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A B S T R A C T   

Air pollution, especially the concentration of particulate matter (PM2.5, PM10) is a major issue and is the biggest 
environmental risk for early death. In the present study, we aimed to estimate the human health risk and to 
describe the spatial and temporal variation of particulate matter in Romania between 2009 and 2018. The 
average concentration of PM2.5 and PM10 particulate matter in the eight studied regions varied between 17.01 
and 22.91 µg m− 3 and 23.02–33.29 µg m− 3, while the PM2.5/PM10 ratio varied between 0.52 and 0.76, 
respectively. The relative risk generated by PM10 in all-cause mortality had a significant variation between the 
regions, a relative risk of 1.017 in case of Bucharest and1.025 for western regions, with an average of 1.020 ( ±
0.002). According to our observations, a positive relative risk was identified in the case of cardiopulmonary and 
lung cancer morbidity mainly attributed to PM2.5 exposure, hence the resulted risk for the country average values 
was 1.26 ( ± 0.023) and 1.42 ( ± 0.037), respectively. The results revealed that the excess risk and attributable 
fraction for cardiopulmonary mortality can be reduced by 26.7% and 21.0%. Analyzing the evolution of par-
ticulate matters and the possible health impacts of PM2.5 and PM10 in all region of Romania a strong positive 
correlation was observed. Since the distributions of PM in different region had significant variation, more 
investigation is required to understand and decipher the most important regional emission sources for each 
region. In order to address this issue an in-depth investigation should separately analyze the regional charac-
teristics of air pollution.   

1. Introduction 

It is widely accepted and supported by scientific evidence, that air 
pollution is a major global public health risk factor even in the XXIst 

century, when more links are revealed by research studies between a 
number of serious diseases among various age groups and air pollution. 
There is a strong correlation between air pollution and increased 
morbidity and mortality as well; according to the World Health Orga-
nization (WHO) report [41], air pollution is responsible for seven 
million people’s death worldwide every year. Among the air pollutants, 
particles (PM) are considered as being the most dangerous substances 
released from different biogenic and anthropogenic sources or produced 
by secondary reactions taking place in the atmosphere [10,20,24,25]. 
Since PM2.5 and PM10 have different physico-chemical properties the 
ratio between the fine and coarse particulate (PM2.5/PM10) can offer 

more details about the particulate source, origination process, and 
human health impact [19,2,38,39,4,7,9]. Coarse particles (PM10) can 
get in deep into the respiratory tract, causing a serious respiratory dis-
ease [13,17,24,30,5]. However, due to the smaller size, the fine particles 
can pass via the respiratory tract and accumulate in the lungs causing 
different respiratory diseases as well as lung cancer [12,14,27,33,37]. 

According to the literature, the increased PM concentration is asso-
ciated with increased morbidity and mortality in the population of the 
European Union, as a consequence the PM2.5 reduced the average life 
span by 8.6 months [31]. Furthermore, according to different research 
outcomes the decreasing the PM2.5 concentration level by 10 µg m− 3 can 
increase life time by 0.61 year [1,18,34,35]. The PM2.5 has a higher 
toxicity than PM10 thanks to the inflammation-causing capacity and 
oxidative stress [40]. Risk evaluation is a widely used method to eval-
uate the elevated risk of health issues in individuals exposed to high 
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concentrations of particulate matter. From region to region the PM 
concentration and chemical composition show significant variation, 
which mainly depends on the geographical position, specific climate 
condition, anthropogenic activities and combustion sources [11,15, 
21–23,29,3]. 

The particulate matter (PM), especially those with an aerodynamic 
equivalent diameter smaller than 2.5 µm are seldom studied due to the 
restricted availability of PM2.5 related data. Previous studies have 
analyzed the human health effects of PM2.5 and PM10 in Central-Eastern 
Europe, especially in Romania [8,36], but the human health assessment 
is yet to be studied. 

