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Summary

Long noncoding RNAs (lncRNAs) represent a key class of cellular regulators, involved

in the modulation and control of multiple biological processes. Distinct classes of

lncRNAs are now known to be induced by host cytokines following viral infections.

Current evidence demonstrates that lncRNAs play essential roles at the host‐

pathogen interface regulating viral infections by either innate immune responses at

various levels including activation of pathogen recognition receptors or by epigenetic,

transcriptional, and posttranscriptional effects. We review the newly described mech-

anisms underlying the interactions between lncRNAs, cytokines, and metabolites dif-

ferentially expressed following viral infections; we highlight the regulatory networks

of host antiviral responses and emphasize the need for interdisciplinary research

between lncRNA biology and immunology to deepen understanding of viral

pathogenesis.
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1 | INTRODUCTION

In recent years, with the advent of microRNA (miRNA) research and the

development of high‐throughput sequencing technologies, numerous

novel long noncoding RNAs (lncRNAs) have been discovered and func-

tionally annotated.1 The discovery of lncRNAs dates back to 1990

when the first lncRNA, H19, was identified in mammals and the first

functionally characterized lncRNA, Xist, was implicated in the X chro-

mosome inactivation in the female embryos of eutherian mammals in

1991.2,3 In 2002, a large‐scale discovery of lncRNAs was achieved by

sequence analyses of 60 770 murine full‐length complementary DNAs

(cDNAs).4 As of November 2018, approximately 16 066 human

lncRNAs and nearly 29 566 transcripts have been released by GenCode

(Version 29).5 However, we still possess an extremely limited under-

standing of lncRNAs, which is exemplified by the fact that less than

200 lncRNAs have been investigated and functionally annotated thus

far.6 New genetic and cell regulatory mechanisms have been revealed

by the discoveries and functional annotation of noncoding RNAs, which

have made a major impact on the development of life sciences. Studies

have found that lncRNAs participate in the regulation of various biolog-

ical processes by interactions with both nucleic acids and proteins and

are also intimately involved in the development of malignancy and in

host response to infectious diseases.7,8 In addition, research has also

revealed that viral infections can cause abnormal lncRNA expression

in host cells and that some lncRNAs are also encoded by viruses.9,10

These host and virally encoded lncRNAs regulate infections through

various regulatory mechanisms, such as participating in innate immune

responses and altering cellular metabolic pathways.11,12 Therefore,

increased investigation and the functional characterization of the

lncRNA repertoire elicited during the innate immune response and

alterations in cellular metabolism following viral infection will help to

elucidate the host defense mechanisms against viruses and provide

potential targets for therapeutic intervention and a deeper understand-

ing of viral pathogenesis.
1.1 | Origin and types of lncRNAs

lncRNAs are arbitrarily defined as a class of RNA molecules greater

than 200 nucleotides (nts) in length, transcribed by RNA polymerase

II or III, without a protein‐coding open reading frame. Similar to

protein‐coding mRNAs, most lncRNAs are 5′ capped, spliced,13 and

can be either polyadenylated or nonpolyadenylated (ie, are

bimorphic).14,15 lncRNAs are distributed in both the nucleus and cyto-

plasm, typically have low expression levels, and exhibit poor conserva-

tion between species, although their structure is well conserved.16,17

The abundance of lncRNA transcripts is typically at least an order of

magnitude lower than that of mRNAs, with an estimated 80% of

lncRNAs tissue‐specific.18-20 According to the positional relationship

between lncRNAs and their target genes on the chromosome,

lncRNAs can be classified into five groups21,22: (1) sense lncRNAs:

located on the positive DNA strand and partially overlap with

protein‐coding genes (see Figure 1A); (2) intronic lncRNAs: located
entirely within an intron sequence of a target gene (Figure 1B); (3) long

intergenic noncoding RNAs (lincRNAs): coexist on the same strand and

are located upstream of the target gene with a spacing of less than

10 kb (Figure 1C); (4) antisense lncRNAs: located on the opposite

strand of their target gene, and partially, or completely, overlap with

the coding region (Figure 1D); and (5) bidirectional lncRNAs: located

on the negative strand of the target gene with a spacing of less than

1 kb whereby transcriptional orientation is opposing and the tran-

scripts do not overlap (Figure 1E).
1.2 | The currently known functional properties of
lncRNAs

