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ABSTRACT

Summary: Thousands of cancer exomes are currently being
sequenced, yielding millions of non-synonymous single nucleotide
variants (SNVs) of possible relevance to disease etiology. Here,
we provide a software toolkit to prioritize SNVs based on their
predicted contribution to tumorigenesis. It includes a database
of precomputed, predictive features covering all positions in the
annotated human exome and can be used either stand-alone or as
part of a larger variant discovery pipeline.
Availability and Implementation: MySQL database, source code
and binaries freely available for academic/government use at
http://wiki.chasmsoftware.org, Source in Python and C++. Requires
32 or 64-bit Linux system (tested on Fedora Core 8,10,11 and
Ubuntu 10), 2.5∗≤ Python <3.0∗, MySQL server >5.0, 60 GB
available hard disk space (50 MB for software and data files, 40 GB
for MySQL database dump when uncompressed), 2 GB of RAM.
Contact: karchin@jhu.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
A fundamental goal of modern cancer genomics studies is to
understand how alterations in DNA sequence contribute to
disease susceptibility and prognosis. Targeted whole-exome deep
sequencing is now affordable for many academic labs and the
multitude of studies underway is yielding datasets of unprecedented
magnitude. While researchers have previously developed methods
to computationally predict the impact of single nucleotide variants
(SNVs) (Kaminker et al., 2007; Mooney et al., 2010; Ng and
Henikoff, 2003; Sunyaev et al., 2001), to our knowledge there are
no existing tools capable of fast classification of very large SNV
datasets in cancer exomes.

We have previously developed a computational method Cancer-
Specific High-throughput Annotation of Somatic Mutations
(CHASM) (Carter et al., 2009, 2010) that predicts whether tumor-
derived somatic missense mutations are important contributors to

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First Authors.

cancer cell fitness. Here, we describe a software package that
implements the CHASM method. The package includes a database
of pre-computed predictive features called SNVBox that facilitates
rapid feature retrieval and classification of very large SNV datasets.
Furthermore, the features in SNVBox can be generally used to aid
in the development of new classification algorithms that predict the
impact of either germline or somatic SNVs.

2 METHODS AND IMPLEMENTATION
CHASM is an open-source collection of Python and C++ programs
that takes a list of somatic missense mutations as input and ranks
them according to their likely tumorigenic impact. It includes a
curated set of driver mutations culled from the COSMIC database
(Forbes et al., 2008), which is used as a positive class for training a
Random Forest classifier (Amit and Geman, 1997; Breiman, 2001).
The negative class of mutations is generated in silico according to
an estimated distribution of benign (passenger) variation, matched
to the tumor type of interest. Users have the option to use their
own estimates of passenger variant frequencies or to select from
a library of pre-computed passenger frequency tables for several
common cancers.

PyInstaller 1.4 was used to package Python source into
dynamically linked, executable binaries. The SnvGet, Build
Classifier and RunChasm executables are run by the user
on the command line, while the others are called internally. The
statically compiled C++ executable waffles_learn from the
WAFFLES machine learning library is also called internally.

SNVBox is an MySQL database of 86 predictive features relevant
to the biological impact of an SNV. The features have been pre-
computed for each codon in all protein-coding exons of annotated
human mRNA transcripts in the NCBI RefSeq, CCDS and EBI
Ensembl databases (Birney et al., 2004; Pruitt et al., 2007, 2009).
TheSnvGet program enables fast retrieval of selected features from
the database for classifier training and scoring of mutations input by
the user.

3 WORKFLOW
(1) Prepare an input file of estimated passenger mutation rates in

the cancer of interest. Optionally, select from one of several
pre-computed passenger rate tables.
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(2) Prepare an input file of missense SNVs to be classified. Each
row contains a protein accession identifier, codon number,
and reference and variant amino acid residues.

(3) Run the BuildClassifier program.
• Produces a negative class of in silico passenger mutations

by random nucleotide substitution in a library of expressed
human mRNA transcripts from NCBI RefSeq, according
to the distributions specified in the passenger mutation rate
table (Supplementary Material).

• Retrieves a list of predictive features for each passenger
(and driver) in the training set from SNVBox.

• Builds a Random Forest classifier, using
waffles_learn.

(4) Run the RunChasm program.
• Retreives a feature list for all mutations supplied by the

user.

• Applies the trained classifier to generate a CHASM score
for each variant.

• Generates a second set of in silico passenger mutations,
which (unlike the first set) is carefully filtered to eliminate
mutations in any genes previously associated with cancer
in either the Cancer Gene Census (Futreal et al., 2004), the
COSMIC cancer gene list and all cancer (C4 collection)
genesets in MSigDB (Subramanian et al., 2005).

• Filtered passengers are scored by the classifier to produce
an empirical null distribution of variant scores.

• This null score distribution is used to compute a P-value
for each variant supplied by the user (fraction of filtered
passengers having CHASM scores less than or equal to the
score of the variant).

• Benjamini–Hochberg multiple testing correction
(Benjamini and Hochberg, 1995) is applied to the
P-values.

• Outputs a list of the user-supplied mutations, with CHASM
scores, P-values and Benjamini–Hochberg estimated false
discovery rate (FDR).

• Outputs an ARFF formatted file of features for the
submitted mutations.

4 DISCUSSION
The CHASM/SNVBox toolkit is the first distributable software
package that specifically targets somatic missense mutations in
cancer. The learning task of the Random Forest classifier is to
discriminate between known drivers and a set of random passenger
missense mutations that match the mutation spectrum in a cancer
type of interest. CHASM results are sensitive to this definition of
mutation spectrum and users are encouraged to use the somatic
variant calls from their sequencing data to make the best possible
estimates of the spectrum (Supplementary Material).

While many SNV classifiers are available through web interfaces
[reviewed in Karchin (2009)], these are not currently capable of
handling large size custom datasets (e.g. thousands to millions of
SNVs discovered in sequencing projects). Some researchers have
developed distributable packages that users can run on their local

system to enable high-throughput SNV processing. These packages
depend on third-party databases (sequences, alignments, protein
structures, specialized protein annotations) and third-party software
packages. The popular PolyPhen system, for example, requires
installation of 10 third-party software packages, in addition to three
Perl modules. To our knowledge, all available SNV classification
tools base their inferences on predictive features computed when a
custom dataset is input to the system (almost always using third-
party databases and software). In contrast, the predictive features
available in SNVBox (also calculated with many third-party tools)
have been exhaustively pre-computed, allowing rapid retrieval for
a custom dataset. In benchmark testing, retrieval of 86 features for
one million SNVs took 11.39 h on a Dell R900 server with two
AMD Opteron dual-core 64 bit CPUs and 16 GBs of RAM. CHASM
score computation for these one million mutations took an additional
10 min and 33 s.

Finally, the predictive features available in SNVBox were
designed to be useful for classification of both germline and somatic
SNVs. We hope that SNVBox will enable design of new, improved
machine learning algorithms to predict the impact of SNVs.
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