To address this issue, the air pollution data was collected between 
2009 and 2018 in order to analyze and decipher the temporal and 
regional distribution of airborne particulate matters and to calculate the 
relative risk, excess risk, and attributable death in eight different regions 
in Romania. 

2. Materials and methods 

2.1. Sampling site 

Romania is a southeastern European country and the sixth/most 
populous member state of the EU with a population of around 19 
million. The air pollution, especially in large cities, represents major 
concerns and it is well known that both short- and long-term exposure 
can lead to a wide range of diseases. In the present study, the human 
health risk assessment of particulate air pollution (PM2.5 and PM10) 
during 2009–2018, was carried out for Romania. The daily data of 
course (PM10) and fine (PM2.5) particulate matter concentrations were 
followed in eight different regions (B - Bucharest, C – Central, NE – 
North-East, NW – North-West, S – South, SE – South-East, SW – South- 
West, W – West) between 2009 January and 2018 December, except 
PM2.5 in the Bucharest region, where the data are available only from 
2016. The region concentration was determined by averaging data from 
all stations in that region where the measurements coverage was higher 
than 75% in the study period (Table 1). 

where: Num - represents the number of monitoring stations in each 
region; PM2.5 - Mon. st. descr. and PM10 Mon. st. descr. represent the 
PM2.5 and PM10 monitoring station’s names, B, C, NE, NW, S, SE, SW, W 
represent the Bucharest, Center, North East, North West, South, South 
West and West regions, respectively. 

The daily data were obtained from the National Environmental 
Monitoring Agency network (www.calitateaer.ro), in total 33 (PM2.5) and 
122 (PM10) monitoring station data were processed (Fig. 1.). In order to 
determine the pollution level variation, temporal and regional distri-
bution, descriptive statistics and time series analysis were used. The 
coarse and fine particulate ratio (PM2.5/PM10) was calculated for each 
region. In order to decipher the seasonal variation, the data were 

classified using a four-season classification as follows: a. Spring (March- 
May), b. Summer- warm period (June-August), c. Autumn (September- 
November), d. Winter- cold period (December-February). 

2.2. Health risk assessment (HRA) 

2.2.1. Health risk assessment methodology for short-term effect of PM10 
In order the determine the short-term exposure to PM10, the relative 

risk (RR) for all-cause mortality was calculated according to Ostro [32] 
(Eq. 1). The relative risk for all-cause mortality was calculated if the 
PM10 concentration was higher than the background level (10 µg m− 3). 
A risk function coefficient of 0.0008 was used (95% CI: 0.0006–0.0010).  

RR = exp[β(X – X0)]                                                                        (1) 

where: X- represents the annual mean concentration of PM10 (µg m− 3), 
X0- represents the background concentration of PM10 (10 µg m− 3), β- is 
the risk function coefficient. 

2.2.2. Health risk assessment methodology for short-term effect of PM2.5 
The relative risk associated with PM2.5 was calculated separately for 

cardiopulmonary and lung cancer mortality for habitants over 30 years 
old [32] using Eq. 2.  

RR = [(X + 1)/(X0 + 1)]β                                                                (2) 

where: X- represents the annual mean concentration of PM2.5 (µg m− 3), 
X0- is the background concentration of PM2.5 (3 µg m− 3), and β- is the 
risk function coefficient. The applied β coefficients for the cardiopul-
monary and lung cancer mortality was 0.15515 (95% CI: 
0.0562–0.2541) and 0.23218 (95% CI: 0.08563–0.37873), respectively. 

Furthermore, using the determined relative risk (RR), the attribut-
able fraction (AF) was calculated [32] (Eqs. 3–4).  

AF = (RR − 1)/RR                                                                          (3) 

The calculated AF value indicates deaths ratio from the respective 
disease, which could be avoid if the concentration levels were lower by 
10 µg m− 3 and 3 µg m− 3 for PM10 and PM2.5, respectively.  

