have been 

frequently observed throughout sensory cortex. Theoretical studies have emphasized that 

this suggests the presence of spike-count correlation with a particular structure17–19,36,37. 
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After all, if many sensory neurons have variability that is correlated with choice, this implies 

that neurons supporting the same choice are themselves correlated. However, this could be 

compatible with either or both of two causal mechanisms: 1) correlated fluctuations directly 

affect the choices a subject makes trial to trial (a feedforward source of choice-related 

activity); or 2) the correlated fluctuations reflect variation across trials in a feedback signal 

related to the upcoming choice (a feedback source). As we show, our detailed measures of 

rsc structure during task performance can address this ongoing debate.

First, we reasoned that a signature of feedback related to the upcoming choice would be rsc 

structure in V1 whose magnitude depends systematically on variability in choice. Consistent 

with this prediction, we found that the amplitude of the rsc structure was attenuated on high-

signal trials relative to 0% signal trials, in a manner which depended systematically on 

signal strength (Fig. 6a,b). However, this attenuation was modest, even at the highest signal 

level we analyzed (11% reduction), despite the highly uneven distribution of choices. This 

rules out the extreme scenario in which feedback perfectly reflects choice. Supporting this 

conclusion, we found that the rsc structure, when calculated using only spikes from different 

200-ms windows during the trial, showed a stable timecourse (after a precipitous drop at the 

first time point) and did not grow in amplitude with decision formation (Fig. 7). Taken 

together, these observations support the conclusion that the rsc structure reflects variation in 

feedback signals only partially correlated with the subject’s final choices. These could 

include a combination of bias, attention to orientation, prior beliefs, and/or a decision 

variable.

Next, we assumed standard feedforward pooling (i.e. linear readout weights applied to the 

sensory pool) to determine if the observed rsc structure would be quantitatively consistent 

with the observed choice-related activity. To do this, we made use of recent theoretical work 

which analytically relates rsc structure, readout weights, and choice-related activity17. We 

calculated Choice Probability (CP), which quantifies the probability with which an ideal 

observer could correctly predict the subject’s choices using just that neuron’s responses35,36, 

for each recorded neuron. We found an average CP of 0.54 for task-relevant neurons, 

significantly above chance level (Fig. 8a) and similar in magnitude to another study using 

the same task31. We found that the rsc structure we observed would be sufficient to produce a 

pattern of CP across the population consistent with the data (Fig. 8b,c), across a wide range 

of possible readout schemes (Supplementary Fig. 9). Next, we considered the contribution of 

the different inferred sources of rsc to CP. (For top-down sources of correlation this is 

equivalent to assuming that the sensory population is read out without taking into account 

the top-down signal.) This allows us to treat all sources of rsc equivalently, and compare 

them quantitatively. When we considered a population containing only the “task-dependent” 

component of rsc structure identified in the regression model (Fig. 3c), predicted CP was 

only slightly reduced. Assuming only the “fixed” component (Fig. 3d), however, drastically 

reduced predicted CP below what we observed (Fig. 8b,c). Thus, our data rule out the view 

that a significant component of CP merely reflects the feedforward effect of stochastic noise 

in the afferent sensory pathway. Instead, the main source of CP appears to depend on task-

dependent changes in rsc structure related to perceptual judgments.
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Discussion

Spike-count correlations between sensory neurons have typically been described as 

reflecting noise that corrupts sensory encoding5,8–15. However, little is known about the 

origin of rsc, and it may instead be due to changes over time in feedback signals. We 

addressed this by recording from populations of V1 neurons using multi-electrode arrays 

while macaque subjects performed a set of orientation discrimination tasks. This approach 

allowed us to estimate the entire matrix describing the dependence of rsc on pairwise 

orientation preference (Fig. 2), providing an unprecedently clear picture of rsc structure in a 

behaving animal. By determining to what extent the rsc matrix was fixed, and what extent it 

changed with task, we could infer the relative importance of feedforward and feedback 

pathways in generating it (Fig. 3). We found systematic and novel structure in the rsc matrix 

that changed in a predictable manner with the task. Using multiple modeling approaches, we 

found that the fixed rsc structure was much smaller than the task-dependent structure, so 

much so that we could not estimate a fixed component reliably. Remarkably, a single source 

of task-dependent feedback captured the pattern we observed (Fig. 4). This feedback input 

increased and decreased the firing rate of neurons tuned for the two task-relevant 

orientations in a push-pull manner.

Our results suggest the possibility that variability in feedback is a major source of rsc 

structure in sensory cortex. The role of feedback may be even more pronounced in areas 

downstream of V1 which typically show a greater degree of extra-sensory 

modulation31,38–40. At the same time, we cannot rule out a larger role of feedforward inputs 

in generating patterns of rsc defined in different ways than those uncovered here. For 

example, because our measures of rsc structure involved smoothing, we cannot rule out the 

possibility that the fine-grained structure of rsc behaves in ways not captured by our analysis.

Our results are consistent with, and expand upon, a prior study that also measured task-

dependent changes in rsc
27. In that study, single pairs of direction-selective MT neurons 

were recorded while subjects performed two direction discrimination tasks chosen by the 

experiments to probe the effect of task context: one in which the neurons contributed to the 

same choice (“same-pool condition”) and one in which they contributed to opposite choices 

(“opposite-pool condition). This amounts to a selective sub-sampling of the rsc structure. 

