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Adopting a measure is essential in many multimedia applications. Recently, distance learning is becoming an active research
problem. In fact, the distance is the natural measure for dissimilarity. Generally, a pairwise relationship between two objects in
learning tasks includes two aspects: similarity and dissimilarity.The similarity measure provides different information for pairwise
relationships. However, similarity learning has been paid less attention in learning problems. In this work, firstly, we propose a
general framework for similarity measure learning (SML). Additionally, we define a generalized type of correlation as a similarity
measure. By a set of parameters, generalized correlation provides flexibility for learning tasks. Based on this similarity measure,
we present a specific algorithm under the SML framework, called correlation similarity measure learning (CSML), to learn a
parameterized similarity measure over input space. A nonlinear extension version of CSML, kernel CSML, is also proposed.
Particularly, we give a closed-form solution avoiding iterative search for a local optimal solution in the high-dimensional space as
the previous work did. Finally, classification experiments have been performed on face databases and a handwritten digits database
to demonstrate the efficiency and reliability of CSML and KCSML.

1. Introduction

Pairwise matching, which is based on a measure (similarity
or dissimilarity), is ubiquitous in multimedia applications.
The performances ofmultimedia learning techniques depend
sensitively on the selected measure [1–3]. Recently, measure
learning has become an active research problem for multi-
media learning tasks, for example, image classification [4, 5].
The previous measure learning studies mainly focused on
distance (dissimilarity) learning. One of the earliest distance
learning algorithms was presented by Xing et al. [6], where
a parameterized Mahalanobis distance was learned. Many
distance learning studies were followed [7–10], which would
be overviewed later. There are two aspects of disadvantages
for a distance metric. On the one hand, a distance learning
task results in an optimization problem which is usually
not easy to give a closed-form solution. Xing et al. [6], Lee

et al. [11], Kumar and Kummamuru [12], Jin et al. [13], and
Yin et al. [14] all described the distance metric learning
through iterative process. The iterative methods are difficult
to be extended to kernel versions. Moreover, the iterative
procedure is inefficient and unstable. On the other hand,
several recent studies suggest that the strict metric axioms
(self-similarity, symmetry, and triangle inequality) are episte-
mologically invalid for perceptual distance of human beings
[15, 16] and not so suitable for robust pattern recognition [17].

The other aspect of the relationship between two objects
in learning tasks is similarity. Since the measure models
vary in engineering practice, dissimilarity and similarity are
not simply complementary. The similarity cannot be simply
viewed as the negative or reciprocal dissimilarity. It is neces-
sary to distinguish these two notions.The similaritymeasures
include two categories: inner product based and kernel
function based, which were both considered in this work.
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Many publications support that the intrinsic structure
of the feature space for image classification lies on low-
dimensional manifolds [18–20]. Compared with Euclidean
distance, correlation has some competitive abilities to capture
the intrinsic structure embedded in the high-dimensional
data. Correlation is a type of normalized inner product and a
scale invariant index. It corresponds to the notion of “angle”
in geometrical theory. In recent years, some studies have used
correlation as a similarity measure for dimension reduction
[21–23].However, since correlation is in the fraction form, the
existing correlation-based dimension reduction algorithms,
such as correlation embedding analysis (CEA) [21], canonical
correlation analysis (CCA) [22], and correlation discriminant
analysis (CDA) [23], constructed low-dimensional embed-
dings through the iterative procedures.

In this work, we presented a similarity measure learning
framework for supervised classification. Particularly, under
this framework, a correlation similarity measure learning
algorithm was constructed with a closed-form solution. It
did not need iterative update process and is only involved
in eigenvalue decomposition operations. Furthermore, it was
extended into a kernelized version.

In order to learn an appropriate similarity measure,
dissimilarity metric (distance) learning and dimensionality
reduction can bring us much inspiration. Here, we provided
a concise review on them.

1.1. Dissimilarity Metric Learning. Many dissimilarity metric
learning algorithms have been presented in a variety of
application areas. From the diverse points of view, these
methods can be divided into different ways. Generally, there
are two ways to categorize them: (1) unsupervised learning
and supervised learning and (2) global method and local
method. In this work, the latter categorization scheme is
adopted.