ER = (RR − 1)                                                                               (4) 

The exposure to ambient PM2.5 and PM10 was estimated as a 
population-weighted annual average in Romania. The calculated expo-
sure to PM was used as input in the health impact assessment to deter-
mine the total number of premature deaths. 

3. Results 

3.1. Statistical analysis of the data 

In the studied period (2009–2018), the average concentration of fine 
and coarse particular matter in the eight studied regions varied between 
17.01 and 22.91 µg m− 3 and 23.02–33.29 µg m− 3, respectively. In order 
to decipher the trends, descriptive statistical analyses were conducted 
for outdoor PM2.5 and PM10 mass concentrations - determined by 
gravimetric method STAS 12341. The highest multiannual mean con-
centration of the PM2.5 and PM10 was measured in the Bucharest region 
(22.91 µg m− 3 and 33.29 µg m− 3), followed by SW (20.40 µg m− 3 and 
30.85 µg m− 3) (Table2). The results show that the mass percentage for 
coarse particles is higher than the fine particles in all regions. 

Seasonal and spatial distribution of PM2.5 and PM10 levels in the 
studied regions are presented in Fig. 2. The results revealed higher PM 
concentrations during the cold period, especially in January and 
December, while the lowest levels were recorded during summer and no 
significant differences were observed between regions. Quantitatively, 
the difference between the highest and lowest monthly PM concentra-
tion was 1.77 times for PM10, and 2.76 times for PM2.5 respectively. 

Due to the different physico-chemical characteristics of coarse and 

Table 1 
The monitoring stations in Romania.  

Reg. Num. PM2.5 Mon. st. 
descr. 

Num. PM10 Mon. st.descr. 

B  4 B1,5,6,7  8 B1,2,3,4,5,6,7,8 

C  4 BV2, HR1, MS1, 
SB1  

12 BV1,2,3,4, CV1, HR1, MS1,2,3, SB1,3,4 

NE  5 BC1, BT1, IS1, 

NT1, SV1  

14 BC1,2, BT1, IS2,4,5,6, NT1,3, SV1,2,3, 
VS1,2 

NW  4 BH1, CJ2, MM2, 
SM1  

16 BH1,2,4, BN1, CJ1,2,3,5, MM1,2,3,4,5, 
SJ1, SM1,2 

S  5 AG2, GR2, PH2, 
TR3,5  

23 AG1,2,3,4,6, CL1,2,3, DB1,2, GR1,2,3, 
IL1,2, PH1,2,3,5,6, TR1,2,4 

SE  4 BR2, BZ1, CT2, 
GL2  

20 BR1,2,3,4, BZ1,2, CT1,2,3,4,5,7, GL1,2,3,4, 
TL1,2,3, VN1 

SW  4 DJ2,6, MH1, VL1  11 DJ1,2,3,5,6, GJ1,2,3, MH1 OT1 VL1 

W  3 AR2, CS5, TM2  18 AR1,2,3, CS1,2,3,4,5, TM1,2,3,5,6 

Total  33   122   
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fine particulate, the PM2.5/PM10 ratio was also calculated. The spatial 
distribution of the ten-year mean of PM2.5/PM10 ratios in eight Roma-
nian regions is presented in Fig. 3. The results show significant spatial 
distribution differences between regions, with a wide variability of 0.52 
and0.76. The highest ratio (0.76) was found in the most polluted region 
(Bucharest), indicating that high PM2.5 contributions come from in-
dustrial emissions, which has also been found in the well-developed 
industrialized western regions (NW, W) with higher PM2.5/PM10 ratio 
(0.73). 

3.2. Health risk assessment 

The relative risk (RR), excess risk (ER) and an attributable fraction 
(AF) were calculated for all-cause mortality in case of each region using 
the daily PM10 data. The average relative risk caused by PM10 for all- 
cause mortality was 1.020 ( ± 0.0024), with variability from 1.017 in 
the West region to 1.025 in the Bucharest region (Fig. 4). 