It has been estimated that about 70% of the human genome can be

transcribed, among which, only approximately 1% to 2% of the tran-

scripts encode proteins, and the remaining 98% are noncoding RNAs

(ncRNAs).5,23 Among the ncRNAs, tRNAs and rRNAs are well known

for their structural and scaffolding roles, while the vast majority of the

remaining ncRNA fraction have been regarded as “transcriptional

noise,” and, until recently, their biology and roles in transcriptional pro-

cesses are largely ignored. Gradually, studies have confirmed the func-

tional importance of ncRNAs and that they play pivotal roles in cellular

and metabolic activities,8 with small ncRNAs and lncRNAs now known

to account for an estimated 20% to 42% of ncRNAs.24 Small ncRNAs,

such as miRNAs, are involved in the regulation of a variety of cellular

activities leading to gene silencing by base pairing with specific comple-

mentary nucleotide sequences of the mRNAs of their target genes.25 In

contrast, lncRNAs greater than 200 nts in length exert their functions

by a greater variety of known mechanisms through interactions with

either target proteins or nucleic acids via their specific and complex sec-

ondary structures.26-30 These known mechanisms can be classified into

seven distinct groups: (1) lncRNA binds to transcription factors to form

a transcription complex, which affects downstream gene expression by

inhibiting RNA polymerase II or by mediating chromatin remodeling and

histone modifications31-34; (2) lncRNA forms a complementary double‐

stranded region with the mRNA transcript of its target gene, thereby

interfering with the cleavage, transport, and/or translation of the

targeted mRNA35; (3) lncRNA competes with a target gene for tran-

scription factors, thereby silencing the target gene expression; (4)

lncRNA acts as a scaffold to bring multiple proteins together to regulate

gene transcription36; (5) lncRNA binds to a specific protein, altering the

activity or cytoplasmic localization of the protein37; (6) a lncRNA gene

transcribes an additional ncRNA, such as pseudogenes and circular

RNAs, and because of the similarity to themRNA sequence of the target

gene, the ncRNA can operate as a molecular sponge that attracts

miRNAs, thereby insulating the transcription and translation of the

functional genes from miRNA effects and enabling cross talk between

different ncRNA classes38; and finally (7) lncRNAs can be transcribed

as the precursors of small molecule RNAs, such as miRNAs and piwi‐

interacting RNAs (piRNAs).39 In summary, lncRNAs can regulate gene

expression through DNA and RNAmodifications by a variety of modes,

such as by serving as signal molecules, decoy molecules, guide



FIGURE 1 Current classification of long noncoding RNAs (lncRNAs) based on the positional relationship between lncRNAs and adjacent protein‐
encoding genes. A, Sense lncRNAs partially overlap with protein‐coding genes. B, Intronic lncRNAs are located on an intron of the target gene. C,
Intergenic lncRNAs are located between two protein‐coding genes (<10 kb apart from the target gene). D, Antisense IncRNAs are located on the
negative strand and partially or completely overlap with the protein‐coding gene. E, Bidirectional lncRNAs are located on the negative strand,
which are transcribed in the opposite direction, but does not overlap with the target gene. Arrows indicate the direction of gene transcription.
Genomic DNA plus (+) and minus (−) strands are labeled accordingly. The target gene of sense lncRNA, intronic lncRNA, and antisense lncRNA is
shown in panel B and that of intergenic lncRNA and bidirectional lncRNA is shown in panel C
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molecules, molecular sponges, and scaffolds.27,40 lncRNAs participate

in multiple biological processes such as cell differentiation, carcino-

genesis, and immune responses and play important roles in the

development and, thereby, potentially in the prevention of human dis-

eases.28,29,41,42 In the past decade, lncRNA biology has become a new

frontier in life sciences and attracted many researchers to the field. In

this review, we will focus on the present state of understanding of

lncRNAs in the context of innate antiviral immunity.
2 | DIFFERENTIAL EXPRESSION OF
LNCRNAS

2.1 | Viral infection and differential expression of
lncRNAs

Virus infection elicits changes in the expression of cellular lncRNAs. By

means of gene chip analyses,Winterling and colleagues revealed 17 dif-

ferentially expressed lncRNAs in human alveolar epithelial cells (A549)

infected with influenza virus A/WSN/33 (H1N1).43 Subsequently,

using high‐throughput sequencing, numerous research groups identi-

fied thousands of differentially expressed lncRNAs following viral infec-

tion. In order to systematically study the regulatory effects of the

neurotropic enterovirus A71 (EVA71) infection on lncRNAs, Yin et al

performed a comprehensive analysis of EVA71‐infected rhabdomyo-

sarcoma (RD) cells and observed differential expression of greater than

4800 lncRNAs.44 Similarly, Meng et al identified 8541 differentially

expressed lncRNAs in EVA71‐infected human peripheral blood mono-

nuclear cells.45 Also, using the RNA sequencing (RNA‐Seq) technique,

Shi et al identified a total of 760 and 1210 lncRNAs that were upregu-

lated and downregulated, respectively, in RD cells infected with

Coxsackievirus A16 (CVA16). Interestingly, there was an apparent bias

in the lncRNA class differentially regulated upon CVA16 infection as
approximately 43.6% and 22.3% were intergenic and sense lncRNAs,