While this identified some degree of task-dependence, the implications remained unclear. By 

contrast, the present study involved recordings from large simultaneously recorded 

populations, which achieved much better coverage of the full rsc structure. This revealed the 

detailed structure of the task-dependence and provided the basis for quantitative modeling 

and novel conclusions. For the purposes of comparison, we plotted our data in an analogous 

way to the prior study and found qualitatively similar results (Supplementary Fig. 10).

Consistent with several past studies30,41,42, we found evidence for choice-related feedback, 

as shown by the finding that correlated fluctuations in V1 are more pronounced on trials 

where the subject’s choices were more variable (Fig. 6). However, this effect was relatively 

weak, and we observed that task-dependent rsc structure did not grow in amplitude with 

decision formation (Fig. 7), suggesting processes indirectly related to choice may be 

responsible for the feedback generating the correlations. More importantly, we found that 
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the standard assumption that correlated fluctuations influence choice through feedforward 

pathways17–19,36,37 predicted CP in the V1 population that matched the data (Fig. 8), the 

first empirical test of the theoretical relationship between rsc in sensory neurons, CP, and 

readout17. However, the rsc structure responsible changed with the task, demonstrating that it 

does not simply reflect afferent noise. Taken together, our results instead favor the notion 

that choice-related activity comes about through self-reinforcing loops of reciprocal 

connectivity between cortical areas, as has also been suggested by other studies29,42,43.

The task-dependent modulation of rsc we observed did not appear to be beneficial to task 

performance (Fig. 5), at least not in the manner this has typically been examined (i.e. 

feedforward decoding of the sensory population alone). Instead, the inferred feedback 

signals appeared to mimic task-relevant stimulus changes, confounding the choices of an 

observer using only the sensory population. However, because the correlations reflect 

downstream computations, they need to not be limiting in this way to the subject. Thus our 

results highlight the fundamental insufficiency of considering the theoretical implications of 

rsc in terms of purely feedforward frameworks, as almost all such studies have done to date.

The inferred source of task-dependent feedback resembles previous reports about the effects 

of feature-based attention on visual cortical neurons34,44. Feature-based attention enhances 

the firing rate of neurons tuned for the attended stimulus feature, and decreases the firing 

rate of neurons tuned for unattended stimulus features. One possibility is that our task 

engages feature-based attention which varies over time in its allocation between the two 

task-relevant orientations. This does not appear to provide an adaptive increase in the 

amount of relevant stimulus information encoded, contrary to traditional descriptions of 

attention45,46. However, as discussed above, once a top-down contribution to correlations is 

recognized, it is not possible to infer the amount of sensory information available to a 

decoder from the activity of a population of sensory neurons alone.

Our findings thus emphasize the need for new normative models that predict context-

dependent feedback during perceptual processing. Currently, models based on hierarchical 

probabilistic inference28,29,47 do predict such feedback signals, and account for many of our 

experimental findings. This work builds on the longstanding idea that the goal of a 

perceptual system is to generate valid inferences about the structure of the outside world, 

rather than to faithfully represent sensory input48,49. This requires combining sensory input 

with prior beliefs, both of which can introduce correlated variability. During perceptual 

decision making, correlations resembling those induced by the stimulus naturally emerge as 

a consequence of the subject acquiring the appropriate prior beliefs about the structure of the 

sensory environment28. Clearly, further development of this and other models of perceptual 

processing are needed to generate quantitative predictions which can be further tested 

empirically.

Methods

Electrophysiology

We recorded extracellular spiking activity from populations of V1 neurons in two male, 

awake, head-fixed rhesus monkeys (Macaca mulatta). For the majority of the recordings, 
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monkey ‘lem’ was 14 while monkey ‘jbe’ was 16 years old, before which time they had each 

experienced extensive behavioral training, including on other behavioral paradigms for 

monkey ‘lem’. Monkey ‘lem’ could not be pair housed due to antisocial behavior. Both 

monkeys were implanted with a head post and scleral search coils under general 

anaesthesia51. In monkey ‘lem’, a recording chamber was implanted over a craniotomy 

above the right occipital operculum, as described previously52, by which we introduced 

linear microelectrode arrays (U- and V-probes, Plexon; 24-contacts, 50 or 60 μm spacing) at 

an angle approximately perpendicular to the cortical surface with a custom micro-drive. We 

positioned the linear arrays so that we roughly spanned the cortical sheet, as confirmed with 

current-source density analysis, and removed them after each recording session. In monkey 

‘jbe’, a planar “Utah” array (Blackrock Microsystems; 96 electrodes 1mm in length inserted 

to target supragranular layers, 400 um spacing) was chronically implanted, also over the 

right occipital operculum. All procedures were performed in accordance with the U.S. 

Public Health Service Policy on the humane care and use of laboratory animals and all 

protocols were approved by the National Eye Institute Animal Care and Use Committee.

Broadband signals were digitized at 30 or 40 kHz and stored to disk. Spike sorting was 

performed offline using custom software in MATLAB®. First, spikes were detected using a 

voltage threshold applied to high-pass filtered signals. Next, triggered waveforms were 

projected into spaces defined either by principal components or similarity to a template. 

