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The increased focus on the public health burden of antimicrobial resistance (AMR) raises conceptual
challenges, such as determining how much harm multidrug-resistant organisms do compared to what, or how
to establish the burden. Here, we present a counterfactual framework and provide guidance to harmonize
methodologies and optimize study quality. In AMR-burden studies, 2 counterfactual approaches have been
applied: the harm of drug-resistant infections relative to the harm of the same drug-susceptible infections
(the susceptible-infection counterfactual); and the total harm of drug-resistant infections relative to a situation
where such infections were prevented (the no-infection counterfactual). We propose to use an intervention-
based causal approach to determine the most appropriate counterfactual. We show that intervention scenarios,
species of interest, and types of infections inf luence the choice of counterfactual. We recommend using purpose-
designed cohort studies to apply this counterfactual framework, whereby the selection of cohorts (patients with
drug-resistant, drug-susceptible infections, and those with no infection) should be based on matching on time
to infection through exposure density sampling to avoid biased estimates. Application of survival methods is
preferred, considering competing events. We conclude by advocating estimation of the burden of AMR by using
the no-infection and susceptible-infection counterfactuals. The resulting numbers will provide policy-relevant
information about the upper and lower bound of future interventions designed to control AMR. The counterfactuals
should be applied in cohort studies, whereby selection of the unexposed cohorts should be based on exposure
density sampling, applying methods avoiding time-dependent bias and confounding.

causal inference; causality, global burden of disease; drug resistance; microbial; methods; research design;

Abbreviations: AMR, antimicrobial resistance; MDR, multidrug resistance; MSSA, methicillin-susceptible Staphylococcus aureus;
MRSA, methicillin-resistant Staphylococcus aureus; R, resistant; S, susceptible.

INTRODUCTION

Increasing focus on the problem of antimicrobial resis-
tance (AMR) creates a need to quantify its impact on human
health to provide evidence to guide and prioritize mitigation
efforts. Such efforts raise conceptual and technical chal-
lenges, the most fundamental of which is to define what we
mean by the impact or burden or harm caused by AMR.
Important aspects of the harm caused by AMR may be
quantified as requiring a longer hospital stay for treatment
or resulting in greater mortality rates or loss of disability-
adjusted life-years due to treatment failure or occurrence
of long-term sequelae. Whatever the measure of harm, the
thornier question is: “compared to what?” In this article, we
tackle this conceptual challenge, proposing a hypothetical

intervention-based approach (1) to consider the burden of
AMR. We argue that 2 definitions of burden are salient
and that, ideally, researchers should attempt to estimate
quantities on the basis of both of these definitions and then
use them to evaluate the harm avertable by different types
of interventions. We also address the technical challenges of
how studies should be designed to estimate these quantities
from data.

DEFINING THE BURDEN

Some have proposed that the precise question that burden-
of-resistance studies should answer is, “How much harm is
done by antibiotic-resistant infections, relative to the harm
the same infections would do if they were susceptible to
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Current Situation Without Intervention

Susceptible-Infection 
Counterfactual

With Intervention

Reduced human/veterinary  
Mantibiotic use (1, 7) 
Improved antibiotic choice (2) 
Vaccination reducing 
Msecondary infections (4b)
New antibiotics (6) 

No-Infection 
Counterfactual

With Intervention

Infection prevention and 
Mcontrol (3)
Vaccination against bacterial 
pathogens (4a)
Water, Sanitation and 
MHygiene (WASH) (5)
Reduced livestock 
Mtransmission (8)

Infection Status

No infection 

Susceptible infection 

Resistant infection 

Figure 1. Possible counterfactual scenarios for specific interventions against drug-resistant infections. Numbers in parentheses refer to the
numbered categories in the section titled “Which interventions might approximate which counterfactual?”.

all antimicrobial drugs that are normally effective against
that species of bacteria?” This question focuses on the
harm resistant infections do because they are resistant. We
refer to this question as estimating the impact of resistance
compared to a susceptible (S)-infection counterfactual
(Figure 1) (2).

Alternatively, some propose to estimate the burden of
resistance by asking the question, “How much harm is done
by antibiotic-resistant infections, relative to a situation in
which such infections did not occur at all because they
were prevented (e.g., by better infection control or a vac-
cine?)” This question focuses on the total harm resistant
infections do. We refer to this question as estimating the
impact of resistance compared to a no-infection counterfac-
tual (Figure 1).

Authors of a recent systematic review of 286 burden-of-
resistance studies for World Health Organization priority

bacteria found that 152 of them (53%) compared outcomes
of resistant versus susceptible infections, 11 (4%) compared
outcomes of resistant infections versus uninfected compara-
tors, and 6 (2%) compared all 3 groups, with case-control
studies more often making the comparison to uninfected
patients (3). Notably, 89 burden-of-resistance studies did not
include a comparison and reported crude health outcomes,
or attributable health outcomes based on subjective chart
review.

