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Fungi are an integral part of the mammalian microbiota colonizing most if not all mucosal
surfaces and the skin. Maintaining stable colonization on these surfaces is critical for
preventing fungal dysbiosis and infection, which in some cases can lead to life threatening
consequences. The epithelial barriers are protected by T cells and additional controlling
immune mechanisms. Noncirculating memory T cells that reside stably in barrier tissues
play an important role for host protection from commensals and recurrent pathogens due
to their fast response and local activity, which provides them a strategic advantage. So far,
only a few specific examples of tissue resident memory T cells (TRMs) that act against
fungi have been reported. This review provides an overview of the characteristics and
functional attributes of TRMs that have been established based on human and mouse
studies with various microbes. It highlights what is currently known about fungi specific
TRMs mediating immunosurveillance, how they have been targeted in preclinical
vaccination approaches and how they can promote immunopathology, if not controlled.
A better appreciation of the host protective and damaging roles of TRMs might accelerate
the development of novel tissue specific preventive strategies against fungal infections
and fungi-driven immunopathologies.

Keywords: tissue-resident memory T cells (TRM), antifungal immunity, fungal commensals, pathogenic fungi,
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INTRODUCTION

Epithelial barriers cover the entire external and internal surfaces of our body to shield it from
potentially harmful environmental influences, including toxic substances, radiation, and pathogens.
Many of these barriers also fulfil essential physiological functions, such as nutrient uptake in the
intestine or gas exchange in the lung. This entails challenging and partly opposing requirements for
compartmentalization and permeability. One of the biggest challenges for barrier tissues is the
maintenance of homeostasis with commensal microbes, while at the same time they have to prevent
invasion and overgrowth of pathogenic microbes and the emergence of inflammatory disorders.
Commensal microbes actively contribute to these processes, whereby the role of commensal fungi is
increasingly being recognized (1–8). Stable maintenance of the microbiota in equilibrium with the
host is strictly dependent on the immune system. Skin and mucosae harbor large numbers of myeloid
and lymphoid immune cells that actively respond to commensal microbes, including commensal
fungi (9–11), with T cells playing a predominant role in barrier tissue immunity against fungi. Thus,
containment of the microbiota relies on active immunosurveillance and is not due to passive
org May 2021 | Volume 12 | Article 6930551
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ignorance. In turn, the constant immune activation by the
microbiota has to be tightly regulated to limit overt responses
to innocuous microbes and to avoid tissue damaging
inflammation. At the same time, the immune system must
remain responsive against invading and disseminating pathogens.

The interest in barrier tissue immunity has steadily increased
over the past decades, even though technical challenges have initially
limited rapid advances in the field. Mucosal and cutaneous immune
cells are scattered throughout the tissue parenchyma. They are often
tightly associated with neighboring (non-immune) cells and their
survival and function depends on the tissue environment, all of
which hampers the isolation and ex vivo analysis of these cells (12).
Access to human samples other than blood represents another
limitation when studying human immunity in barrier tissues.
Refined protocols for single cell isolation in combination with
high-dimensional flow or mass cytometry have helped to define
cellular subsets (13, 14). Single cell omics approaches, which can
provide multidimensional high-resolution data (15–17), and
advanced in situ imaging techniques, which provide spatial
information for multiparameter settings (18) have further helped
to promote the field. Moreover, refined genetic models allow
selective targeting of specific cellular subsets in mice in a tissue-
and/or time-restricted manner (19, 20). A novel humanized mouse
model was recently reported to functionally study human cells
in situ in the skin (21).

These approaches and combinations thereof have led to the
discovery of various subsets of tissue-specific myeloid and
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lymphoid immune cells, including noncirculating memory T
cells whose maintenance and function is regulated by tissue-
specific environmental cues. These sessile memory T cells are
referred to as tissue resident memory T cells (TRMs) (22).
Seeding of the peripheral tissues with differentiated and long-
lived T cells that are specialized in local microbe control is a
major strategic advantage for both, the containment of
commensal microbes and the rapid on-site control of (re)-
appearing pathogens. To date, only a handful of papers have
reported the existence of TRMs directed against fungi. In this
review I discuss these studies in the context of the current general
understanding of TRMs in antigen-specific protection from
recurring pathogens and immunosurveillance of commensal
microbes, but also of the pathological effects that they can
exert. Moreover, I point out scenarios how TRMs might be
harnessed for inducing vaccine immunity against fungi (Figure 1).
Together, this review shall highlight the potential of this T cell
subset in antifungal immunity in health and disease, and
emphasize the gaps in knowledge that remain to be filled in
the future.
HOW ARE TRMS CLASSIFIED?