For global methods, the well-known one is the earlier
distance metric learning algorithm Xing et al. presented [6],
which will be shown in detail later. This algorithm is further
extended to the nonlinear case in [24] by the introduction of
kernels, where a given kernel is idealized such that it becomes
more similar to the ideal kernel also leads to a quadratic
programming problem. Relevant component analysis (RCA)
[25] learns a global linear transform from the equivalent
constraints. Instead of iterative solution in [6], it only uses
closed-form expressions of data and is based on subsets of
points so-called chunklets. However, RCA has two impor-
tant disadvantages. One is the lack of exploiting negative
constraints which can also be informative, and the other is
its incapability of capturing complex nonlinear relationships
between data instances with the contextual information [8].
Discriminative component analysis (DCA) and kernel DCA
[8] improve RCA by exploring negative constraints with
contextual information. Kernel RCA [26] and kernel DCA
use kernel trick to discover the nonlinear structures of the
given data. Recently, Wang [9] proposed a method to learn
Mahalanobis distance metric in semisupervised mode by
maximizing the so-called constraint-margin maximization
(CMM) criterion. CMM is based on graph embedding frame-
work [27] often used in dimensionality reduction problems.

All the global methods are based on global constraints
or side information. However, the real-world data may not
satisfy the global linear assumption. So more approaches
fall into local based category which approximates global
nonlinear data structures based on local linear alignment.
Discriminant adaptive nearest neighbor [10] estimates a local
distance metric using the local linear discriminant analysis.
Neighbourhood components analysis [28] learns a Maha-
lanobis distance metric by directly maximizing a stochastic
variant of the leave-one-out KNN score on the training set.
The maximum-margin nearest neighbor (LMNN) classifier
[29] extends NCA through a maximum-margin framework.
It reformulated the optimization problem as an instance of
semidefinite programming, whichwas also solved by iterative
process. Many other recent studies [29–31] also focus on
neighbor information.

1.2. Dimensionality Reduction. Most algorithms above are
based on so-called Mahalanobis distance function frame-
work, which may be viewed as constructing a global linear
transformation of the data and then applying the Euclidean
distance over the transformed data. Mahalanobis distance is
as follows:

𝑑 (𝑥, 𝑦) =
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩𝐴 =
√(𝑥 − 𝑦)

𝑇
𝐴 (𝑥 − 𝑦). (1)

It requires 𝐴 ⪰ 0 to ensure that this can be used as a
metric. So 𝐴 can be represented as 𝐴 = 𝑊𝑊𝑇. Then to learn
Mahalanobis distance is equivalent to finding a transform
matrix 𝑊 (𝑦 = 𝑊𝑇𝑥). Learning the transformation matrix
𝑊 can yield the Mahalanobis metric𝐴 = 𝑊𝑊𝑇 according to
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For those dimensionality reduction methods without
explicit transformation, they may also be viewed as searching
appropriate embedding in a lower-dimensional space. So
distance metric learning has an affinity with dimensionality
reduction.

Methods on dimensionality reduction can be divided
into two categories: (1) with explicit transformation and (2)
with implicit transformation. The former includes almost
all subspace learning algorithms. PCA, LDA, NMF, LPP
[32], Laplacian Eigenmap [33], and their extended visions
[34–36], all result in a transform matrix with optimizing
some objective criterions. Most of classical manifold learning
algorithms, such as LLE, ISOMAP, and LTSA, belong to the
latter category. Since being without explicit transformation,
manifold-based methods are more suitable for data visual-
ization than classification. Inspired by NMF and LPP, graph
embedding framework [27] becomes popular [37, 38]. It
provides more flexibility through designing diverse graphs
and weight matrices.

This paper aims at solving the following problem: given a
set of sample data with class labels or pairwise constraints,
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the task is to learn an appropriate similarity measure for
classification. In the beginning of this paper, several related
distance learning and dimensionality reduction algorithms
will be introduced.The previous work of correlation usage in
classification will be also discussed in Section 2.Themethods
of Xing et al. and Xiang et al. are both used to learn the
distance metric. However, Xing et al. mainly concentrated on
clustering application. CEA [21], CCA [22], and CDA [23] all
apply correlation for classification.Moreover, CEA [21] is also
based on graph embedding framework [27] as our method
does. These algorithms will be all described detailedly in
Section 2.

Sections 3, 4, and 5 form the core of this paper. Section 3
gives the precise definition of similarity measure learning
problem and introduces a general formulation for it. This
formulation can be specified to diverse measure learning
algorithms depending on the determination of neighbor
graph, affinity weights, and similaritymeasure. In Section 4, a
strategy is given to form specific similarity measure learning
algorithm. Firstly, a generalized correlation 𝜌 is defined. After
that, two kinds of constraints are introduced, which are based
on two kinds of neighbor graphs and corresponding affinity
weights. Most importantly, an approximate optimization and
its closed-form solution are presented. Following that, it is
extended to the nonlinear version in Section 5. Experiments
have been conducted to prove the effectiveness of these
new measure learning approaches for classification. They
will be reported in Section 7. Additionally, discussions and
conclusions will be given, respectively, in Sections 6 and 8.