In other areas of epidemiology, it has been suggested
that coherent causal questions can be asked only by
positing a well-defined, specific intervention (feasible or
hypothetical) (1) and designing a statistical analysis to
mimic a randomized trial of that intervention, where the
causal contrast of interest would be the contrast between
those randomly assigned to receive the intervention and
those randomly assigned to a control group (4). Here, we
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apply this perspective to the question of AMR burden. We
begin by considering what might be the effect of various
interventions to control AMR, and which (if either) of
the 2 counterfactuals might be better approximated by the
results of a successful intervention of various sorts. We
conclude that some types of intervention might be expected
to approximate 1 or the other of these counterfactuals, but
we note there are several cases where the expected outcome
is unclear. Therefore, we recommend that burden-of-AMR
estimates consider both counterfactual comparisons.

Which interventions might approximate which
counterfactual?

Because AMR infections result from a complex set of
causes whose influence and interactions remain poorly
understood, the list of interventions that could potentially
reduce its burden is long. Categories of interventions that
should reduce the harm caused by resistant infections
include: 1) reducing antimicrobial use, especially unneces-
sary use (e.g., through antimicrobial stewardship programs);
2) improving the choice of antimicrobial agent, dose, and
therapy duration, including by the use of rapid resis-
tance diagnostics, antimicrobial stewardship programs, or
redacted reporting of susceptibility results by the microbi-
ological laboratory (5, 6); 3) improving infection control
aimed at reducing a) transmission of pathogenic bacteria in
hospitals and other settings where antimicrobial use is high
(7) and b) the probability of infection by a patient’s own
flora (e.g., via improved procedures for catheter placement)
(8); 4) introducing and promoting the use of vaccines (9) a)
against infections that are commonly resistant and b) against
infections that lead to substantial antibiotic use, exerting
selection on bystander bacteria in persons who are treated
(10); 5) improving water, sanitation, and hygiene—a form
of infection control in the community (11); 6) developing
and introducing new antibiotics (12); 7) reduction of envi-
ronmental contamination or agricultural use of antibiotics;
8) livestock vaccination; and 9) combinations of these,
such as increased use of resistance diagnostics to optimize
therapy (category 2) combined with preferential efforts to
reduce transmission from resistant cases (category 3) (13).

For each of these categories, we can consider their likely
effects as either 1) reducing resistant infections without
increasing susceptible ones, making the no-infection coun-
terfactual more relevant; or 2) reducing the proportion of
infections that are resistant while leading to some replace-
ment of those infections with susceptible ones, making the
S-infection counterfactual more relevant (Figure 1).

1. Reductions in antimicrobial use. We can think of this
as an evolutionary intervention that reduces selection
pressure for resistant strains. On the basis of this
understanding, one might expect that reducing antimi-
crobial use would lead to an evolutionary shift away
from resistant infections in favor of their susceptible
competitors. We discuss later in this article the evi-
dence for competition, or a lack thereof, between S
and R strains of the same bacterial species. If such
competitive interactions are assumed, mathematical

models typically predict that reduced antibiotic use in
the hospital will lead to reductions in the prevalence of
R strains, with an offsetting increase in S strains (14).
Alternatively, if resistant and susceptible strains do
not compete with one another or do not compete very
strongly, then reduced antimicrobial use may not lead
to much or any compensatory increase in S infections
as R infections decline. Despite these last caveats,
the S-infection counterfactual seems most relevant for
evaluating the possible outcomes of antimicrobial use
reductions.

2. Improving the choice of antibiotics. This includes sev-
eral different types of interventions, like cycling, or
mixing at ward-level, combination therapy, alternating
antibiotics (15), or using rapid diagnostics at the indi-
vidual level. Cycling or mixing does not change the
number of cases treated but only what they are treated
with, likely resulting in a reduction of 1 resistant
phenotype in favor of another resistant phenotype (16),
in which case neither of the counterfactuals described
here is precisely relevant. However, assuming that
the individual-level interventions would increase the
proportion of appropriately treated R infections, this
would effectively convert them to S infections, indi-
cating that the S-infection counterfactual could be
relevant.

3. Improving infection control in hospitals. Intuitively,
one might imagine that infection control (e.g., bet-
ter hand hygiene and room sanitation in hospitals)
would equally affect all strains of bacteria, R and
S alike, and therefore, such a nonspecific interven-
tion would reduce R and S infections equally. Math-
ematical models, however, suggest that if R and S
strains compete with one another, and if R strains rely
more on hospital-based transmission for survival, then
nonspecific infection-control measures will dispropor-
tionately reduce R infections (17); in the simplest case
they will have no impact on the equilibrium frequency
of patients harboring S strains, but only reduce the
frequency of harboring R strains (18). To the extent
these models are to be believed, the no-infection coun-
terfactual seems most relevant.