Clusters boundaries were finally estimated with a Gaussian mixture model, and then 

rigorously verified and adjusted by hand when needed. In the linear array recordings, spike 

sorting yield and quality was substantially improved by treating sets of three or four 

neighboring contacts as “n-trodes”. As this was not possible with the Utah array due to the 

greater interelectrode spacing, we excluded pairs of neurons recorded on the same electrode 

to avoid contamination by misclassification. Neurons from separate recording sessions were 

treated as independent. To reduce the possibility that a single neuron from the Utah array 

contributed to two datasets, we included only sessions that were separated by at least 48 

hours (with a median separation of 5 days). We excluded from analysis those neurons whose 

mean evoked firing rate across the set of stimuli presented in the discrimination task did not 

exceed 7 spikes/s.

Visual stimuli

All stimuli were presented binocularly on two gamma-corrected cathode ray tube (CRT) 

monitors viewed through a mirror haploscope, at 85 or 100Hz. The monitors subtended 

24.1° × 19.3° of visual angle (1280 × 1024 pixels). The stimuli presented during 

performance of the discrimination task consisted of bandpass filtered dynamic white noise, 

as described previously31. Briefly, stimuli were filtered in the Fourier domain with a polar-

separable Gaussian. The peak spatial frequency was optimized for the recorded neuronal 

population (1 and 4 cpd medians for ‘lem’ and ‘jbe’, respectively) while the peak orientation 

could take one of two orthogonal values the animal had to discriminate in a given session. 

The angular s.d. of the filter modulated the orientation bandwidth and was varied trial to 

trial. A 2D Gaussian contrast envelope was applied to the stimulus so that its spatial extent 

was as small as possible while still covering the minimum response fields of the neuronal 

populations being recorded. The median envelope s.d. was 0.6 degrees for both animals. The 
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median stimulus eccentricity was 5.4 degrees for ‘lem’ and 0.5 degrees for ‘jbe’. In Fig. 1, 

we quantify orientation bandwidth as % signal strength. This was calculated as 100 * R, 

where R is the length of the resultant vector associated with the angular component of the 

stimulus filter. To perform psychophysical reverse correlation (PRC) for orientation 

(Supplementary Fig. 1), we summarized the orientation energy of the stimulus on each trial 

as the radial sum of its 2D amplitude spectrum (averaged across frames) to remove 

information about spatial frequency and phase.

We estimated neuronal orientation preferences in separate blocks of trials, using 420-ms 

presentations of the following types of stimuli, presented at a range of orientations: 1) an 

orientation narrowband version of the stimulus described above (10° angular s.d.); 2) 

sinusoidal gratings; and 3) circular patches of dynamic 1D noise patterns (random lines). 

The preferred orientation of a neuron was calculated as the circular mean of its orientation 

tuning curve. For each neuron, from among the set of tuning curves elicited by the different 

stimulus types described above, we chose as the final estimate of preferred orientation the 

one with the smallest standard error, obtained by resampling trials. We excluded from 

further analysis all neurons where this exceeded 5°. On a subset of sessions, we also used 

these orientation-tuning blocks to present examples of the 0%-signal orientation-filtered 

noise stimuli. These were presented at the same location and size as during task 

performance, allowing us to calculate rsc structure in the absence of task engagement but 

with identical retinal input.

Orthogonal orientation discrimination task

The animals performed a coarse orientation discrimination task using the orientation-filtered 

noise stimuli, as described previously31. To initiate a trial, the subject had to acquire a 

central fixation square. After a delay of 50 ms, the stimulus appeared for a fixed duration of 

2 seconds. The trial was aborted if the subject broke fixation at any point during the stimulus 

presentation, defined as either 1) making a microsaccade covering a distance greater than a 

predefined threshold (typically 0.5°) or 2) a deviation in mean eye position from the center 

of the fixation point of more than a predefined threshold, typically 0.7°. At the end of the 

stimulus presentation, two choice targets appeared. These were Gabor patches of 2–3° in 

spatial extent, oriented at each of the two task orientations. The locations of the choice 

targets depended on the task. For orientation pairs near horizontal and vertical (−22.5° – 

+22.5° and 67.5° – 112.5°), the choice targets were positioned along the vertical meridian, at 

an eccentricity of about 3°, with the more vertically-oriented target appearing always in the 

upper hemifield. For orientation pairs near the obliques (22.5° – 67.5° and 112.5° – 157.5°), 

the choice targets were positioned along the horizontal meridian, at the same range of 

eccentricities, with the smaller of the two orientations always appearing in the left hemifield. 

(We use the convention that horizontal is 0° and that orientation increases with clockwise 

rotation.) To penalize random guessing, the volume of liquid reward delivered after correct 

choices was doubled with each consecutive correct choice, up to a maximum of four times 

the initial amount. Since we were primarily interested in the effect of task engagement on 

neuronal activity, we applied a behavioral criterion to our data, excluding sessions where the 

subject’s psychophysical threshold (defined as the signal level eliciting 75% correct 

performance) exceeded 14% signal.
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To determine the influence on rsc of random fluctuations in the stimulus introduced by the 

use of white noise, we used a double-pass experimental design53 in which each exact 

stimulus sequence was presented on two separate trials. We calculated the stimulus-induced 

rsc for each pair, as described below, after permuting the indices of the paired repeat trials for 

one neuron’s trial sequence. This eliminated the temporal alignment of the two trial 

sequences, abolishing stimulus-independent covariability, while preserving the identity 

between the stimuli associated with the two trial sequences.