The overall sequence of the core sections in this paper can
be illustrated as follows.

Similarity Measure Learning for Classification

SML—A framework

The definition of SML problem
General framework for SML

CSML—An algorithm

Generalized correlation 𝜌
Optimization problem for CSML
The closed-form solution of CSML

KCSML—A nonlinear extension of CSML.

2. Related Work

This section provided a brief overview of closely related
studies. From this analysis, our work would be placed in the
context of other algorithms.

2.1. Xing and Xiang’s Methods. Consider the form of a
distance metric as follows:

𝑑 (𝑥, 𝑦) =
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩𝐴 =
√(𝑥 − 𝑦)

𝑇
𝐴 (𝑥 − 𝑦), (3)

where 𝐴 ⪰ 0. Xing et al. introduced one of the earliest
distance metric learning methods using both positive and

negative constraints [6].They posed distance metric learning
as the following convex optimization problem:

min 𝐽 = ∑
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where 𝑆 was the set of positive constraints and 𝐷 was the
set of negative constraints. The optimal metric was found
by minimizing the distances between data points in affinity-
link constraints and simultaneouslymaximizing the distances
between data points in apart-link constraints. Xing et al.
[6] used the gradient descent and the idea of iterative
projection to solve the problem (4). Although the presented
optimization problem was convex, it was a hard problem
to solve. And the introduced solution in [6] was slow and
somewhat unstable [8].

Xiang et al. [39] introduced the trace-ratio objective
function (with the constraint 𝑊𝑇𝑊 = 𝐼) as a more
appropriate objective function:

𝑊
∗
= arg max

𝑊
𝑇
𝑊=𝐼

tr (𝑊𝑇𝑆
𝑏
𝑊)

tr (𝑊𝑇𝑆
𝑤
𝑊)
. (5)

However, this problem cannot be directly solved by eigen-
value decomposition approaches. To solve the problem (5),
Xiang et al. [39] had constructed an iterative framework,
in which a lower bound and an upper bound including the
optimum were estimated for initialization. Their proposed
method provides a heuristic search to solve the problem (5).
In this work, we propose a generalized form of similarity
measure learning rather than dissimilarity measure learning
and provide a closed-form solution of objective functionwith
correlation similarity.

2.2. CEA. Fu et al. [21] introduced correlation embedding
analysis (CEA) for dimensionality reduction. Firstly, two
undirectedweighted graphs, the intrinsic graph𝐺𝐼 = (𝑋,𝑊𝐼)
and the penalty graph 𝐺𝑃 = (𝑋,𝑊𝑃), were constructed.
𝑋 was a set of data vertexes and 𝑊𝐼,𝑊𝑃 ∈ 𝑅𝑛×𝑛 are
weight matrices. The intrinsic graph characterizes data links
that the algorithm favors and the penalty graph describes
relationships that the algorithm tries to avoid.Then, a graph-
preserving criterion is imposed for these two objectives as
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where𝑤𝑃
𝑖𝑗
and𝑤𝐼

𝑖𝑗
are the elements of weightmatrices𝑊𝑃 and

𝑊𝐼, respectively. It can be viewed as finding transformation
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matrix 𝑊 in the linear transformation space of normalized
samples. The formulation (6) can be rewritten as
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This objective function is nonlinear and not convex. Fu
et al. [21] used the gradient descent rule for optimization by
differentiating 𝐹(𝑊) with respect to matrix W. As pointed
in [21], the gradient descent may not be deep enough to
converge to a good solution when the dimension of the data
space is too large. So the iterative process is sensitive on the
initial point although themethod to find a good initialization
was proposed. In this paper, we transform the problem (7)
into another optimization problem which can be solved with
closed-form solution.

2.3. Correlation in Classification. Next, we will focus on the
usage of correlation in classification. Hardoon et al. [22]
introduced canonical correlation analysis (CCA). It can be
viewed as the problem of finding basis vectors for two sets of
variables such that the correlations between the projections of
the variables aremutuallymaximized. If one set of variables is
taken as class labels, CCA can be used to realize a supervised
linear feature extraction and subsequent classification. It has
been extended to a nonlinear version kernel CCA by kernel
trick. However, there are some problems when it is used in
classification application as pointed in [23], which limits its
utilization in practice.