4. Vaccination must be considered in 2 different ways.
a) Vaccination against pathogens that can cause drug-
resistant infections. Many vaccines protect against all
strains of an infection, regardless of drug resistance. To
the extent that vaccination reduces absolute incidence
of disease, and with it the absolute incidence of re-
sistant disease, the no-infection counterfactual is
relevant. Some complexity arises when the vaccine re-
duces incidence of some types of disease but increases
incidence of others (e.g., serotype replacement in
pneumococcal conjugate vaccines (19)). Further-
more, some vaccines that are selective for certain
types, like pneumococcal conjugate vaccines, may
disproportionately reduce drug-resistant disease (20),
but this effect appears to be temporary, because
resistant nonvaccine types increase in frequency (21).
Notwithstanding these complexities, we believe the
no-infection counterfactual is the most relevant here.
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b) Vaccination against pathogens (e.g., influenza,
respiratory syncytial virus) that are associated with
antimicrobial use (22). Here, the impact on AMR is
a side benefit of reducing other infections that trigger
antibiotic treatment, and we can see these vaccines
as strategies to reduce antibiotic use (strategy 1), for
which the S-infection counterfactual is relevant.

5. Improving access to water, sanitation, and hygiene.
Here, as with vaccination or infection control, the
primary effect is to reduce infection rates with all
pathogens, regardless of resistance status. Thus, we
would expect the no-infection counterfactual to be
most relevant.

6. Introduction of new antibiotics. This effectively ren-
ders a previously R infection S, by expanding the
options for treatment. This is the case where the S-
infection counterfactual is the most clearly relevant.

7. Reduction of environmental or agricultural antimi-
crobial use. Although the role of agricultural antibi-
otic use and environmental antibiotic residues in
promoting resistant human disease remains difficult to
quantify (23), the basic way in which such pressures
likely act is to increase the proportion of resistant
bacteria among those to which humans are eventually
exposed. Reducing such use would thus seem likely to
shift human exposure toward a more susceptible flora,
making the S-infection counterfactual most relevant.
However, a better understanding of mechanisms (24)
might change this view.

8. Livestock vaccination, infection control, food-animal
handling changes, and other measures to reduce
animal-to-human transmission of infection. To the
extent that such measures are used as part of a
One Health strategy to reduce human exposure to
foodborne pathogens, the no-infection counterfactual
appears most relevant.

9. Combinations of interventions. Interventions to
control AMR are very often deployed in combinations.
A combination of interventions will have effects that
depend on the details. In the case of “resistance-
targeted infection control” recently modeled (13) and
already in practice, to some extent (e.g., selective
decontamination of carriers of resistant hospital-
transmitted bacteria), this is an explicit effort to
reduce the relative fitness of R strains, with the
expectation of their replacement by S strains. Thus,
the S-infection counterfactual is most relevant. In
general, interventions may bundle approaches that will
reduce total infections and approaches that will reduce
R infections specifically, underlying the importance of
estimating both counterfactuals.

Role of competition

In most of the cases in the preceding list where the S-
infection counterfactual was thought to be relevant, this
conclusion depended on the assumption that R and S strains
compete. If so, inhibiting the transmission of the R strain

leads to an increase in the transmission and disease from
the S strain. For most infections, there is limited evidence
to address this question. Much of the existing evidence
comes from analyses that have tried to distinguish between
the hypothesis that R infections add to the total burden of
infection (addition) versus the hypothesis that R infections
replace S infections (replacement) (25, 26), with the 2
hypotheses pointing toward the no-infection and S-infection
counterfactuals, respectively.

Here we review what is known for selected species.

• Multiple pathogens. From analysis of European surveil-
lance data on 5 major bacterial pathogens, including the
3 specifically discussed here, researchers concluded that
R infections mainly added to the burden of total infec-
tions rather than replacing S infections (27). Likewise,
a cross-hospital comparison of bloodstream infection
trends in 14 hospitals for methicillin-resistant Staphy-
lococcus aureus (MRSA) versus methicillin-susceptible
S. aureus (MSSA), as well as other antibiotic-resistant
pathogens, found mainly evidence of addition rather
than replacement (addition/no-infection) (26).

• Vancomycin-resistant Enterococcus faecium. Early
work suggested that hospital-adapted clones of van-
comycin resistant E. faecium were genetically distinct
from susceptible members of the same species, carrying
100 hospital-specific genes (28, 29). More recently,
vancomycin-resistant and vancomycin-susceptible E.
faecium strains have been found phylogenetically inter-
mingled, suggesting less niche adaptation in the latter
case and more potential for competition (30). A
longitudinal study in a hospital found no evidence that
vancomycin susceptible E. faecium colonization was
protective against acquisition of vancomycin resistant
E. faecium (31), arguing against competition (unclear).