TRMs comprise CD4+ and CD8+ T cell subsets in mucosal
tissues and the skin, but also in visceral organs, such as liver
and lung. However, a T cell in any of these tissues is not
A B C

FIGURE 1 | Reported examples of TRMs in antifungal immunity. (A) IL-17 producing CD4+ TRMs provide immunosurveillance against commensal fungi (e.g.
C. albicans) that colonize barrier tissues such as the skin or the oral mucosa to prevent dysbiosis (23, 24). (B) Vaccine-induced immunity protects against fungal
pathogens (e.g. C. gattii) via elicitation of IL-17-producing CD4+ TRMs (25). Different vaccination strategies for TRM induction in barrier tissues are indicated.
(C) Antifungal TRMs can promote inflammation and immunopathology, such as those induced by A. fumigatus sensitization in the airways (26).
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automatically a TRM cell, even if it displays features of memory.
TRM cells constitute a specific subset of memory T cells in non-
lymphoid tissues, independent of circulating T cells. The
following criteria define tissue-residency of T cells (27). First,
TRMs can be identified by phenotyping: they express elevated
levels of CD69, CD103, CD49a and CD11a when compared with
circulating memory T cells, although none of these markers
unequivocally denotes tissue residency and expression varies
between CD4+ and CD8+ TRMs and between TRMs in
different tissues. Second, the transcriptional signature can help
distinguishing TRMs from other phenotypically similar cell
subsets. Third, intravascular labelling allows identification of
cells that are not in the circulation, at least at the time of
analysis. Fourth, in vivo migration assays such as parabiotic
surgery, in situ tissue labelling or tissue transplantation describe
prolonged tissue persistence of T cells with limited recirculation
potential. Finally, cutting the supply of circulatory T cells, for
instance by blocking the migration of circulatory T cells or by
selectively ablating them, disconnects the populations of TRM
and circulatory T cells and thereby allows establishing autonomy
of TRM survival and renewal. Each of these approaches has
limitations, but together, they enabled the identification of TRMs
as distinct non-recirculating long-lived sessile cells in various
tissues (27).

In some tissues such as the epidermis of mice, CD8+ TRMs
were found to display a slow crawling behavior and extend long
protrusions in between their neighboring cells. This may help
them to dynamically scan a large portion of their
microenvironment for the presence of antigen (28, 29).
Therefore, although tissue-residency follows strict criteria, it
does not equal immobility within a given tissue. In contrast to
CD8+ TRMs, their CD4+ counterparts were shown to form
distinct microanatomical structures referred to as “memory
lymphocyte clusters”, which are driven by TRM-derived
cytokines (in particular IFN-g) and chemokines derived from
macrophages, both of which being central to cluster
formation (30).

In compliance with all T cells TRMs possess a T cell receptor
that determines their antigen-specificity. Until today, TRMs
directed against diverse commensal and pathogenic microbes
have been identified in the skin, the gastrointestinal tract, the
reproductive tract, the nasal tissue, the lungs, and the liver. As
such, fungi specific TRMs have also been reported: CD4+ TRMs
responding to the commensal yeast C. albicans have been
identified in healthy human skin based on phenotypic markers
and cytokine production (23). In a murine model of C. albicans
commensalism, the induction of fungus-specific Th17 cells with
TRM features have been recapitulated (24). Beyond expression of
CD69, CD103 and CD11a, C. albicans-specific TRMs also fulfil
the criteria of TRMs to stay protected from in vivo labelling with
an intravenously-injected CD4 antibody, and to be maintained
independently of circulatory T cells (24). Another example of
fungus-specific TRMs is provided by a study about Aspergillus
sensitization in mice, where CD69hi CD103lo CD4+ TRMs were
found induced in the lung, with separate subsets producing IL-5
and IL-17 (26). Their transcriptome profile and the finding that
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they were spared from the vasculature confirmed their identity.
TRMs directed against other fungi await to be identified,
especially those that respond to commensal and ubiquitous
fungi, which are in constant contact with our barrier tissues
and against which lasting T cell immunity is a prerequisite of
homeostasis. The presence of circulatory memory CD4+ T cells
reactive against diverse fungi in the healthy human blood (1)
suggests that corresponding TRM subsets with the same
specificities will likely be present in the epithelial tissues.
WHAT ARE THE FUNCTIONAL
ATTRIBUTES OF TRMS?