We attempted to use as wide a range of task contexts as possible over the course of data 

collection from both animals, but task contexts were not presented in a randomized way to 

the subjects, since performing a new task context required several days of retraining. 

Additionally, data collection and analysis was not performed blind to the experimental 

conditions – in particular, experimenters were aware what the instructed task context was. 

For further detailed information on experimental design and reagents, see the Life Sciences 

Reporting Summary included online.

Spike-count correlation measurements

Spike-count correlations were calculated as the Pearson correlation between spike counts, 

counted over the entire duration of the stimulus, with a 50-ms delay to account for the 

typical V1 response latency. Spike counts were first z-scored separately within each 

experimental block (typically a set of 100–200 trials lasting about 10 minutes) and each 

stimulus condition. This removed correlations related to long-term firing rate 

nonstationarities and allowed us to combine trials at different signal levels without 

introducing correlations related to similarity in stimulus preference. We used a balanced z-

scoring method proposed recently to prevent bias related to differences in choice 

distributions across signal levels54. We excluded pairs that were not simultaneously isolated 

for at least 25 trials total. The median number of trials per pair during task performance was 

752.

Despite the use of z-scoring, any influence of stimulus history on firing rates could in 

principle introduce a source of covariability that depended on the task context, since the set 

of stimuli used was not identical across task contexts (only the 0%-signal condition was 

identical). We ruled out this confound by adapting the z-scoring procedure described above 

to further remove any information about the preceding stimulus contained in the spike rate 

on the current trial. To do this, we z-scored spike counts separately within groups of trials 

for which the current stimulus and the stimulus on the preceding trial were the same. This 

produced identical results to those shown in the main analysis (Supplementary Fig. 5).

A main goal of the study was to measure how spike-count correlation varies with pairwise 

orientation. We illustrate this dependence in several figures as a smoothed function 

estimated from measures of rsc combined across multiple recording sessions, which we then 

sampled discretely with 1° resolution. The smoothed estimates were obtained using a 

bivariate von Mises smoothing kernel. A point in the correlation matrix C was given as:

Bondy et al. Page 13

Nat Neurosci. Author manuscript; available in PMC 2018 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C(x, y) =
∑i = 1

n ziK(x, y, θi, ϕi)
∑i = 1

n K(x, y, θi, ϕi)
, where K(x, y, θi, ϕi) = e

κ (cos(θi − x) + cos(ϕi − y))
, (1)

zi is the ith rsc measurement, θi and ϕi are the preferred orientations of the ith pair, and κ is 

the von Mises width parameter. We set κ = 1.3π, yielding a smoothing kernel closely 

approximating a bivariate wrapped Gaussian with 15° s.d. (Note that this smoothing 

procedure was only performed to generate figures in the manuscript, and was not applied as 

a pre-processing step in any of the quantitative analyses.) In some cases, we expressed the 

rsc matrix in a task-aligned coordinate frame (e.g. Fig. 2e), for which the preferred 

orientations of the ith pair relative to the task orientations were used for θi and ϕi. Since there 

were always two orthogonal task orientations, we averaged across both possible alignments, 

such that C(x, y) = C(x + 90°, y + 90°). All angular quantities were doubled for the 

calculations, as orientation has a period of 180°. To generate the kernel-smoothed profile of 

CP (Fig. 8), we used a one-dimensional equivalent of the procedure above, in which 

preferred orientations were parameterized only by a single parameter.

We considered using covariance instead of correlation to measure the covariability of 

neuronal pairs. However, a key advantage of correlation is that it is insensitive to the 

variance of the spike counts. By contrast, measures that do not normalize for spike-count 

variance will give larger weights to more variable pairs in any population analysis. In 

addition, using spike-count correlation allowed us to combine z-scored counts across 

stimulus conditions. This substantially increased the signal-to-noise ratio of our 

measurements. As a confirmation that this approach yielded results that generalize, we 

measured the average, task-aligned spike-count covariance matrix, using the same approach 

as we used to generate the rsc matrix in Fig. 2e. To estimate the spike-count covariance 

between a given pair of neurons without including an effect of common stimulus drive, we 

used an average of the covariance values measured separately for each stimulus condition, 

weighted by number of trials. We found that the pattern in the spike-count covariance matrix 

was closely similar to the rsc matrix (Supplementary Fig. 11). This confirms that our main 

results are not dependent on the use of rsc measured with normalized spike counts.