• MRSA. The same longitudinal study did find evidence
that MSSA carriage reduced acquisition of MRSA in
hospitalized patients (31), supporting a role for com-
petition. However, a systematic review found that the
increase of MRSA over the 2000s was mainly consistent
with addition to, rather than replacement of, MSSA inci-
dence (25). The same pattern has been seen in the more
recent decline of MRSA. A study in 2 Boston hospitals
showed this decline was accompanied by steady inci-
dence of MSSA infections (32). (addition/no-infection).

• Streptococcus pneumoniae. Geographic correlations of
resistance with antimicrobial use (33, 34) and phyloge-
netic evidence of frequent loss and gain of resistance
within pneumococcal lineages (35) suggest the exis-
tence of competition between R and S lineages (replace-
ment/S infection).

• Escherichia coli. Trend analysis of E. coli bloodstream
infections in the Oxfordshire district, United Kingdom,
from 1999 to 2011, showed a 30% increase in the overall
incidence in 2006 and 2007. This coincided with a 2-fold
increase of resistant cases, whereas incidence of sus-
ceptible cases remained stable during the study period
(36), rendering competition less plausible (addition/no-
infection).
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Scenarios in which the no-infection counterfactual
would always apply

Sometimes an infection occurs, or reaches a certain level
of severity, only because the organism causing it was resis-
tant to an antibiotic that was administered to the host. This
may be the case, for example, when prophylaxis or pre-
ventive therapy fails because the organism is resistant to
the antibiotic used (37). One apparent example of this phe-
nomenon is increasing failure rates of antibiotic prophylaxis
in colorectal surgery, associated with growing prevalence
of resistance in Enterobacteriaceae (38). Another scenario
involves the failure of treatment for mild infections, such
as urinary tract infections, when they are resistant, leading
to a higher proportion of cases that progress to more severe
outcomes, such as septicemia. Results of a small individual-
level study showed that multidrug-resistant (MDR) urinary
tract infections are a risk factor for progression to sep-
sis (39). Ecological comparisons show a strong correlation
between the prevalence of various resistance phenotypes in
Enterobacteriaceae and Pseudomonas and the incidence of
septicemia (40), consistent with such a scenario. Finally,
a study of invasive S. pneumoniae disease showed that a
particular allele of a penicillin-binding protein that reduces
β-lactam susceptibility was associated with meningitis (vs.
other forms of invasive disease) after adjusting for other pre-
dictors (41). The same positive association with meningitis
was found for resistance to a number of other drugs, includ-
ing non-β-lactams. The mechanism remains unclear. More
work is needed to understand the extent of this phenomenon,
but to the extent it is relevant, it suggests increased relevance
of the no-infection counterfactual.

Selecting a counterfactual

The foregoing suggest that which counterfactual is most
relevant may depend on the intervention being envisioned:
this is clearest for the case of a new antibiotic, whose
potential impact is most clearly related to the question of
how much worse the outcome of an R infection is than the
outcome of an S infection (S-infection counterfactual). More
subtly, it may be related to the intervention and the species,
because different species show more or less evidence of
competition or replacement between R and S strains, which
is, in many cases, a precondition for the S-infection coun-
terfactual to be relevant. In specific situations, only the no-
infection counterfactual may be relevant, because antibiotic
exposure would prevent any S infections.

Others have suggested, in a somewhat similar spirit, that
the S-infection counterfactual is most relevant to an interest
in the impact of inappropriate therapy, whereas the no-
infection counterfactual is most relevant to understanding
the public health impact of R infections. We agree with
the first point but would argue that the intervention-centric
perspective shows that both counterfactuals may be relevant
from a public health perspective (42). Given these complex-
ities, we advocate estimating the burden of AMR, where
possible, using both counterfactuals and propose that the
resulting numbers, which may be very different, will provide
bounds on the true maximum impact of an intervention to

control AMR. In the following sections, we describe how
that might be done.

DESIGNING STUDIES TO MEASURE BURDEN

There are different ways to determine the burden of a
disease. For the global burden of disease studies conducted
yearly by the Institute for Health Metrics and Evaluation,
information about the underlying cause of death is extracted
from death certificates, based on International Statistical
Classification of Diseases and Related Health Problems
coding. This has been applied for AMR as well; UK-based
researchers examined death due to MRSA on the basis
of it being mentioned on death certificates with Interna-
tional Statistical Classification of Diseases and Related
Health Problems codes indicating staphylococcal infection
as the underlying cause of death (43, 44). This method has
not become widespread, because MDR pathogens are very
rarely reported on death certificates (42, 45) and, if reported,
may not be the true underlying cause of death (46). Other
types of registries underperform as well; thus, purpose-
designed studies are used to fill this void, among which
cohort studies are considered the most reliable method to
come to objective, attributable mortality estimates for infec-
tions caused by MDR pathogens (Table 1) (42, 47).