A positive relative risk for cardiopulmonary and lung cancer disease 
was observed which is mainly attributed to PM2.5 exposure; according to 
the national average values, the relative risk was 1.26 ( ± 0.023) and 
1.42 ( ± 0.037), respectively (Fig. 5). 

Fig. 1. Sampling regions (Romania). where: the numbers represent the regions, including Bucharest (8) as well: 1-North-East, 2-South-Est, 3-South, 4-South-West, 5- 
West, 6-North-West and 7-Central region. 

Table 2 
Descriptive statistical analysis.   

Region min 25 P med 75 P max mean stdev count 95% CI CV 

PM 2.5, 
µg m− 3 

B*  0.94  13.76  19.21  28.39  129  22.91  14.7  917 21.95–23.86  0.64 
C  0.36  9.06  13.3  19.62  138.7  17.01  13.73  3502 16.56–17.47  0.81 
NE  2  11.79  16.37  23.12  119.5  19.24  11.47  3567 18.86–19.61  0.6 
NW  0  10.08  14.99  23.21  107.5  18.04  11.23  3533 17.67–18.41  0.62 
S  1.6  11.24  14.9  20.95  81.02  17.51  9.59  3564 17.19–17.82  0.55 
SE  0.58  8.3  11.34  15.66  143.6  13.38  8.88  3319 13.08–13.68  0.66 
SW  0.91  11.9  16.99  24.69  118.4  20.4  13.51  3392 19.95–20.85  0.66 
W  1  8.99  13.93  21.59  132.6  17.21  12.46  3330 16.79–17.64  0.72 

PM10,µg m− 3 B  3  22.12  29.75  39.67  230.3  33.29  17.72  3562 32.70–33.87  0.53 
C  3.66  14.82  21.15  30.21  174.1  24.57  15.01  3651 24.08–25.05  0.61 
NE  5.57  19.62  25.71  33.28  120.8  27.69  11.99  3651 27.30–28.08  0.43 
NW  3.45  15.28  21.48  30.46  127.6  24.29  12.27  3649 23.90–24.69  0.51 
S  5.97  20.31  26.28  34.37  92.61  28.57  11.65  3651 28.20–28.95  0.41 
SE  2  18.76  22.99  28.1  93.38  23.95  7.61  3648 23.70–24.20  0.32 
SW  3.55  20.16  27.22  37.07  171.8  30.85  16.33  3631 30.32–31.38  0.53 
W  5.04  15.34  20.94  28.09  99.52  23.02  10.63  3647 22.68–23.37  0.46 

where: min - minimum; 25 P - 25th percentile; med - median; 75 P - 75th percentile; max - maximum, mean - average, stdev - standard deviation; count - number of 
samples; 95% CI - confidence interval; CV -coefficient of variation. * the data are available only from 2016. 
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Fig. 2. Multiannual monthly mean PM2.5 and PM10 concentration variation, averages are represented by blue and red x, and the ends of the whiskers represent the 
minimum and maximum standard deviations. 
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The calculated excess risk (ER) and the attributable fractions (AF) for 
all-cause mortality were evaluated for each region using daily PM10 
data. The results revealed that the excess risks varied between 1.71% 
and 2.5% (Table 3). 

Furthermore, the excess risk (ER) and attributable fraction (AF) for 
cardiopulmonary and lung cancer mortality were also determined for 
the long-term exposure to PM2.5 and are presented separately 
(Tables 4–5). Results show that for cardiopulmonary mortality, the ER 
and AF in Romania varied between 21.4% and 32.6%, 17.5–24.6%, 
respectively. 

4. Discussions 

During the studied period the average PM2.5 and PM10 

concentrations were 1.82 and 1.35 times higher than the annually 
acceptable limit specified by the WHO Air Quality Standard. Over the 
years the PM concentrations show a strong seasonal variation, the 
maximum level was detected in the cold period, and the minimum in 
summer during the warm period. Therefore, the PM concentrations 

Fig. 3. The PM2.5/PM10 ratio variations in different regions.  