The raison d’être of memory T cells is to direct rapid and efficient
protection against previously encountered antigens, which
applies to TRMs as well. The first report on the function of
TRMs in 2011 described the relevance of influenza-specific lung-
resident memory CD4+ T cells for in situ protection against
respiratory viral challenge, as they mediate enhanced viral
clearance and survival to lethal influenza infection when
compared to recirculating memory CD4+ T cells (31). Over the
past ten years, the protective capabilities of CD4+ and CD8+

TRM cells have been demonstrated for members of all pathogen
classes, including fungi, predominantly in murine infection
models (23, 31–43). In humans, the protective effect of TRMs
is evidenced by the correlation between presence of pathogen
specific TRMs and enhanced protectivity (44–46).

The results from human studies emphasize that TRMs not
only provide rapid infection control after re-exposure to a
previously encountered and combatted pathogen, a setting
modelled by many experimental mouse infection studies (N.B.:
in SPF mice, most experimentally administered infectious agents
are rapidly cleared), but that TRMs are also particularly critical
for host protection during persistent infection (22). This in turn
suggests that TRMs likely contribute to immunosurveillance of
commensal microbes to which the host is constantly exposed.
Indeed, TRMs with reactivity to intestinal microbes are abundant
in the gut tissue of healthy individuals (47). An involvement of
TRMs in maintaining homeostasis and preventing overgrowth of
commensal fungi is evidenced by C. albicans-responsive CD4+

TRMs identified in healthy human skin (23) and in an
experimental model of persistent C. albicans colonization in
the oral mucosa of mice (24). In both species, these cells
produce IL-17 in response to fungal re-stimulation, in line
with the well-recognized host protective role of IL-17 against
C. albicans in barrier tissues (48).

Overall, the population of TRMs in a given tissue reflects its
history of exposures to pathogenic and commensal microbes.
Analysis of T cell subsets in the intestinal mucosa of children
revealed that naïve recent thymic emigrants and effector
memory T cells predominate during early life, whereas TRMs
progressively accumulate with increasing age (49). The
continuous build-up thereby results in specific TRM pools
that are geared to the need of the specific sites. By
orchestrating regional immune responses to ongoing
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microbial exposure in a clinically silent manner, TRMs act as
central players in maintaining tissue homeostasis and a stable
host-microbe equilibrium.
HOW DO TRMS EXERT THEIR
FUNCTIONS?

Like all T cells, TRMs respond to TCR-mediated stimulation and
activate effector functions in an antigen-specific manner. The
advantage of TRMs, if compared to circulatory T cell subsets,
arises from their strategic positioning within tissues, which
allows immediate local recognition of infected or antigen
presenting cells and a rapid recall of canonical effector
functions, such as cytokine secretion or perforin- and
granzyme-mediated target cell killing (22). Thereby, TRMs can
prevent invasion and dissemination of microbes that have
crossed the physical barrier through which they are usually
segregated, and thwart clinically apparent infection.

Upon re-encounter with cognate antigen, TRMs can
profoundly alter the local tissue environment. Through
production of cytokines, they can trigger rapid adaptive and
innate immune responses, including local humoral responses,
activation of local innate immune cells (dendritic cells, NK cells)
and recruitment of circulating lymphocytes, resulting in a
remarkable cross-over between innate and adaptive immunity.
Thereby, the triggering of a small number of TRMs is amplified
into an organ-wide response, which can provide protection
against even antigenically unrelated organisms (50, 51). This
may offer a particular advantage for controlling escape variants
of pathogens that might emerge.

An explanation for the reactivity against unrelated antigens is
provided by the broad cross-reactivity of the T cell repertoire
(52). Widely cross-reactive T cells are abundant in the human T
cell memory compartment comprising T cells that react against
antigens to which the host has not been exposed previously (52,
53). Cross-reactivity has also been proposed for C. albicans-
responsive memory T cells to explain the diverse and systemic
effects that these cells can exert (54). In animal models, TRMs
have further been found to respond to noncognate, bystander
activation (55–57). The potential of microbiota-specific cross-
reactive TRMs for host protection is illustrated by skin-resident
TRMs induced in response to topically applied Staphylococcus
epidermidis, which specifically reinforce the barrier function of
the epithelium and prevents overgrowth of heterologous
microbes, including C. albicans, in a CD8+ T cell- and IL-17-
dependent manner (58). In addition to TCR cross-reactivity,
TRMs can also provide heterologous protection by responding to
bystander activation via TCR-independent mechanisms (59).