Thus far, we have made the case that studies should
estimate the burden of AMR by considering 2 counter-
factual scenarios: the S-infection counterfactual and the
no-infection counterfactual. To make such a comparison
in a cohort study, 3 different cohorts need to be defined:
patients with R infection, patients with S infection, and unin-
fected patients. Conceptually it is easy to distinguish among
these cohorts, but translating these concepts into cohort-
inclusion criteria and selection methods creates some chal-
lenges. Also, AMR burden is often measured as attributable
mortality, or a derived outcome like disability-adjusted life-
years. Though mortality seems like an objective outcome, it
can be measured at different points in time, within differently
defined populations. To ensure internal and external validity
of burden estimates, the outcome definition should inform
the applied analytical approaches, which, unfortunately, is
often not the case (48).

Who are patients with R infection, S infection, or no
infection?

R or S infection. In determining the burden of resistance,
the underlying hypothesis is that infections with drug-
resistant pathogens will have worse outcomes than those
caused by drug-susceptible pathogens. There are a number
of possible pathways for worse outcomes (in otherwise
identical patients) if the resistance profile of the pathogen
is such that first-line antibiotics are no longer effective:
1) time to appropriate therapy could be longer (49),
2) “reserve” antibiotics could be less effective (e.g.,
vancomycin) or more toxic (e.g., colistin) (50), 3) the
infection could be untreatable due to patients’ lack of access
to alternative antibiotics (51) or pan-drug resistance (52, 53),
4) prophylactic antibiotic treatment could have failed to clear
the infection-causing pathogen (discussed in a later section)
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Table 1. Different Methods to Determine the Burden of Disease, Using Death as a Primary Outcome With the Benefits and Challenges for
Application to the Domain of Antimicrobial Resistance

Method Pro Con

Registry-based methods

Death certificates (ICD coding) Available from national registry Only lists underlying cause of death

Avoidable deaths Registered EU vital statistic Based on predefined list of conditions considered avoidable
(does not include AMR)

Case-fatality rate Objective Requires registration of number of patients infected by
resistant pathogens

No distinction between dying with or because of an infection

Deaths can be double counted for different causes

Purpose-designed studies

Disease-related death Based on individual patient data Subjective

Clinical judgment Resource intensive

External validity

Attributable death: cohort studies Counterfactual approach External validity

Objective Choice of control group

Requires proper adjustment for confounders

Primary outcome is odds ratio or hazard ratio

Abbreviations: AMR, antimicrobial resistance; EU, European Union; ICD, International Statistical Classification of Diseases and Related
Health Problems.

(38), and 5) resistant infections could be more virulent than
susceptible ones (54). Based on these considerations, the
problem of drug resistance could be translated as MDR,
difficult-to-treat resistance, or untreatable resistance. From
a treatment perspective, the problem of drug resistance could
be defined as receiving inappropriate (prophylactic) therapy
and, from a pathogen perspective, as increased virulence.

Most commonly, the impact of resistance has been
established by assigning patients on the basis of indicators
of MDR of the infectious agent (55): MRSA versus MSSA
(56, 57), third-generation cephalosporin-resistant versus
susceptible E. coli (56, 58), or carbapenem-resistant versus
susceptible Gram-negative bacteria (59). Difficult-to-treat
resistance has been applied as well, defined as Gram-
negative pathogens nonsusceptible to all β-lactams including
carbapenems and fluoroquinolones (60)—basically an
extension of MDR. The caveat here is that none of these
definitions is equal to inappropriate treatment, because a
large proportion of the patients in these studies received
second- or third-line antibiotics for empirical treatment,
probably on the basis of clinical presentation of the patient
and/or susceptibility patterns in past isolates in the same
facility. For difficult-to-treat resistance, the public health
relevance also seems limited, because incidence in the cited
study was only 1%. Even though AMR is an increasing
problem, the number of patients with bacterial infections that
can be considered untreatable, especially within 1 setting,
or for 1 specific group of pathogens, is still too limited to be
applied as a definition.