respectively, demonstrating a significant enrichment upon viral infec-

tion of the former lncRNA class.46 Peng and colleagues have analyzed

the lung transcriptome in severe acute respiratory syndrome‐

associated coronavirus (SARS‐CoV)‐infected mice and reported that

the expression of 504 annotated and 1406 unannotated lncRNAs had

significant changes.47 In addition, other viral families, such as Zika

virus,48 hepatitis B virus (HBV),49-51 and hepatitis C virus,52 have been

shown upon host infection to lead to differential expression of host

lncRNAs compared with uninfected controls. Therefore, the differential

expression of lncRNAs in various cell types following viral infection

appears to be a widespread phenomenon and not a property attribut-

able to one viral family or host target cell.

Surprisingly, some viruses also encode their own lncRNAs to modu-

late the host immune response. For example, human cytomegalovirus

(HCMV) encodes a 2.7 kb lncRNA, β2.753; β2.7 inhibits the induction

of stress responses and apoptosis in infected cells, which facilitates

HCMV replication.9 Gammaherpesviruses transcribe their own struc-

turally and functionally intricate lncRNAs, which modulate cellular and

viral gene expression tomaintain viral latency or to induce lytic reactiva-

tion.54 In addition, a 3.91 kb lncRNA M3‐04 generated by gamma-

herpesviruses regulates viral replication in mice by interacting with

antisensemiRNAs and the latency geneM2.55 Other herpesviruses also

encode multiple functional lncRNAs, such as the Epstein‐Barr virus

encoding ncRNA, BamH I‐A rightward transcripts,56 Kaposi's sarcoma‐

associated herpesvirus (KSHV) encoding UCA1,57 and herpesvirus

saimiri encoding U‐rich RNAs.58 Additionally, the 3′‐untranslated

region (UTR) of the flavivirus RNA genome is capable of transcribing

an active lncRNA, termed the subgenomic flavivirus RNA (sfRNA),

which protects viral RNAs from degradation by the host nuclease

Xrn1 and suppresses antiviral RNA interference (RNAi) in infected

human cells in culture and, also, interestingly, in mosquitoes by direct

interaction with the RNAi machinery.10,59 Therefore, viral infection
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can induce differential expression of a series of lncRNAs in cells, sug-

gesting that lncRNAs may play important functional roles in viral

infection.
2.2 | Cytokines and differential expression of
lncRNAs

Cytokines play an essential role in regulating the development, matu-

ration, and differentiation of nonspecific innate immune cells. lncRNAs

are found to be deregulated upon viral infection or following inter-

feron (IFN) treatment, and some lncRNAs can modulate viral infection

in an IFN‐dependent manner.60 To investigate whether IFN regulates

the transcription of lncRNAs, Carnero et al stimulated human hepa-

toma (Huh7) cells with high doses of type I interferon alpha (IFN‐α)

and found that IFN‐α significantly upregulated the expression of

lncRNAs ISR2, ISR8, and ISR12.61 Similarly, treatment of Huh7 cells

by IFN‐α2 or type III IFN‐λ induced an upregulation of the expression

of lncRNAs BST2 and ISG15. Inhibition experiments showed that

lncRNA BST2 is a positive regulator of the host antiviral factor

BST2.62 Tumor necrosis factor‐α (TNF‐α) also induces the differential

expression of the lncRNA Lethe, which responds to NF‐κB stimulation

and reduces inflammation.63 The lncRNA NKILA which is induced by

proinflammatory cytokines binds to NF‐κB/IκB and directly masks

the phosphorylation motifs of IκB, thereby inhibiting IKK‐induced

IκB phosphorylation and downstream NF‐κB activation, and thereby

preventing excessive activation of the NF‐κB pathway in epithelial

cells.64 Therefore, the inductive effect of cytokines is closely related

to and modulated by the differential expression of host lncRNAs.
2.3 | Metabolites and differential expression of
lncRNAs

Metabolites not only function within cellular metabolic pathways but

have also been implicated in the regulation and differential expression

of lncRNAs. The specific β3‐adrenergic receptor agonist, CL‐316,243,

induces the differentiation of brown adipocytes, and a total of 21 dif-

ferentially expressed lncRNAs have been detected in both cellular and

adipose tissues.65 This has led to the identification of the lncRNA

Blnc1 as a key regulator of brown cell differentiation and function.