Besides their potential broad reactivity, TRMs may display
some degree of functional plasticity. In fact, skin-resident
commensal-specific memory Th17 cells were found to rapidly
activate a type 2 effector program in response to tissue injury
(60). This cell-intrinsic flexibility might allow them to swiftly
adapt to environment insults, which might be caused by physical
damage or invasive pathogens.
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HOW ARE TRMS IMPLICATED IN
IMMUNOPATHOLOGICAL RESPONSES?

As a consequence of their ability to rapidly respond to antigen or
to react even in an antigen-unspecific manner, and to display
functional plasticity, TRMs may entail severe consequences on
tissue homeostasis. Indeed, commensal-specific responses in
barrier tissues are characterized by the production of IL-17, a
cytokine that promotes antimicrobial functions and barrier
integrity of epithelia (48). IL-17 production in barrier tissues is
particularly relevant for immunosurveillance of Candida, as
genetic defects in genes of the IL-17 pathway drive the
development of chronic mucocutaneous candidiasis (10).
However, IL-17 can also contribute to the etiology and
pathology of various inflammatory skin disorders, such as
psoriasis (61).

Psoriasis is a T cell mediated disease (62). Although the
specific antigens targeted by psoriatic T cells remain undefined
(63), skin-colonizing microbes are likely candidates. Strikingly,
psoriatic lesions are limited to characteristic sites, such as the
flexor sides of extremities, the sacral region, and soles of the feet,
and disease recurs at always the same predilection sites. An
explanation for the site-specific manifestation of disease may be
provided by tissue residency of the disease-mediating T cells.
Indeed, a study looking into lesional and non-lesional skin
samples from psoriasis patients found that the epidermis with
active psoriasis was massively infiltrated by CD8+ TRMs when
compared to non-lesional skin and healthy skin, with a 100-fold
increase of TRMs in active psoriatic lesions (64, 65). The
CD103+CD8+ T cells in psoriatic skin expressed IL-17 and IL-
22 mRNA. Importantly, IL17A-expressing CD103+CD8+ T cells
were found to be present in both active psoriatic plaques as well
as in resolved skin lesions, but not in healthy control skin (65,
66), suggesting that they are poised for re-initiation of
inflammation. Therefore, TRMs may act as drivers of disease
flares in a site-specific manner.

TRMs were also implicated in other chronic and recurring
inflammatory disorders that are characterized by localized
manifestations in the skin, the oral-gastrointestinal tract, or the
respiratory tract. For instance, in patients with chronic
rhinosinusitis, TRMs accumulate in the nasal polyps (67). In
periodontitis, expansion of Th17 TRMs drives immunopathology
in response to local dysbiosis (68). In vitiligo, a pigmentation
defect of the skin mediated by melanocyte eradicating cytotoxic T
cells (69), the proportion of perforin and granzyme B expressing
CD8+CD103+ TRMs is increased in lesional compared to non-
lesional and healthy skin (70). Similarly, in atopic dermatitis
(AD), CD69+CD103+ TRMs were significantly expanded in
lesional compared to non-lesional skin and healthy controls
(71). In AD, the chronic allergic skin inflammation is
dominated by Th2 cells that react against environmental
allergens such as house dust mite proteins, but also skin
microbes such as S. aureus and the skin commensal yeast
Malassezia (72). AD lesions occur primarily on the cubital and
popliteal fossae, and in head and neck type AD on the upper
trunk, shoulders, and scalp, with age-related variations (72).
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Certain subtypes of AD display overlapping characteristics with
psoriasis, especially by the involvement of IL-17-producing T cells
(73). However, AD and psoriasis are clearly separable diseases,
not least based on the different skin regions that are affected (73,
74). A likely explanation for the site-specific recurrence of the
lesions may once again be provided by the limited distribution of
pathogenic TRMs across different skin sites, and by their
diverging antigen specificity (63).