Another approach involves the comparison of patients
with appropriately treated infections versus those who did
not receive appropriate treatment (61, 62). Conceptually this

answers a different question from the impact of resistance
versus susceptibility, though it is related. A key problem here
is how to define appropriate therapy. Antibiotic resistance
is not binary, but is expressed as the minimal inhibitory
concentration for a particular drug. Translating from this
continuous scale to a binary determination of resistant or
susceptible (and thus of inappropriate or appropriate ther-
apy) can depend on the pharmacodynamics and pharma-
cokinetics of the antibiotic in combination with the location
of the infection, dosing, administration method, and patient
characteristics (e.g., distribution volume, clearance). Most
studies have a practical approach and define appropriate
therapy on the basis of in vitro activity of the administered
drug, which is only 1 part of the equation. Another important
caveat is that antibiotic therapy can be adjusted over time,
informed by clinical progress or laboratory results. If therapy
over longer periods is considered to determine appropriate-
ness, immortal time (63) or collider stratification (64) can
bias results. Immortal time bias refers to a span of follow-
up time, during which, because of the exposure definition
(therapy adjusted after 24 hours), the outcome (death) could
not occur. If this is neglected during the analysis phase, the
preventive effect of therapy on death will be overestimated
(63). Collider-stratification bias is a type of selection bias
whereby a spurious association is created between exposure
and outcome by conditioning on a common consequence
of both (65); for example, conditioning on the APACHE II
score on day of infection onset when assessing the associa-
tion between empirical treatment and survival. At the same
time, in observational studies, confounding by indication
plays a role. Antibiotic treatment is assigned on the basis of
patient characteristics, such that more severely ill patients
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have a higher chance of being treated with second-line,
(more often) appropriate antibiotics, but these same patients
are also more likely to have a worse outcome, resulting in
an underestimate of the effect of inappropriate therapy (66,
67). Given these pitfalls, the validity of using appropriate
treatment measures to determine the impact of resistance is
debatable.

There have been laboratory studies showing that, for cer-
tain pathogens, drug resistance is associated with increased
virulence, especially for Acinetobacter baumannii (68–70),
Pseudomonas aeruginosa (71), E. coli (54), or S. aureus
clones (72). However, worse clinical outcomes have not been
confirmed in clinical studies focusing on specific virulent
clones, like E. coli ST 131 (73), virulent P. aeruginosa
strains (74), or Panton-Valentine leukocidin-positive MRSA
(75).

On the basis of these considerations, the application of
MDR profiles appears to be the most rational approach to
establish the burden of resistance; it is an objective exposure,
and clear definitions of MDR have been developed for
different species (55). It also combines a higher probability
of inappropriate therapy with the possible impact of viru-
lence factors that could be associated with resistance. This
exposure is also determined by data collected at the time
of diagnosis of infection and, as such, is not influenced by
clinical progress or other time-related factors. Future media-
tion or subgroup analysis could further disentangle the roles
of inappropriate therapy and virulence and provide more
insight in the true underlying processes of the additional
burden of AMR.

Before we can continue the discussion, it is important
to emphasize the distinction between hospital-onset and
community-onset infections; these patients come from dif-
ferent at risk populations. For the former, the study base
consists of hospitalized patients, whereas for the latter, it
consists of members of the community. Members of the R,
S, and no-infection cohorts should always be selected from
the same study base.

No infection. For the no-infection counterfactual, patients
free of the infection under study must be selected. As
opposed to the R and S cohorts, microbiological confir-
mation (i.e., a negative preexisting culture) should not
be a prerequisite for the no-infection cohort. Rather, the
criterion should be the absence of a positive culture, either
because a sample was not collected or because 1 or more
samples were collected and cultured but none was positive.
The clinical decision to culture is an indication of the
presence of certain risk factors and/or symptoms. As such,
conditioning on a negative culture can create a form of
selection bias (76), which should be avoided. Because
most patients in the community or hospital, at a certain
moment, will not be infected, the risk of misclassification
bias by including patients in this cohort, when they lack
a microbiological culture, is generally low, especially for
serious diagnoses like bloodstream infections. Nevertheless,
microbiological testing to confirm a participant’s eligibility
for the no-infection cohort can be applied without risk
of bias. This would be most important in resource-poor
settings where diagnostic procedures will be underused,

which will increase the risk of misclassification. In these
settings, extra exclusion criteria could be applied as well,
like antibiotic treatment in combination with a clinical
diagnosis of infection, or active case finding can be funded
and incentivized during the study.

Finally, it is important to consider whether other types of
infections than the one of interest, or caused by pathogens
other than the one under study, are allowed within the no-
infection cohort. One should not condition on future events,
as further explained later in this article; thus, this usually pre-
cludes exclusion of patients on the basis of other exposures
than the one of interest.

Selection criteria for patients within the different
cohorts

Ratios of R to S and of R to no infection. Generally, in
cohort studies, all patients with R infections in a predefined
population are included in the study; it is the exposure of
interest and the number of cases that are usually limited.
Including all R-infected patients maximizes study power and
ensures representativeness. Because resistance proportions
seldom exceed 50%, this means that, in the same predefined
population, there will be more S infections. Because infec-
tions in the community or hospital are generally rare events,
especially when focusing on a specific pathogen, there will
be even more patients eligible for the no-infection cohort.
The question is whether all these patients should be included
for the comparison, or whether data collection can be more
efficient.