Regression model

We used a multilinear regression model to identify fixed and task-dependent components of 

the structured correlations we observed. We describe the set of observations (811 individual 

pairwise rsc measurements) in terms of a set of two underlying correlation structures: one 

defining rsc as a function of pairwise preferred orientation alone (“fixed”) and the other 

defining rsc as a function of pairwise preferred orientation relative to the task orientations 

(“task-dependent”). In order to provide a continuous and smooth description of the data, 

each component was parameterized as the sum of an array of n × n evenly spaced basis 

functions. Each observation, yi, was expressed as:

yi = xi
fixed · β fixed + xi

task · βtask + c + εi (2)
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xi
fixed and xi

task are length-n2 vectors of loadings onto the basis functions, which were given 

by evaluating the basis functions at the location corresponding to the pairwise orientation 

preference of the ith pair. βfixed and βtask are the length-n2 vectors of amplitudes of the basis 

functions (coefficients to be fit), c is a model constant, and · is the element-wise product. For 

the basis functions, we used bivariate von Mises functions, with no correlation and equal 

width in both dimensions. Thus the kth loading ( xi
fixed(k) or xi

task(k)) was given by:

xi(k) = e
κ cos θi − μk

1 + cos ϕi − μk
2

+ e
κ cos ϕi − μk

1 + cos θi − μk
2

z (3)

where θi and ϕi are the preferred orientations of the ith pair (relative to the task orientations 

in the case of the task-dependent loadings), μk is a pair of orientations defining the location 

of the kth basis function, Z is a normalization constant such that the sum of all loadings for 

observation i (xi
fixed + xi

task) is 1, and κ is the basis function width. Two terms are needed to 

express the loadings because the data are correlations: the first term describes the upper 

triangular portion and the second describes the lower triangular portion. Again, angular 

quantities were doubled. κ acts as a smoothing hyperparameter. We found that arrays of 8×8 

were sufficient to describe the structure of the two components. It was sufficient only to fit 

the upper triangular portion of the array of basis functions. Thus, each component was 

described by 36 parameters (although the effective number of parameters is significantly less 

because of the basis function smoothness and the ridge penalty). We fit the model using 

ridge regression. The unique optimal solution could therefore be derived analytically as β̂ = 

(XTX + αI)−1XTY, where X is the concatenated design matrix combining xfixed and xtask 

and α is the ridge parameter, which penalized the squared amplitude of the basis functions. 

The optimal values of the hyperparameters α and κ were chosen under 50-fold cross-

validation.

To ensure our results were not due to the particular way the above model was constructed, 

we compared them to those obtained using a conceptually similar regression model. In this 

alternative model, instead of a grid of basis functions with fixed locations, we allowed each 

component to be described as the sum of a variable number of von Mises basis functions 

with locations (as well as width and amplitude) fit to the data, again using least squares. This 

alternative model allowed, in principle, for fewer parameters and for fine details in the rsc 

structure to be captured by allowing some basis functions to have small width. The relative 

contribution of the fixed and task-dependent components of rsc structure could be tested in 

terms of the number of basis functions needed to best explain the data. In this case, the kth 

loading ( xi
fixed(k) or xi

task(k)) was given by:

xi(k) = e
κk cos θi − μk

1 + cos ϕi − μk
2

+ e
κk cos ϕi − μk

1 + cos θi − μk
2

(4)
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where θi and ϕi are the preferred orientations of the ith pair (relative to the task orientations 

in the case of the task-dependent loadings), μk is a pair of orientations defining the location 

of the kth basis function (fit to the data), and κk is the width of the kth basis function (fit to 

the data). Because each basis function has an independent width and location fit to the data, 

the model predictions are non-linear functions of the parameters, unlike in the previously 

described regression model. Furthermore, the fitting surface has many local minima because 

the basis functions can simply be permuted to produce an identical model. Therefore, the 

optimal parameters were identified using numerical optimization with an array of starting 

points to identify a globally optimal solution. Since each basis function required four 

parameters (amplitude, width, and location in two dimensions), the total number of 

parameters was 4*m+1, where m is the sum of the number of allowed fixed and task-

dependent basis functions and we add an additional parameter for the model constant.

Simple parametric models

We modeled the observed set of rsc values using two simple parametric models: a “single 

eigenvector” model and a “diagonal ridge” model. In the “single eigenvector” model, each 

observation yi was modeled as the outer product of an eigenvector X, evaluated at the 

relevant pair of orientations. The eigenvector was parametrized as the difference of two von 

Mises functions separated by 90°:

X(μ) = a1e
κ1cos(μ + b)

− a2e
κ2cos(μ + b + π)

(5)

where μ is the difference in preferred orientation and the task orientation (in angle-doubled 

radians), the α’s are the amplitudes to be fit, the κ’s are the widths to be fit, and b is the 

offset of the eigenvector peak and trough from the task orientations (allowing a mismatch 

between the model eigenvector and the task, and also fit to the data). An observed rsc value 

yi was described as:

yi = X(θi)X(ϕi) + c + εi (6)

where θi and ϕi are the task-aligned preferred orientation of the pair and c is a model 

constant. The model contained six total free parameters which were fit using gradient 

descent to minimize the squared error in the rsc predictions.

In the “diagonal ridge” model, rsc values were modeled as a decaying function of the 

difference in preferred orientation, independent of task. The dependence was modeled as a 

von Mises function. A given rsc value yi was modeled as:

yi = a · e
κcos(θi − ϕi) + c + εi (7)
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where θi and ϕi are the preferred orientation of the pair, c is a model constant, and α and κ 
parameterize the von Mises function. The model contained three total free parameters which 

were fit using gradient descent to minimize the squared error in the rsc predictions.