Blnc1 forms a nuclear ribonucleoprotein complex with the transcrip-

tion factor EBF2, to stimulate and activate the thermogenic adipose

program.65 In addition, lncRNA Blnc1 itself is a target of EBF2, and

through a feedforward regulatory loop, the cells and tissues differenti-

ate into a pyrogenic phenotype that favors adipogenesis.

The prostate‐specific lncRNA PCGEM1 can be induced by andro-

gens, which promotes glucose uptake. Coupling with the pentose

phosphate pathway, PCGEM1 promotes the synthesis of nucleic acids

and lipids and balances the redox reaction by generating NADPH.66 In

addition, lncRNA PCGEM1 affects glutamine metabolism at the tran-

scriptional level. Taken together, lncRNA PCGEM1 is a key transcrip-

tional regulator of cellular metabolic pathways.
In the process of viral infection, lncRNAs can act as mediators

to link viral infection to innate immunity and cellular metabolism.

lncRNAs are involved in not only cytokine‐mediated innate antiviral

immune responses but also the regulation of cellular metabolic

pathways, altering the efficiency of viral replication in cells. The

perturbation of the transcription of ncRNAs elicited by virus infec-

tion often leads to disturbance of homeostasis, resulting in dis-

ease.67 lncRNAs regulate viral infections by modifying innate

immune responses and cellular metabolic pathways at various levels

including the activation of pathogen recognition receptors (PRRs),

epigenetic modulation, and transcriptional and posttranscriptional

modification.29
3 | REGULATION OF VIRAL REPLICATION
BY LNCRNA‐MEDIATED INNATE IMMUNITY

3.1 | Activation of pathogen recognition
receptor‐related signals by lncRNAs

Innate immunity is the first line of defense against viral infections and

plays a key role in identification of viral RNAs, induction of interferon‐

stimulated genes (ISGs), and proinflammatory responses in the early

stages of the infection process.68,69 Whether viral infection activates

innate immunity is dependent on the activation of PRRs and PRR‐

dependent signaling pathways. Virus infection can also activate

retinoic acid‐inducible gene‐I (RIG‐I), Toll‐like receptors (TLRs), mela-

noma differentiation‐associated gene 5 (MDA5), and Nod‐like recep-

tor (NLR) pathways,70 which in turn activate interferon regulatory

factors, such as IRF3, IRF7, and the major proinflammatory transcrip-

tion factor NF‐κB.71,72 The lncRNAs Lethe and lnc‐Lsm3b have been

shown to bind directly to immunosensors and block downstream sig-

naling of the innate immune pathway (Table 1). The lncRNA Lethe

competitively binds with and blocks NF‐κB from binding to specific

promoter regions of its target genes, thereby preventing a cascade

of signal transduction events.63 The IFN‐inducible, host‐derived

lncRNA, lnc‐Lsm3b, directly competes with vesicular stomatitis virus

(VSV) RNA for the binding to the RIG‐I monomer, limiting the confor-

mational transition of the RIG‐I PRR. Feedback in the later stages of

the innate immune response inactivates RIG‐I (Figure 2A),73 thereby

inhibiting the development of virus infection or activating type I

interferon‐mediated immune cells, such as dendritic, NK, and T cells,

either directly or indirectly eliminating viral infections.87 In addition,

lnc‐Lsm3b interferes with the interaction between caspase activation

and recruitment domain (CARD) proteins, present in numerous innate

immune effectors and the mitochondrial antiviral signaling (MAVS)

protein by stabilizing the interaction between the N‐terminal CARD

of RIG‐I and the helicase domain. It has been demonstrated that

TRIM25‐mediated ubiquitination of RIG‐I K63 is also inhibited by

lnc‐Lsm3b upon RNA virus stimulation. Taken together, these findings

implicate lnc‐Lsm3b as a potent negative regulator of innate RIG‐I sig-

naling pathway upon RNA virus infections.73
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FIGURE 2 Long noncoding RNAs (lncRNAs) regulate innate immune responses through activation of RIG‐I and via deregulation of epigenetic
mechanisms. A, Under normal circumstances in the resting state of macrophages, RIG‐I exists in the autoinhibited state with the CARD2
domain of RIG‐I binding to the insertion region of the helicase. With the invasion of the 5′‐triphosphate double‐stranded viral RNA, the CTD
senses and binds the viral RNA, which leads to the structural transformation of RIG‐I into an open conformation and the release of CARDs,
thereby mediating downstream signaling and induction of IFN‐β expression. After sensing the extracellular IFN‐β signal, TLR2 upregulates the
expression of lnc‐Lsm3b, which inhibits RIG‐I‐mediated immune responses by binding to RIG‐I and suppresses the production of IFN‐β and other
anti‐inflammatory factors. B, TLR2 and TLR4 induce the expression of lincRNA‐Cox2 through the NF‐κB signal pathway upon LPS or Pam3CKS4
stimulation. On the one hand, lincRNA‐Cox2 promotes the binding of the Mi‐2/NuRD complex in the promoter region of IL‐12b, decreasing
histone H3K27 acetylation and increasing H3K27 dimethylation, which leads to lincRNA‐Cox2‐mediated transinhibition of the secondary
response gene IL‐12b. Alternatively, upon LPS stimulation, lincRNA‐Cox2 is assembled into the SWI/SNF complex and acts to recruit NF‐κB to the
complex, which plays an important role in the regulation of SWI/SNF‐associated chromatin remodeling and the transactivation of advanced
inflammatory response genes