TRMs have also been linked to the pathogenesis of
inflammatory bowel disease (IBD). CD4+CD69+ TRMs
producing pro-inflammatory cytokines were found enriched in
the intestinal mucosa of IBD compared to control patients, and
the presence of these cells was predictive of the development of
flares (19). Attenuation of disease in an experimental model of
transfer colitis when Hobit- and Blimp-1-deficient CD4+ T cells
were transferred, confirmed the disease-driving role of CD4+

TRMs in IBD (19). Finally, TRMs can also mediate
immunopathology in the airways (75). In experimental allergy
models, lung CD4+ TRMs generated in response to allergen
exposure can promote reactive airway disease (76, 77).
Similarly, in a model of fungal allergy, sensitization with
Aspergillus fumigatus induced a population of CD103loCD69hi

CD4+ TRMs that promoted pathology through enhanced
production of IL-5 and IL-13 in the lung. Of interest, the
fibrotic response was ameliorated by CD103hi tissue resident
regulatory T cells (26).

The detrimental consequences that TRMs can have in chronic
inflammatory diseases emphasize the need for tight regulation of
their activity. Recent experimental evidence suggests that TRM
intrinsic mechanisms control their reactivation to prevent
damaging immunopathology. In a model of contact
hypersensitivity to 2,4-dinitrofluorobenzene, inhibitory checkpoint
receptor antagonists dramatically enhanced the magnitude and
severity of eczema exacerbations (78). Similarly, the antiviral
activity of TRMs against HSV-1 re-activation in latently infected
rabbits was restored by antibodies directed against PD-1 and LAG-3
(79). This indicates that TRM responsiveness is restrained during
steady state. In support of this hypothesis, TRMs express various
inhibitory receptors including PD-1, CLTA-4, LAG-3 amongst
others (80, 81). Moreover, tissue residency of T cells was
associated with an immunoregulatory gene expression program,
including IL-10 cytokine expression under the control of the
transcriptional regulator c-MAF (82). Such cell-intrinsic
regulatory mechanisms likely exist also for TRMs directed against
fungi to ensure that under homeostatic conditions they remain
clinically silent even if they are constantly exposed to stimulation by
commensal and environmental fungi, although specific examples
are not available yet.
HOW CAN TRMS BE HARNESSED FOR
ACHIEVING VACCINE IMMUNITY?

The important role of TRMs in site-specific protection renders
them an attractive target in vaccine development, particularly
against tissue-tropic infections. This also applies to vaccines
Frontiers in Immunology | www.frontiersin.org 5
against fungal agents. While induction of long-lived immune
memory against a vaccine antigen represents a challenge by itself,
induction of residency adds another dimension of complexity to
vaccine design. Site specific antigen delivery has produced
promising results in preclinical studies with regards to the
induction of TRM and vaccine immunity. As such, nasal
immunization with certain antigen/adjuvant combinations
results in effective induction of TRMs in the respiratory tract
(83–85). Another example is provided by the intradermal
injection of a synthetic DNA vaccine encoding a Leishmania
antigen, which resulted in enhanced protection from
experimental infection with Leishmania major in the skin if
compared to intramuscular vaccination (86). Vaccine-induced
TRMs have also proven effective in immunotherapy against
melanoma in an experimental tumor model (87). Despite these
promising proof of principle studies, TRM induction in barrier
tissues by site-specific vaccine delivery remains a challenge due
to the high tolerance threshold in these organs (88). Transient
microbiota depletion has recently been explored for temporarily
restraining colonization resistance in the gut and thereby
allowing expansion of a pool of antigen specific functional
TRMs directed against orally delivered Listeria monocytogenes,
which ultimately enhance protection against infectious
re-challenge (89).

