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ABSTRACT Burkholderia pseudomallei and Burkholderia mallei are the causative
agents of melioidosis and glanders, respectively. There is no vaccine to protect
against these highly pathogenic bacteria, and there is concern regarding their
emergence as global public health (B. pseudomallei) and biosecurity (B. mallei)
threats. In this issue of mSphere, an article by Khakhum and colleagues (N.
Khakhum, P. Bharaj, J. N. Myers, D. Tapia, et al., mSphere 4:e00570-18, 2019,
https://doi.org/10.1128/mSphere.00570-18) describes a novel vaccination platform
with excellent potential for cross-protection against both Burkholderia species. The
report also highlights the importance of antibodies in immunity against these faculta-
tive intracellular organisms.
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Burkholderia pseudomallei and Burkholderia mallei are closely related bacteria
causing fatal infections in humans and animals. B. pseudomallei is commonly

found in wet soils of countries bordering the equator and causes the global
emerging tropical disease melioidosis (1–3). B. mallei is a host-adapted clone of B.
pseudomallei that does not persist in the environment outside its natural equine
reservoir. The organism causes the extremely contagious and incapacitating zoo-
nosis glanders, which is a reemerging biosecurity threat closely monitored by the
World Organization for Animal Health (4–6). Comparative analyses indicate that B.
mallei evolved from B. pseudomallei through genomic reduction, and the genes
retained by B. mallei have an average identity of 99% with B. pseudomallei orthologs
(7–10). The clinical and pathological manifestations of disease caused by the
organisms are also strikingly similar. In humans, infection typically occurs through
punctured skin or the respiratory route, and the most common manifestations are
life-threatening pneumonia and bacteremia (1, 6, 11, 12). Pathogenicity is complex
and involves the coordinated expression of many virulence factors supporting
extracellular and intracellular replication as well as dissemination to target organs
(lungs, spleen, liver, lymph nodes) where B. pseudomallei and B. mallei form
hallmark chronic lesions (13–16). Melioidosis and glanders are difficult to diagnose
and require prolonged therapy with low success rates due in large part to intrinsic
resistance of the organisms to antibiotics (17, 18). No vaccine exists to protect
humans or animals, and there is concern regarding adversarial use given that B.
mallei has previously been utilized as a biological warfare agent (6). For these
reasons, the U.S. Federal Select Agent Program classifies B. pseudomallei and B.
mallei as Tier 1 organisms, and the availability of medical countermeasures is
considered a critical unmet need. Fortunately, the genetic, biochemical, and viru-
lence similarities between B. pseudomallei and B. mallei, and the resemblance of the
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diseases they cause, suggest the feasibility of developing countermeasures that
protect against both organisms.

Protection against aerosol infection is of particular interest, as it is one of the most
common inoculation routes in natural cases and the most likely portal of entry for B.
pseudomallei and B. mallei in the event of adversarial use. The current benchmark
animal model to evaluate countermeasures is the mouse, especially the BALB/c (highly
sensitive) and C57BL/6 (sensitive) strains. The model produces hallmarks of melioidosis
and glanders (low infectious and lethal doses, rapid bacterial replication in the lungs,
dissemination to deep tissues, and formation of chronic lesions), and infected mice
produce antibodies against antigens known to be targets of the human immune
response, thus demonstrating immunological parallels (19–26). A number of experi-
mental vaccines have been tested using the model, but none achieve complete
protection and sterile immunity (27–29). Best-in-class vaccines afford increased survival
against lethal challenge but do not prevent persistence of the organisms; mice develop
lesions with high tissue burden and succumb to chronic infection despite possessing
humoral and cellular immunity against B. pseudomallei and B. mallei. This failure to
eliminate infection is a major obstacle in the field and emphasizes the need to expand
the current pool of Burkholderia antigens for vaccine generation and to develop
efficacious vaccination platforms.

In this issue of mSphere, a study by Khakhum and colleagues (30) demonstrates that
immunization of C57BL/6 mice with a novel B. pseudomallei live attenuated strain (LAS)
results in remarkable protection against lethal aerosol challenge with homologous
wild-type bacteria. Khakhum et al. show that LAS vaccination elicits robust humoral and
cellular immune responses, provides 100% survival for a period of up to 27 days after
infection with highly pathogenic B. pseudomallei strain K96243, and results in outstand-
ing rates of bacterial clearance in the lungs, liver, and spleen (71%). Importantly, they
demonstrate through depletion experiments that protection is primarily dependent on
humoral immunity. Their data indicate that 16 days postchallenge, mice vaccinated
with LAS and subsequently depleted of CD4� and CD8� T cells show 60% and 100%
survival, respectively.

Given their ability to thrive intracellularly, it has been proposed that a vaccine for B.
pseudomallei and B. mallei should primarily generate robust cellular immune responses
to eliminate infected host cells and reduce the risk of chronic disease (16, 22, 28, 31–34).
However, the data reported by Khakhum et al. (30) indicate that agent-specific CD4�

and CD8� T cells play a minor role in protection. These findings are consistent with
previous studies demonstrating the importance of antibodies in protection against
melioidosis and glanders. For example, vaccination with the B. pseudomallei purM LAS
Bp82 was shown to provide high levels of protection against lethal intranasal challenge
with wild-type B. pseudomallei isolate 1026b in BALB/c and C57BL/6 mice (35). Passive
transfer of immune serum (elicited by vaccination with Bp82) to BALB/c mice resulted
in survival rates of �40%, and vaccination of mice lacking B cells with Bp82 did not
protect against challenge with wild-type organisms (35). Passive transfer of immune
serum elicited by vaccination with B. pseudomallei 1026b outer membrane vesicles was
shown to provide 80% survival in BALB/c mice against heterologous lethal challenge
with wild-type B. pseudomallei K96243 (36), and monoclonal antibodies targeting LPS
passively protected BALB/c mice against lethal aerosol infection with wild-type B. mallei
strain ATCC 23344 (37). In addition, hyperimmune sera from horses vaccinated with
mallein extract have been successfully used to treat human patients with glanders
(38–40). Published work by our group also demonstrated that passive transfer of
antibodies elicited by vaccination with B. mallei ATCC 23344 batA LAS protects against
lethal aerosol challenge with homologous wild-type B. mallei organisms as well as lethal
exposure to multiple wild-type B. pseudomallei strains in BALB/c and C57BL/6 mice (41).
Importantly, passive transfer of antibodies (elicited by vaccination with B. mallei batA
LAS) results in dose-dependent, high rates of bacterial clearance from target organs (41)
(Fig. 1).

In summary, the report by Khakhum and colleagues (30) complements prior pub-
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lished studies and expands upon them to demonstrate that antibodies are sufficient to
protect against lethal aerosol infection with B. pseudomallei and B. mallei. Future work
investigating the kinetics, quality, levels, and functionality of antibody responses in
mice vaccinated with highly protective LAS will help drive the melioidosis and glanders
vaccine field forward and will provide a powerful platform to identify high-value
Burkholderia target antigens for the development of countermeasures.
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