If one is not solely interested in the burden of resistance
but would like to estimate the burden of infections in general,
or S infections specifically (as a secondary objective), all S
infections could be selected using the same argument just
discussed. However, if the main objective of the study is
to determine the burden of resistance, it follows that the
inclusion ratio of R to S, or R to no-infection, can be higher
than the true ratio. Especially because, from ethical, privacy,
and cost perspectives, it is recommended to restrict data
collection to the minimum required for a statistically and
clinically significant study. Some have suggested that ratios
of up to 1:4 could result in noticeably more precise estimates,
especially if this means that the sample size can be increased
(77). On the other hand, ratios of more than 1:1 will limit the
choice of statistical tests and could negatively influence the
power to detect a difference (78). In practice, most studies
adhere to 1:1 ratios (59), and this equal allocation is probably
most prudent with respect to a combination of precision,
power, and costs. This raises the issue of how to select this
subset of patients for the S-infection, as well as no-infection,
cohorts, which we address next.

Selecting subcohorts for S and no infections. There are
basically 2 options to select a subset of patients from a
full cohort: randomly or on the basis of matching. The
advantage of matching is that it can increase efficiency and
enables control of factors that are important but difficult
to precisely measure, like fitness or immune status. This
can be achieved by matching on a proxy, which can rep-
resent these unquantifiable, confounding factors. A proxy

Epidemiol Rev. 2021;43:53–64



60 de Kraker and Lipsitch

Figure 2. Illustration of exposure density sampling for matching patients from the resistant cohort and the no-infection cohort to study clinical
outcome. Each horizontal line represents an admission, a blue circle represents a culture positive for a drug-resistant pathogen. Blue patient-
days are attributed to the infection, gray patient-days are attributed to no infection. Patients D and E acquire a resistant, hospital-associated
infection. On the basis of exposure density sampling, patient E can be matched at their time of positive culture to any patient staying >3 days
and without infection on day 3: patients A, B, D, F, or H. Patient D is an appropriate match even though they become infected later. When patient
D does become infected, patients A and B are the only appropriate no-infection matches for patient D.

for fitness and immune status among hospitalized patients
is the amount of time spent in a certain hospital ward
before acquiring an infection (hospital-onset infections);
in the community, the age of a patient can be used as
a proxy (community-onset infections). Ignoring timing of
the infection will seriously bias study results. Matching
for time to exposure, therefore, often has been applied in
studies assessing the impact of drug-resistant infections,
especially in the hospital setting (57, 58, 79–82). Patients
with R infections will then be matched to uninfected patients
who stayed in the hospital at least as long as the exposed
patients until onset of their infection (frequency matching).
If more patients are eligible, extra matching criteria can
further focus the selection, or random selection methods can
be applied within the subset. Although this reduces the bias
of hospital exposure, it also entails conditioning on a future
event: the matched patients will remain R-infection free
until discharge. This will complicate the interpretation of
the comparison, because it becomes conditional on a future
event: your current risk of death is X times lower without an
R infection, if you do not develop an R infection later during
your hospital stay (83).

A more advanced method to match for exposure time
without conditioning on a future event is called exposure
density sampling (84). Patients are still matched on the basis
of time to R infection for the exposed patients, but the
unexposed patients are allowed to become exposed patients
after their enrolment (Figure 2). The infection will be con-
sidered a time-dependent exposure and, as such, we consider
exposed and unexposed patient-days, as opposed to assign-
ing a fixed exposure status to each patient for the entire study
period. Wolkewitz et al. (84) have shown that this type of
sampling results in unbiased estimates and provides better
results than frequency matching.

Another method that is being developed for hospital epi-
demiology is the case-cohort approach. Here, all R infec-

tions are considered the cases. The cohort is a subcohort of
all patients, including cases. This means that the patients
in the subcohort will not need to be matched for exposure
time until the onset of the infection among the cases. This
will make selection of the subcohort logistically much more
feasible. However, to come to unbiased estimates, data will
need to be weighted, for which “skeleton” information of the
full cohort is needed, like dates of admission and discharge,
and life status for all patients in the selected hospital wards.
It also performs best in settings with low infection rates and
low censoring rates. This approach provides valid estimates
when compared with a full cohort approach, but estimated
confidence intervals can be larger (85, 86).