An alternative vaccination strategy for generating TRM-
mediated vaccine immunity at relevant tissue sites has been
explored by a two-step approach, which consists of first
generating a systemic immune response against a vaccine
antigen, for instance by intramuscular immunization, and then
applying a localized inflammatory stimulus to ‘pull’ the newly
primed T cells towards a specific tissue. This “prime and pull”
strategy relies on the notion that TRM precursors are primed in
secondary lymphoid organs before they migrate to peripheral
tissue, where micro-environmental cues then drive TRM
maturation (90–93). In case of CD8+ TRMs, adoption of
residency has been described to depend on local TGF-b and
IL-15 (94–97). TGFb appears to be required at multiple steps in
TRM development (98). In the skin, exposure of CD8+ T cells to
TGF-b efficiently induces expression of CD103, which anchors
TRMs to E-cadherin expressing epithelial cells (43, 81, 95, 96).
Accumulation and persistence of TRMs in the epithelial niche is
further determined by the downregulation of pathways linked to
T cell egress from peripheral tissues and the upregulation of
tissue-retention and pro-survival molecules (22), which are
under the control of the transcription factors Hobit and Runx3
(99, 100), albeit with species-specific variations (19, 99). Long-
term persistence of TRMs is thought to depend on IL-15 (94) and
was in addition recently found to depend on continuous
availability of autocrine TGF-b (101).

Although inflammatory stimuli such as imiquimod have been
shown sufficient to “pull” TRM precursors to peripheral tissues,
conversion of recruited T cells into TRMs may be maximized by
local antigen recognition, especially in the lung (102, 103). If
more generally valid, this notion might be highly relevant for
fungal vaccination strategies, considering that memory T cells
directed against many different fungi exist in healthy human
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blood (1). “Pulling” these pre-existing fungus-specific memory T
cells to a specific tissue site for local protection from fungal
overgrowth may provide a suitable approach under
certain conditions.

Induction of TRM immunity against antigens to which the
host was not previously exposed and to which the host has
therefore not yet mounted a T cell response, was also achieved by
alternative approaches, for instance by antibody targeting.
Selective delivery of antigen to respiratory dendritic cells
resulted in the development of lung CD8+ TRMs that were
highly protective against lethal influenza challenge (104).
Similarly, CD4+ TRMs were efficiently induced by a dendritic
cell-based vaccine in the context of a pulmonary mycosis.
Systemically administered antigen-loaded dendritic cells were
found to migrate with high efficiency to the lung, where they
elicited a local and resident CD4+ T cell response. The vaccine
suppressed fungal burden in the lungs and improved the survival
of mice infected with the highly virulent fungus Cryptococcus
gattii (25).

Although site-specific accumulation of TRMs has been
associated with successful vaccine immunity, induction of
TRMs does not always equal resistance to infection, as
demonstrated by the following study, which explored a fungal
vaccination strategy in a preclinical model of Blastomyces
infection. Intranasal administration of a subunit vaccine
composed of Blastomyces endoglucanase-2 (Bl-Eng2), which
harbors both, a Dectin-2 agonistic ligand and a CD4+ T cell
epitope, induced a large number of tetramer+ TRMs in the lung
of mice. However, it failed to protect against lethal infection with
Blastomyces (105). In contrast, systemic administration of the
same vaccine induced a population of tetramer+ CD4+ migratory
T cells enriched within the pulmonary vasculature that migrated
to the lung tissue upon challenge and efficiently protected mice
against infection (105). While the underlying cause of the
mucosal vaccine failure remains to be established, one
hypothesis concerns the localization of the pathogen to be
combatted by intranasally induced vaccine immunity, which is
intracellular in case of many of the examples provided above, but
extracellular in case of Blastomyces. A lot remains to be learned
about the signals favoring induction of functional TRMs capable
of conveying enhanced local protection and how this knowledge
can be translated to make it applicable in vaccine design.
Frontiers in Immunology | www.frontiersin.org 6
CONCLUDING REMARKS

Over the past years the interest in TRMs has steadily grown and
numerous studies have contributed to our current appreciation
of the relevance of these cells residing in most, if not all non-
lymphoid tissues where they contribute to tissue homeostasis
and microbial control but can also drive immunopathology. In
the field of fungal immunity, only very few reports are currently
available on TRMs with antifungal functions. Fungus-specific
TRMs follow the principles that were delineated for TRMs
directed against other microbes and viruses. Fungi-specific
TRMs are expected to populate all tissues that are naturally
exposed to commensal or environmental fungi. Their exact
features and their relevance in fungal control awaits to be
identified, including similarities and differences between TRMs
directed against distinct fungi and in different tissues. Besides
promoting immunosurveillance, fungi specific TRMs will likely
also be found to be involved in inflammatory pathologies of
barrier tissues. More research on TRMs in fungal immunity
using preclinical models and human tissues is warranted. The
expected knowledge gain will help taking informed decisions for
harnessing TRMs in antifungal vaccine development.
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