6 of 12 LIU ET AL.
3.2 | lncRNAs regulate innate immunity through
epigenetic regulation of gene transcription

Epigenetic regulation is a reversible modification of genetic functions

by modifying expression without alteration of the underlying nucleo-

tide sequence during the pretranscriptional regulation of eukaryotic

genes.88 lncRNAs can regulate gene expression at the epigenetic level

through chromatin remodeling pathways.29,89 For example, lipopoly-

saccharide (LPS) (or the synthetic triacylated lipopeptide Pam3CKS4)

can induce formation of a lincRNA‐Cox2 and SWI/SNF complex

which modulates the assembly of NF‐κB subunits to the SWI/SNF

complex in macrophages, triggering chromatin remodeling and

transactivation of the late‐primary inflammatory response genes in

response to microbial challenge (Figure 2B and Table 1).74,75

lincRNA‐Cox2 regulates the expression of numerous ISGs, such as

OAS1, OAS2, OASL, IFI204, and ISG15 through the binding of

hnRNP‐A/B or A2/B1.75,90 Surprisingly, the expression of the adja-

cent gene Cox2, which is also an essential immunoregulatory factor,

is not affected by lincRNA‐Cox2 raising the possibility that another

layer of transcriptional regulation is potentially affected by ncRNAs

and other protein effectors remains undiscovered.
It is well established that many lncRNA‐mediated epigenetic regu-

lations occur through modification of the nucleosomal core histone

H3. Trimethylation of the N‐terminal lysines of H3 at residues 4 and

27 (H3K4me3 and H3K27me3, respectively) can determine the struc-

tural state of the chromatin (ie, “loose” euchromatin or “tight” hetero-

chromatin), and correspondingly, the expression of the cis‐linked

genes can be switched to “on” or “off.”76,91 In A549 cells, by regulating

the abundance of the lncRNA negative regulator of antiviral response

(NRAV), located on chromosome 12q24.31, H3K27me3 is significantly

enriched, thereby promoting the expression of ISGs, such as the

immune effector proteins MxA and IFITM3. In turn, innate antiviral

immunity is activated, and viral genome replication is inhibited.77 In

addition, the lincRNA‐Cox2 promotes the assembly of the

reconstituted Mi‐2 nucleosome and the deacetylase (Mi‐2/NuRD)

repressor complex in the promoter region of the secondary response

gene IL‐12b, resulting in a decrease of histone H3K27 acetylation

and an elevation of H3K27 dimethylation, respectively. This epige-

netic mechanism contributes to the lincRNA‐Cox2‐mediated

transinhibition of the IL‐12b gene.92

The lncRNA NeST can promote the formation of H3K4me3 by

forming a complex with the WD (Trp‐Asp) repeat‐containing protein
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WDR5, thereby repressing the IFN‐γ promoter. This ultimately results

in an increase in type II interferon transcript levels in the activated

CD8+ T cells.76 Interestingly, this enhancer‐like lncRNA NeST is

located adjacent to the IFN‐γ‐encoding locus in both the mouse (Ifng)

and human (IFNG) genomes. NeST was initially discovered as a candi-

date susceptibility locus for infection by Theiler's murine encephalo-

myelitis virus (TMEV), a single‐stranded, positive sense RNA

cardiovirus, family Picornaviridae. The acronym NeST abbreviates in

French as nettoie Salmonella pas Theiler's (“cleanup Salmonella not

Theiler's”). In both the murine and human genomes, not only is

synteny conserved but the NeST lncRNA is also encoded on the oppo-

site DNA strand to that coding for IFN‐γ in both species. Thereby, the

survival of TMEV is prolonged in mice, but the pathogenicity of Salmo-

nella enterica is attenuated.76 Whether such host‐derived lncRNAs,

such as NeST, represent lncRNA targets with pharmaceutical potential

where bacterial infection could be attenuated without predisposing to

viral infections in humans is clearly worthy of further study.