Estimating explainable variance

While the above models did not explain more than a small percentage of the variance of the 

raw observed rsc values, this is not surprising as the raw correlation data do not vary 

smoothly with preferred orientation (reflecting both noise, and the fact that rsc is known to 

depend on parameters other than orientation.3,22,23). For this reason, we measured goodness-

of-fit relative to an estimate of the explainable variance, which we took as the variance 

explained simply by a smoothed version of the raw data (sum of values in fixed and task-

aligned matrices was 3.6%). Smoothing was performed with a von Mises kernel, with width 

chosen to maximize variance explained.

Eye movements

Both animals tended to make anticipatory microsaccades near the end of the trial that predict 

their upcoming choice, consistent with a prior study31. This raised the possibility that 

choice-related eye movements gave rise to task-dependent changes in retinal input that 

explained the correlated fluctuations we observed. To rule this out, we measured the task-

aligned rsc matrix using a subset of trials on each session for which fixational eye position 

was not predictive of choice. To identify these trials, we used linear discriminant analysis 

(LDA) to predict the subject’s choices using the time series of mean binocular eye-position 

recorded on each trial. Then, we iteratively removed trials, starting with those furthest from 

the classification boundary, until classification performance no longer exceeded chance. This 

analysis (Supplementary Fig. 7) was restricted to the first 1.5 seconds of the trial, because 

we found that considering later time points (where most anticipatory microsaccades 

occurred) required discarding too many trials.

Choice probability predictions

Choice Probability was calculated in the standard way35. We only used 0%-signal trials, as 

the uneven choice distributions elicited by signal trials yield noisier CP measurements. 

Assuming feedforward pooling with linear readout weights, the relationship between the 

covariance matrix for a population of neurons, the readout weight of each neuron, and the 

Choice Probability (CP) of each neuron is:

CPk = 1
2 + 2

π sgn (ξk) arctan 2ξk
−2 − 1

−1
with ξk =

(Cβ)k
CkkβTCβ

(8)

where CPk is the CP of neuron k with respect to choice 1, β is the vector of readout weights 

and C is the covariance matrix17. We used this known relationship to quantify the CPs that 

would be associated with the rsc structure we observed and the fixed and task-dependent 

components we identified, assuming only a feedforward source of CP (Fig. 8). CPs, rsc 

structure, and readout weights were described as task-aligned functions of preferred 
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orientation. This is equivalent to assuming a population of infinite size that is homogeneous 

at a given orientation. For the fixed component of rsc, which was indexed relative to raw 

orientation preferences, we generated a task-aligned version by substituting the observed rsc 

values with model fits (using only a fixed component of the model) and then generating a 

smoothed task-aligned matrix as in Fig. 2e, using these substituted values. To guarantee real-

valued CPs on [0,1], we performed the calculations using a symmetric positive definite 

approximation55 of the rsc matrices, which introduced negligible error.

Since the readout weights were unknown, we generated a random distribution of 1000 

plausible readout weight profiles that could support task performance. To generate a sample 

from this distribution, we started with a vector of random weights (drawn from a normal 

distribution) and applied the 90° symmetry inherent in the task, such that βθ = −βθ+90, 

where βθ is the weight assigned to neurons with task-aligned preferred orientation θ. Then, 

we smoothed with a wrapped Gaussian kernel with 15° s.d. and excluded profiles which did 

not have a circular mean within 22.5° of choice 1 (0°). In practice, we found the CP 

predictions to be insensitive to the readout weights (Supplementary Fig. 9), which is not 

surprising for a nearly rank-1 matrix (since for exactly rank-1 matrices, the CPs are 

independent of the weights)17.

We can use correlations interchangeably with covariances in Eq. 8, under the simplifying 

assumption that the variance is uniform as a function of preferred orientation. If Σ is the 

correlation matrix for a population with uniform variance α, then it follows that:

ξk =
a(∑β)k

a∑kkβT(a∑)β
=

(∑β)k
∑kkβT∑β

(9)

where Σkk ≡ 1 for all k. We felt that spike-count variance that depended systematically on 

preferred orientation was unlikely to be a feature of the V1 representation, and thus that the 

advantages of using correlations outweighed the cost.

Noise in the decision process after pooling (pooling noise) has the effect of uniformly 

scaling down CPs, such that ξk in Eq. 8 is substituted with: 
(Cβ)k

Ckk(βTCβ + σpool
2 )

, where σpool
2

is the variance of the pooling noise6. We found that non-zero pooling noise was needed to 

avoid overestimating the magnitude of CP from the observed correlation structure. We used 

a fixed value of pooling noise in our predictions such that the average squared difference 

between the CP profile predicted from the observed correlation matrix and the observed CP 

profile was minimized. Empirically, we found that pooling noise variance of 0.6 was 

optimal. Since our spike counts were normalized to have unit variance, this implies pooling 

noise whose variance is 60% of the average spike-count variance of single neurons. This 

should be interpreted with care, as overestimation of CPs may also be an artefact related to 

the assumption of a homogeneous population17. Alternatively, the need to invoke pooling 

noise may be due to nonuniform sensory integration across the trial, which is distinct but 

which would also have an attenuating effect on CP when measured over the entire trial.
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Statistics