Clinical outcomes and appropriate analytical
approaches

The impact of drug-resistance is generally measured by
morbidity or mortality outcomes, with a focus on morbidity
for infections outside the hospital, and a focus on length
of stay and mortality outcomes for infections among hospi-
talized patients. Length of hospital stay is a very objective
and easily attainable outcome measure, and an important
proxy for excess costs; as such, it is included in most studies
looking at the burden of AMR. An obvious limitation of
this outcome measure is that rapid death, the worst possible
outcome, is associated with shorter length of stay. Death is
another objective outcome measure, often measured at 28
days (based on sepsis criteria) or 30 days (monthly regis-
tration) after infection onset, or at hospital discharge (in-
hospital death). Although the former 2 suggest that life status
is determined for all patients at a certain point in time, it is
often not specified whether 28-day or 30-day mortality data
are actively collected and thus includes death among patients
who are discharged alive. Studies should clearly report this
because it determines the correct analytical approach.
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In the case of community-onset infections, estimation of
excess length of stay is straightforward, because the en-
tire hospital admission period can be considered attributable
to the infection. For hospital-onset infections, time from
admission to infection needs to be subtracted, or acknowl-
edged through matching as previously explained. Unfortu-
nately, timing of infection is often ignored when calculating
the excess length of stay of drug-resistant, hospital-onset
infections, thus inflating its impact (87, 88). To avoid time-
dependent bias, multistate models (89) can be applied. In
multistate models, several possible events can be included,
like hospital admission, infection, discharge, and death.
Individuals move into these different states, whereby the
assigned infection status of individuals changes over time,
acknowledging the time dependency. Transition hazards
between states can then be used to calculate the average
excess length of stay for infected patients (90). Inverse
probability-weighted Kaplan-Meier models (91) have been
suggested as an analytical approach as well; these have the
added advantage of being able to include time-dependent
confounders.

Because infection in hospital is a time-dependent expo-
sure, survival models should be applied to analyze the dif-
ference in mortality risk. Survival models censor all patients
lost to follow-up, which assumes that these patients have
the same risk of dying as patients still in the risk set.
If all patients are followed up for a certain period after
infection, independent of hospital discharge, this assumption
holds. However, if follow-up ends at hospital discharge (i.e.,
in-hospital death is being measured), patients who are dis-
charged alive have zero chance of experiencing the out-
come; discharge alive and in-hospital death are competing
events. In this case, patients lost to follow-up (discharged
alive) should not be considered censored, because this would
overestimate the impact of the time-dependent exposure on
hospital death. Different types of survival models can be
applied that acknowledge competing events, including the
subdistribution (Fine and Gray) approach, the cause-specific
approach (92), parametric mixture models (93), the Aalen
additive hazard models, or marginal structural models with
inverse probability weighting (94). As in all observational
studies, important confounders, like severity of illness, pres-
ence of comorbidities, and age, should be incorporated in the
analysis, either through stratification, multivariate modeling,
or inverse probability weighting.

CONCLUSIONS

In this article, we have provided a framework for studies
that aim to establish the burden of AMR. We addressed
the conceptual challenge—“compared to what?”—through
an intervention-based causal approach. The S-infection
and the no-infection counterfactual were introduced, as
were their link with intervention strategy, the considered
species or type of infection, and prophylaxis versus treat-
ment. Preventive interventions (e.g., vaccines, improved
sanitation) generally reduce the frequency of drug-resistant
and drug-susceptible infections equally, pointing toward the
no-infection counterfactual. Improved antibiotic treatment
reduces selective pressure, causing replacement of R in-

fections by S infections, pointing toward the S-infection
counterfactual. This is true if competition exists between R
and S strains, which, so far, has been shown convincingly
only in a few cases. In specific cases, infections only occur
because the causative pathogen was resistant to the admin-
istered antibiotic (e.g., surgical site infections after prophy-
laxis); consequently, the no-infection counterfactual should
be applied. For assessing the value of new drugs, the S-
infection counterfactual is directly relevant. Given these
complexities, we advocate estimating the burden of AMR
using both counterfactuals. The resulting numbers will pro-
vide policy-relevant information about the upper and lower
bound of future interventions designed to control AMR.

The second question that we discussed is how to establish
the burden. National registries of death certificates or other
nonspecific registries underperform and, as such, purpose-
designed cohort studies are currently the most reliable
method. R-, S-, and no-infection cohorts should be selected,
whereby a subset of all patients in the S- and no-infection
cohort can be selected through exposure density sampling,
acknowledging the importance of time to infection and
preventing conditioning on future events. Agreed definitions
of MDR profiles should be used to distinguish between
R and S infections, combining a higher probability of in-
appropriate therapy with the possible impact of virulence
factors. Finally, data should be analyzed by time-to-event
methods, acknowledging the time dependency of the infect-
ion and important confounders. Competing events should be
considered if patients are not followed up beyond hospital
discharge.

Different initiatives are underway to determine the global,
regional, or national burden of AMR. Hopefully, this frame-
work will help harmonize and improve approaches, resulting
in reliable, actionable data that will halt the increase of AMR
and preserve antibiotics for future generations.
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