Apart from lncRNAs encoded by the human host, lncRNAs derived

from the virus itself are also emerging as important elements for epi-

genetic regulation during infection.93 The HIV‐encoded lncRNA

aspro5 recruits the host de novo DNA (cytosine‐5)‐methyltransferase

(DNMT3a), the histone deacetylase HDAC1, the histone‐lysine

N‐methyltransferase, and the polycomb protein enhancer of zeste

homolog 2 (EZH2) to the 5′ long terminal repeat of the integrated

proviral DNA. This leads to the formation of H3K9me2, H3K27me3,

histone deacetylation, and associated transcriptional inert heterochro-

matic structures. These changes in the chromatin structure inhibit

transcriptional activity of the promoter, thereby silencing the expres-

sion of the viral gene and likely contributing to latency and immune

evasion of the integrated retroviral genome.78
3.3 | lncRNAs regulate innate immunity at the
transcriptional level

Transcriptional regulation is one of the most important mechanisms in

controlling eukaryotic gene expression. lncRNAs can saturate the

binding sites of transcription factors and thus inhibit the transcription

and expression of IFNs and ISGs.94,95 On the other hand, lncRNAs can

also recruit transcription factors to promoters and enhancers to

initiate transcription of innate immune genes.82,96,97 For example,

lncRNA‐DC has been shown to regulate the activity of a number of

transcription factors. When cells are stimulated by pathogens,

lncRNA‐DC, which has been found to be specifically expressed in den-

dritic cells, binds to the transcription factor STAT3 and blocks the

binding site for SHP1. The sustained activation of STAT3 induced by

the phosphorylation of tyrosine residue 705 promotes the expression

of genes involved in dendritic cell differentiation.98 lncRNA‐DC is also

implicated in the immune response to HBV and acts by reducing the

concentration of secreted TNF‐α, IL‐6, IL‐12, and IFN‐γ, as well as

increasing the IL‐1β concentration in dendritic cells.99

lncRNAs can form a complex with heterogeneous nuclear ribonu-

cleoproteins (hnRNPs) to regulate the expression of ISGs. lncRNA
#32 is one such antiviral factor; knockdown of lncRNA #32 signifi-

cantly reduces the mRNA level of the interferon‐inducible proteins

OASL, IP‐10, RSAD2, and APOBEC3A. lncRNA #32 forms a stable

complex with hnRNPU, which activates transcription factor 2 (ATF2)

to promote the transcription of ISG effectors.100 Similarly, the com-

plex of lncRNA NRON with GTPase‐activating proteins and three

NFAT kinases in the cytoplasm of T cells serves as a molecular scaffold

for the activation of the nuclear factor NFAT. Upon stimulation, acti-

vated NFAT is released from the complex and promotes nuclear trans-

port, thereby initiating gene transcription (Table 1).36 In addition, by

reducing or increasing the abundance of lncRNA NRON (an inhibitor

of NFAT) through the early viral protein Nef and the late protein

Vpu, respectively, the function of NFAT is controlled to achieve a sub-

tle balance between HIV proliferation and cell death.101

In addition, some lncRNAs, such as the lncRNA THRIL (linc‐1992),

NEAT1, and lincRNA‐EPS, can indirectly regulate the transcription of

immune‐related genes. TNF‐α is a critical cytokine that activates

NF‐κB‐mediated inflammatory responses. THRIL forms a complex with

hnRNPL, which in turn activates theTNF‐α transcription by binding to

the TNF‐α promoter.90 TNF‐α regulates THRIL expression through a

negative feedback. The expression of additional cytokines and

chemokines, such as IL‐8, CCL1, CSF1, and CXCL10, is also regulated

by the lncRNA THRIL.

NEAT1 is an important regulator of antiviral responses, whose

expression is elevated by viral infections including HIV‐1, Japanese

encephalitis virus, rabies virus, influenza A virus (IAV), herpes simplex

virus, and Hantavirus.37,102,103 In the cytoplasm, NEAT1 interacts with

the NONO protein to promote the formation of paraspeckles in the

nucleus. Paraspeckles are subnuclear structures, termed ribonucleo-

protein bodies, found in the interchromatin spaces in nuclei and are

thought to regulate gene expression by inhibiting nuclear RNA export.

The targeting of paraspeckles by retroviruses may serve to impede

host responses to viral infection and help establish latency. NEAT1

also functions in the relocalization of the splicing factor SFPQ from

the promoter region of the antiviral cytokine IL‐8 to the paraspeckle.