Statistical tests were performed non-parametrically using bootstrapping or other resampling 

methods, as described, with 1,000 resamples. Nonparametric statistical testing is superior 

when the underlying distribution of the data cannot be assumed. When p-values of p<0.001 

are reported, this indicates the null hypothesis can be ruled out with the most confidence 

possible given the number of resamples performed. In most cases, resampling was 

performed from the set of recorded neuronal pairs (n=811), and always with replacement. In 

all figures, one asterisk indicates significant at the p<0.05 level, two indicates p<0.01, and 

three indicates p<0.001. When standard error bars are shown, this makes the assumption of 

normality in the bootstrap distribution of the test statistic. However, this assumption was not 

formally tested. No statistical methods were used to predetermine sample sizes but our 

sample sizes are similar to those of previous publications22,23,27.

Data availability

All relevant data are available upon reasonable request from the authors.

Code availability

All computer code used to generate the results are available upon request from the authors.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Orthogonal orientation discrimination task
a. Schematic illustration of the task. Two example task contexts shown (cardinal and oblique 

discriminations). The task context was fixed in a given recording session, but varied across 

sessions. b. Psychometric function for monkey ‘lem’, example session, n=1,354 trials. Black 

curve is a probit fit, and error bars are 95% confidence intervals around the mean (black 

points). c. Histograms showing the distribution of psychometric thresholds across sessions 

for the two subjects. Threshold is defined as the signal level eliciting 75% correct 

performance. Black triangle indicates the threshold corresponding to the example session in 

(b). d. Example single stimulus frames corresponding to the two example task contexts in 

(a). The stimuli consisted of dynamic, white noise filtered in the Fourier domain for 

orientation (see Methods). The filter was centered on one of the two task orientations and its 

bandwidth determined signal strength.
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Figure 2. Rsc structure in V1 depends systematically on task context
a,c. Observed rsc matrices for the two subsets of sessions grouped by task context, as 

indicated in (b). The matrices were obtained by pooling the set of rsc measurements made 

within each subset and applying a von Mises smoothing kernel (approximating a 2D 

wrapped Gaussian with 15º s.d.). Colored dots correspond to pairs preferring the same or 

opposing task orientations. b. Polar histogram shows the distribution of task contexts used 

across sessions, with color indicating the division into two subsets. Note that the period is 

90º because of the orthogonality of the discriminanda. Colored arrows indicate the mean 

task context associated with each subset. d. Scatter plot showing a weak, but significant, 

dependence of rsc on the difference in preferred orientation of neuronal pairs (Pearson’s r = 

–0.11, P = 9 × 10−4, bootstrap test, one-sided). Black line is (type II) regression line and 

grey line corresponds to rsc=0. e. Average rsc matrix observed across all session, shown in a 

task-aligned coordinate frame. Each pair’s preferred orientations are expressed relative to 

the task orientations (defined as 0º and 90º). Color scale as in (a). f. Scatter plot showing a 

significant dependence of rsc on distance from the peak (0º/0º or 90º/90º) in the matrix in (e). 

This dependence was stronger than the dependence on difference in preferred orientation (r=

−0.17, p=1.63*10−6, bootstrap test, one-sided), suggesting the task-aligned pattern we 

observed captures a more important feature of rsc structure. Black and grey lines as in (d).
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Figure 3. Segregating fixed and task-dependent components of rsc structure
a. Schematic of the regression model used to estimate fixed and task-dependent components 

of rsc structure. Each component was a matrix composed of a grid of 8×8 von Mises basis 

functions, with amplitudes fit to the observed rsc measurements. b. Goodness-of-fit for the 

model that included both components and for two reduced models that included only one of 

the two components. Values are expressed relative to an estimate of the explainable variance 

in the data (see Methods). Error bars are +/− 1 SEM obtained from repeated 50-fold cross-

validation. Statistical differences in goodness-of-fit (p<0.001 in all cases) were based on a 

one-sided test obtained in the same way. c,d. Estimated components from the combined 

model. The amplitude of the task-dependent component (c) was considerably larger than the 

fixed component (d) by a factor of 2.1 (computed using the varance across the fitted basis 

function amplitudes), and closely resembled the lattice-like shape of the task-aligned, 

average rsc matrix (Fig. 2e). Note that orientation preferences for the task-dependent 

component are expressed relative to the task orientations. Mean rsc values are close to 0 due 

to the inclusion of a model constant.
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Figure 4. Rsc structure during task performance reflects a single mode of variability
a. Eigenspectrum for the average, task-aligned rsc matrix in Fig. 2e. The largest eigenvalue 

exceeded chance (p<0.001, permutation test, one-sided). The chance distribution (mean +/

− 1 SEM in blue) was determined by adding a random offset to the preferred orientations of 

each of the 811 pairs (i.e. permuting each rsc value along the diagonal). b. The eigenvector 

corresponding to the largest eigenvalue in (a). We first removed the mean rsc value from the 

matrices to ignore any flat eigenvectors. Error bar is +/− bootstrap SEM. The dark gray 

vertical bar indicates the peak in the eigenvector +/− 1 bootstrap SEM. This was not 

significantly different from 0º (p=0.078, bootstrap test, one-sided), indicating close 

alignment with the task. c. Schematic of “single eigenvector” model, in which rsc structure is 

described as the outer product of a vector parameterized as the difference between two von 