Fig. 4. PM10 all-cause mortality, where blue dots represent the means and the 
whiskers’ ends show the standard deviations. 

Fig. 5. PM2.5 - cardiopulmonary disease (left) and PM2.5 - lung cancer (right), where blue dots represent the means and the whiskers’ ends show the stan-
dard deviations. 

Table 3 
Human health risk calculation based on the PM10 concentration in different 
region for all-cause mortality associated with short-term PM10 exposure.  

Region ER (%) ER ( (95% CI) AF (%) AF (95% CI) 

B  2.56  2.42  2.71  2.5  2.36  2.64 
C  1.83  1.02  1.02  1.8  1.65  1.95 
NE  2.09  1.02  1.02  2.05  1.96  2.14 
NW  1.81  1.02  1.02  1.78  1.65  1.91 
S  2.16  1.02  1.02  2.12  1.93  2.3 
SE  1.79  1.02  1.02  1.75  1.58  1.93 
SW  2.35  1.02  1.03  2.3  2.13  2.46 
W  1.71  1.02  1.02  1.68  1.52  1.85 
RO  2.04  1.02  1.02  2  1.89  2.11 

where: B, C, NE, NW, S, SE, SW, W represents the regions; RO - represents the 
country average; ER - excess risk; AF - attributable fraction and 95% CI - con-
fidence level. 

Table 4 
Human health risk calculation based on the PM2.5 concentrations in different 
region for cardiopulmonary mortality associated with long-term exposure to 
PM2.5.  

Region ER (%) ER ( (95% CI) AF (%) AF (95% CI) 

B  32.6  28.3  37  24.6  22.1  27 
C  25.9  23.6  28.3  20.5  19  22 
NE  28.5  27.5  29.6  22.2  21.6  22.8 
NW  27.2  25.6  28.8  21.4  20.4  22.3 
S  26.7  25.3  28.1  21.1  20.2  21.9 
SE  21.4  18.9  23.8  17.5  15.9  19.2 
SW  29.3  27.2  31.5  22.6  21.3  23.9 
W  26.2  23.6  28.8  20.7  19  22.4 
RO  26.7  25.3  28.1  21  20.2  21.9  

Table 5 
Human health effect calculation based on the PM2.5 concentrations in different 
regions for lung cancer associated with long-term exposure to PM2.5.  

Region ER(%) RR ((95% CI) AF (%) AF (95% CI) 
B 52.6 45.1  60.1 34.4  31.2  37.5 
C 41.2 37.3  45.2 29.1  27.1  31.1 
NE 45.6 43.8  47.3 31.3  30.4  32.1 
NW 43.3 40.6  46.1 30.2  28.9  31.5 
S 42.5 40.1  44.9 29.8  28.6  30.9 
SE 33.6 29.6  37.6 25  22.7  27.3 
SW 47 43.3  50.6 31.9  30.1  33.6 
W 41.6 37.3  45.9 29.2  27  31.5 
RO 42.5 40.2  44.9 29.8  28.6  30.9  
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show a clear decline from spring to summer, reaching the lowest con-
centration in the warm period, while the highest level was observed in 
the winter period when biomass burning is significant due to the heating 
season and when vertical mixing is reduced [17,26,28,39,42]. 

As it was stated earlier, air pollution is more severe in densely 
populated cities and regions with industrial background and specific 
microclimate condition. The results revealed similar tendency in our 
study, with increased air pollution in Bucharest and the South-West 
region which is due to densely populated cities and strong industrial 
background nearby. On the other hand, the PM10 fraction partially could 
also be formed from the coagulation of fine particulates. 