In this way, the inhibition of transcription by SFPQ is released, leading

to the induction of IL‐8 expression and inhibition of HIV‐1 replication

(Figure 3A).37

Without interference from pathogens, lincRNA‐EPS, which pos-

sesses immunoregulatory properties in macrophages, accumulates in

the regulatory region of immune response genes (IRGs). By interacting

with hnRNPL via a CANACA motif located at its 3′‐end, lincRNA‐EPS

regulates nucleosome localization and IRG transcription, thereby

reducing proinflammatory responses.79

Interestingly, certain virus‐encoded lncRNAs with transcriptional

regulatory functions play important roles in host‐virus interac-

tions.78,104 The flavivirus‐encoded lncRNA, sfRNA, is highly conserved

in the 3′‐UTR of the flavivirus genome.80 Studies have shown that

sfRNA inhibits the activation of interferon regulatory factor 3 (IRF3)

by blocking IRF3 phosphorylation, thereby preventing the activation

of the IFN‐β promoter and inhibiting the transcription of IFN‐β.81,105

Dengue virus serotype 2 (DENV2)‐induced sfRNA inhibits the tran-

scription of IFITM2 and the double‐stranded RNA‐dependent protein



FIGURE 3 Additional roles of long noncoding RNAs (lncRNAs) in innate antiviral immunity. A, In A549 cells, NEAT1 relocates the negative
regulatory factor SFPQ from the IL‐8 promoter to subnuclear structures known as paraspeckles, thereby reducing the inhibitory effect of SFPQ
on the IL‐8 promoter and promoting the transcription of IL‐8. B, miRNA‐326 regulates the expression of ISG20 by binding to the 3′‐untranslated
region (UTR) of the ISG20 mRNA. lncRNA ISG20 competitively interacts with miRNA‐326, thereby releasing free ISG20 mRNA and facilitating the
translation of the ISG20 mRNA. C, lncRNA‐ACOD1 causes a conformational change of GOT2, an essential aminotransferase during cell
metabolism in the cytoplasm, at a position close to the substrate binding site, which enhances the catalytic activity of GOT2, thereby increasing
the production of L‐ASP and α‐KG, increasing metabolic efficiency, and promoting VSV replication and infection
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kinase R (PKR) by binding to the host RNA‐binding proteins G3BP1,

G3BP2, and CAPRIN1, which in turn negatively regulates the expres-

sion of IFITM2 and PKR.83 It has also been confirmed that DENV2‐

induced sfRNA prevents deubiquitination of the ubiquitin ligase

TRIM25 by direct binding to TRIM25, thereby negatively regulating

RIG‐I expression and inhibiting innate immune responses.82

KSHV‐infected cells express a lncRNA, termed polyadenylated

nuclear RNA (PAN RNA), which modulates the cellular immune

response by interacting with both viral and cellular DNA and

proteins.106 The PAN RNA plays an important role in controlling viral

gene transcription and subversion of the host immune res-

ponse.107,108 The PAN lncRNA exerts these effects by interacting

with specific histone demethylases (UTX and JMJD3) and physically

binds to the KSHV genome to mediate activation of viral gene

expression by removing suppressive trimethylated H3K23 marks.109

In addition to interacting with histone demethylases, PAN RNA also

interacts with SUZ12 and EZH2 which are components of the

Polycomb repression complex 2 (PRC2), a chromatin‐modifying (his-

tone methylation) complex, which represses gene expression at

numerous loci.104

Despite these advances, limited information has been revealed to

date about virus‐encoded lncRNAs with regulatory functions at the

transcriptional level. In the future, the discovery and functional
characterization of this lncRNA class of virally encoded transcripts will

help in the delineation of virus‐host interactions and may afford the

opportunity to develop therapeutics that inhibit virus‐specific

lncRNAs.

3.4 | Posttranscriptional regulation of innate
immunity by lncRNAs

lncRNAs also regulate posttranscriptional modification of mRNAs by

involvement in splicing and processing, enhancing mRNA stability,

and improving nuclear export efficiency. Upon exposure to amyloid

β peptide (Aβ peptide), the expression level of the antisense lncRNA

BACE1‐AS, transcribed by the beta‐secretase 1 gene (BACE1), is ele-

vated. This increases the stability of the BACE1 mRNA and generates

additional Aβ peptide through a posttranscriptional, feedforward

mechanism.110 Some lncRNAs can reduce the nuclear export effi-

ciency of viral mRNAs and inhibit viral replication. HIV‐1 infection

can induce a differential expression of the lncRNA NEAT1 in T cells,

which serves as a binding scaffold maintaining the integrity of

paraspeckles and prevents the transport of spliced HIV‐1 pre‐mRNA

to the cytoplasm for translation (Table 1).84 lincRNA‐p21 acts as an

inhibitor and reduces the translation efficiency of its target gene by

pairing with the target mRNA.111
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lncRNA can also minimize the inhibitory effect of miRNAs through