Mises functions 90° apart. d. Schematic of the “diagonal ridge” model in which rsc structure 

depended only on the difference in preferred orientations, independent of task. This 

dependence was modeled as a von Mises function centered on zero. e. Goodness-of-fit for 

the models in (c) and (d), calculated as normalized % variance explained, as in Fig. 3. Error 

bars around the mean and statistical comparison between models obtained through repeated 

50-fold cross-validation of the set of 811 pairs.
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Figure 5. Rsc structure matches effect of task-related stimulus variability
a. Responses (mean +/− 1 SEM, n=1,049 trials) to the stimuli used in the task at various 

signal strengths for two example neurons. For the purposes of illustration, the two task 

orientations are simply labeled positive and negative. This pair was typical in that the 

response functions (f1 and f2) are approximately linear over the range of signal strengths 

used. For this reason, we calculated the response correlation introduced by tuning similarity 

as the normalized product of the derivatives f1′f2′ 16. b. The matrix of f′f′ values, as a 

function of task-aligned pairwise orientation preference, obtained using kernel smoothing as 

in Fig. 2. We observed a pattern that was very similar to the structure of rsc we observed 

during task performance (Fig. 2e). c. Scatter plot of the task-dependent (putatively top-

down) component of rsc (Fig. 3c) against normalized f′f′ values for each recorded neuronal 

pair. The two were highly correlated across the population (Pearson’s r=0.61, p<0.001, 

bootstrap test, one-sided).
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Figure 6. Rsc structure depends on variability in choice
a. The average, task-aligned rsc matrix (as in Fig. 2e), shown separately for each stimulus 

strength. Note that 0% signal trials involved statistically identical stimuli across all task 

contexts. A qualitatively similar structure was apparent at non-zero signal levels. (Spike 

counts were z-scored to eliminate the effect of stimulus drive; see Methods). b. Scatter plot 

showing the slope of a regression line comparing the rsc values measured at each signal level 

against the rsc values measured at the 0% signal level. This quantity indicates the degree of 

attenuation of the rsc structure at a given signal level. We observed a weak but significant 

negative correlation (Pearsons’s r, p=0.038, bootstrap test, one-sided) with signal strength 

(error bars are +/− 1 bootstrap SEM around the mean of the 811 pairs), implying the rsc 

structure is attenuated on high-signal trials, when there was also less variability in choice. 

Dotted line is fitted regression line.
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Figure 7. Temporal dynamics of rsc structure
a. The average, task-aligned rsc matrix (as in Fig. 2e) obtained using spike counts from 200-

ms windows during the stimulus presentation. A similar structure was present at all time 

points (4 examples shown). b–c. Plots showing the temporal dynamics of two statistical 

measures of the observed rsc structure (mean +/− 1 bootstrap SEM). The colored lines 

indicate the example time points shown in (a). The population mean rsc value (b) showed a 

sharp drop shortly after stimulus onset, as seen in other studies50, and then a gradual 

recovery over the course of the trial. The amplitude of the rsc structure, quantified using the 

slope of the regression line of rsc obtained in each 200-ms window against rsc obtained from 

trial-length spike counts, is in (c). Apart from an increase at the first time point, likely due to 

the onset of the visual stimulus, this showed no significant modulation over the course of the 

trial. Note that values are all significantly less than 1 because smaller counting windows 

introduced a source of uncorrelated noise across trials.
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Figure 8. The task-dependent component of rsc structure accounts for choice-related activity
a. Histogram of observed CPs, from the subset of neurons (n=144) significantly preferring 

one of the two task orientations (d′>0.9 at highest signal level). Mean CP of 0.54 exceeded 

chance (p<0.001, bootstrap test using cell resampling, one-sided). CPs that were individually 

significant (p<0.05, bootstrap test using trial resampling, one-sided) are shown in black. b. 

We tested the known analytical relationship between spike-count correlations, readout 

weights, and CPs, under the assumption of a linear decoder applied to a population of 

sensory neurons17 (see Methods). Here CP is defined as a continuous function of task-

aligned preferred orientation, analogous to our description of the rsc matrix in Fig. 2e. The 

dashed black line shows the profile of CP observed across preferred orientations, after 

smoothing with a von Mises kernel approximating a wrapped Gaussian with 10° s.d. We 

applied a fixed sign convention to the CP values across all neurons, equivalent to arbitrarily 

calling the 0°-choice the preferred one. The predicted CP profiles (solid lines) show the CP 

elicited by reading out a sensory population with different rsc structures. Readout weights 

across orientations were unobserved and the profiles shown are averages of a large set 

generated from different assumed readout weight profiles (see Methods). c. Mean CP (using 

the traditional sign convention) associated with the profiles in (b), +/− 1 bootstrap SEM 

obtained by cell resampling (n=811 neurons). Note that the mean CP shown here is different 
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to the one shown in (a) because all neurons are included, regardless of their orientation 

preference. Statistical comparisons were performed using a sign-rank test.
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