Analyzing the particulate matter concentration for a ten-year period 
in Romania the results clearly indicate a strong seasonal characteristic in 
all eight regions. According to our observations, the elevated pollution 
level is mainly ascribed to increased fossil burning and traffic; moreover, 
in the winter period, adverse meteorological circumstances like thermal 
inversion, frequent fog are also essential factors, especially in case of 
intra-mountain basin, hence favoring the accumulation of air pollutants 
[13,16]. Since the source of fine particles (PM2.5) and coarse particles 
(PM10) might be different; in order to decipher the main sources the 
PM2.5/PM10 ratio analysis is a well-known approach in the identification 
of particle pollution origin [43]. The results revealed highest ratio in 
regions with massive industrial background which indicates increased 
PM2.5 contributions from industry. Furthermore, the relative risk cal-
culations showed a positive risk for cardiopulmonary and lung cancer 
disease due to exposure to PM2.5 and for all types of mortality in case of 
PM10. 

The higher excess risk was found in the Bucharest region which 
means that the habitants exposed to the actual PM10 concentration in 
Bucharest have more chance to experience different health issues by 
2.56% than habitants in a group that is exposed to a background con-
centration of 10 µg m− 3 (PM10). The lowest excess risk was found in the 
western regions with 1.71% more harmful effect compared to the 
background level, where is no industrial pollution. According to the 
calculated excess risk and attributional fraction, the all-cause mortality 
can be reduced by 2.04% and 2.00%, respectively, if the PM10 concen-
tration levels are maintained at around 10 µg m− 3. If the annual con-
centration of PM2.5 will be kept around 3 µg m− 3 the excess risk and 
attributional fraction for cardiopulmonary mortality will decrease by 
26.7% and 21.0%, respectively. 

Furthermore, the results are fairly similar to those reported by [6], 
according to their observations regarding the risk of air pollution in 
Lisbon, the lung cancer mortality rate could be prevented by 29.8% [6]. 
In case of Romania the excess risk and attributional fraction for lung 
cancer mortality can be prevented by 42.5% and 21.0%, respectively, if 
the PM2.5 concentration levels will be kept around 3 µg m− 3. 

Citizens of crowded cities (Bucharest, Iași, Brașov) have been 
exposed almost continuously to unhealthy levels of PM10 since 2007 and 
the measures taken to reduce air pollution have been ineffective, and 
this the main reason why Romania has now been condemned by Euro-
pean Commission. In the future, further analyses are necessary and will 
be carried out to examine emission sources and the geographical dif-
ferences between the regions. 

5. Limitations and strengths 

The main limitation of this study was the use of the descriptive an-
alytic methods. In order to address all aspects of the relation between 
different air pollutants and meteorological factors and the health 
adverse effects and health endpoint in the population further epidemi-
ological studies are necessary. In this manner, we can decipher and 
understand the health effect mechanism of major air pollutants in 
different regions of Romania. By estimating the relative risk (RR), excess 
risk (ER) and attributional fraction (AF) during PM2.5 and PM10 expo-
sure a different aspect of air pollution have been illuminated, hence the 
results from our study can be used as support in the future for the 

development of environmental regulations and policies. 

6. Conclusions 

During the studied period (2009–2018), the average concentration of 
PM2.5 and PM10 in the eight studied Romanian region was higher than 
the annually acceptable limit established by national and EU regula-
tions. Significant differences were revealed between regions, namely, 
highest in the Bucharest region and lowest in the South-East region. 
Human health risks associated with exposure to particular matters 
(PM2.5, PM10) were estimated in the current study, and according to the 
results, the ratio between the fine and coarse particular matter in 
Romania warried between 0.52 and 0.76. The calculated relative risk for 
PM2.5 (cardiopulmonary and lung cancer) was significantly higher than 
the relative risk caused by PM10 for all-cause mortality. Moreover, the 
relative risk calculated from PM2.5 concentrations (1.26) was more than 
one order of magnitude higher than for the PM10 (1.02). The result 
showed that the exposure to particulate matters represent important 
potential risk for many health issues, which need to be minimized by 
environmental regulation. In the light of these facts, Romania still needs 
to improve its environmental protection policy and environmental 
protection actions as well, in order to reduce the emission of air pol-
lutants with potential health effects. 
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