additional mechanisms, such as competitive binding or via so‐called

sponge effects where miRNAs are titrated from other targets, thereby

promoting the translation of the miRNA‐targeted mRNAs.112 In A549

cells treated with poly(I:C) and Sendai virus, lncRNA ISG20, acting as a

competitive endogenous RNA (ceRNA), competes with miRNA‐326,

resulting in a decreased abundance of miRNA‐326 at the 3′‐UTR of

the ISG20 mRNA. In addition, the reduced binding efficiency of

microRNA‐326 to ISG20 mRNA also promotes ISG20 translation and

inhibits IAV replication (Figure 3B).85 Similarly, lncRNA‐BGL3, acting

as a ceRNA, regulates the translation of phosphatase and tensin

homolog (PTEN) genes by competitively binding with a series of

miRNAs, including miR‐17, miR‐93, miR‐20a, miR‐20b, miR‐106a,

and miR‐106b.113
3.5 | lncRNAs affect viral replication by regulating
cell metabolism

Viruses as obligate intracellular parasites lack the basic metabolic

mechanism necessary for replication in host cells. To solve this prob-

lem, they hijack host metabolic pathways to derive the resources for

viral replication. Hence, viruses act to regulate the metabolism of the

host to improve their own replication efficiency. HNF4α is a nuclear

receptor that serves as a master regulator of hepatocyte differentia-

tion by functioning in the activation of glycolysis in hepatocytes, inhi-

bition of apoptosis of host cells, and promotion of flavivirus hepatitis C

replication.114 It has also been revealed by lipidomics that fatty acid

and lipid mediators are critical in the replication of IAV in A549

cells.115,116 The involvement of lncRNAs in cellular metabolism plays

a crucial role in innate immunity induced by viral infection. Wang

et al found that deletion of lncRNA ACOD1 greatly attenuates VSV

infection mediated by the IFN‐I/IRF3‐independent pathway. In addi-

tion, the lncRNA ACOD1 elevates the catalytic activity of glutamic‐

oxaloacetic transaminase 2 (GOT2) by directly binding to GOT2 in

the cytoplasm, and through which the metabolism of L‐aspartic acid

(L‐ASP) and α‐ketoglutarate (α‐KG) is promoted, leading to the

immune escape for VSV (Figure 3C).86 Taken together, these studies

reveal a new regulatory mechanism of lncRNAs through which host

metabolism, rather than classical innate immune pathways, is regu-

lated to promote viral genomic replication and virus proliferation.
4 | SUMMARY AND PROSPECTS

lncRNAs interact with proteins and nucleic acids through specific

binding to tertiary conformational structures or complementary nucle-

otide base pairing within genes, respectively, thereby playing essential

roles in the regulatory network of innate immune responses and viral

replication. Firstly, virus‐induced lncRNAs promote immune responses

following a self‐recognition mode. Acting as a potent molecular decoy,

the inducible “self” lncRNA blocks the RIG‐I binding site to limit viral

RNA‐induced innate immune responses and maintain immune

homeostasis. Secondly, ncRNAs can regulate innate immunity at the
transcriptional level by activating transcription initiation complexes

or competing for transcription factor binding sites. In addition, host

lncRNAs can release more free mRNAs and enhance the expression

of innate immune‐related genes by increasing mRNA stability and

relieving the restrictions imposed by miRNAs. Thirdly, lncRNAs can

also promote the assembly of posttranslational histone modification

complexes by recruiting histone methyltransferases to regulate the

expression of innate immune factors, such as IFNs and ISGs at the epi-

genetic level. Taken together, these findings provide strong evidence

for the role of the ubiquitous and versatile classes of lncRNAs in anti-

viral regulation. Although many breakthroughs have been achieved

towards the understanding of lncRNA‐mediated innate immune

responses, the study of lncRNAs is only in its infancy when compared

with other ncRNAs, such as microRNAs. IFN‐I‐independent lncRNAs

can also promote viral replication by regulating cellular metabolism,

and this serves as a new paradigm for the regulation of viral infection

other than via effects on innate immunity.86 This mechanism adds a

further layer of complexity to the regulatory networks previously

established in viral infection. The connection between lncRNAs,

metabolism, and virus infection has set a new direction for the study

of immune regulatory mechanisms; however, this is far from fully

understood, and the discovery and functional annotation of numerous

lncRNAs remain to be further explored. With a deeper understanding

of host and virally encoded lncRNAs and the regulatory mechanisms

involved in the innate antiviral immune response they impact upon,

this will likely provide new druggable targets and therapeutic strate-

gies for the treatment of infectious disease.
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