Ma et al. [23] introduced correlation discriminant anal-
ysis (CDA) which sought a global linear transformation to
maximize the correlation of samples from different classes in
the transformed space. Its optimization problem was
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In [23], this problem was also solved by gradient-based
optimization method. However, the extension of CDA to
kernel CDA was not very easy to be implemented, as pointed
in [23].

3. General Framework

Similarity measure learning (SML) is a general framework
for similarity measure learning problem. In the context of
general supervised classification, the SML problem may be
formulated as follows: given a labeled sample set {(𝑋, 𝑌)},
with 𝑛 instances, {𝑥

𝑖
}
𝑛

𝑖=1
∈ 𝑅𝐷, and𝐷 is the feature dimension.

The corresponding class label is {𝑦
𝑖
}
𝑛

𝑖=1
∈ {1, . . . , 𝑐}, where 𝑐

is the number of classes. Suppose that the similarity measure
between arbitrary two objects 𝑥

𝑖
and 𝑥

𝑗
is 𝜌(𝑥

𝑖
, 𝑥
𝑗
,𝑊), where

𝑊 is a set of parameters to be learned. The goal of SML is to
learn the parameter set𝑊 from the sample set {(𝑋, 𝑌)}.

We now introduce SML problem from the novel point of
view of graph embedding. Let 𝐺 = {(𝑋, Δ)} be an undirected
weighted graph with vertex set 𝑋 and relation matrix Δ ∈
𝑅
𝑛×𝑛. We define an intrinsic graph 𝐺𝐼 = {(𝑋, Δ𝐼)}, where
Δ𝐼 = [𝛿𝐼

𝑖𝑗
]
𝑛×𝑛

, and a penalty graph 𝐺𝑃 = {(𝑋, Δ𝑃)}, where
Δ𝑃 = [𝛿𝑃

𝑖𝑗
]
𝑛×𝑛

. Vertices𝑋 of graph 𝐺𝐼 are the same as those of
graph 𝐺𝑃, but the matrix Δ𝐼 corresponds to the relations that
are to be strengthened and the matrix Δ𝑃 corresponds to the
relations that are to be suppressed in the learning process.

Based on the above evidences, we get the formal defini-
tion of the similarity measure learning.

Definition 1. The similarity measure learning (SML) problem
is to learn an optimal similarity measure [𝜌

𝑖𝑗
]
𝑛×𝑛

from a
collection of data points𝑋 on a vector space𝑅𝐷 together with
a set of intrinsic pairwise constraints 𝐺𝐼 and a set of penalty
pairwise constraints 𝐺𝑃, which can be formally formulated
into the following optimization framework:

min (or max) 𝑓 (𝑊,𝐺𝐼, 𝐺𝑃, 𝑋) , (10)

where𝑊 is a set of parameters to be learned and 𝑓 is some
objective function defined over the given data.
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Input: the sample set𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} with labels 𝑌 = {𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
}

Output: the parameter set𝑀 for the generalized correlation 𝜌

Step 1. Construct the intrinsic graph 𝐺𝐼 and penalty graph 𝐺𝑃;
Step 2. Compute the affinity weights: Δ𝐼 and Δ𝑃;
Step 3. Construct the optimization problem (17);
Step 4. For 𝑘 = 1 To 𝑑 Do

If 𝑘 = 1Then
Solve 𝑆

𝛿
𝑤
1
= 𝜆𝑆
𝑒
𝑤
1
to obtain 𝑤

1

Else
Compute 𝐿 and solve 𝐿𝑤

𝑘
= 𝜆𝐿𝑤

𝑘
to obtain 𝑤

𝑘
;

Step 5. Final output𝑀 = 𝑊𝑊
𝑇, where𝑊 = [𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑑
].

Algorithm 1: The details of algorithm CSML.

Inspired by graph embedding learning in dimensionality
reduction, SML can be formulated as the following two
objectives based on graph-preserving criterion:
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To combine these two objectives into a unique optimization
problem, there exist several different ways [27]. In this work,
we consider the difference-form formulation; namely,
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It can be seen from Definition 1 that the method proposed in
the next sectionwill be also suitable for classification problem
with pairwise constraints instead of labels.

4. Correlation Similarity Measure Learning

In this section, we introduce a generalized correlation mea-
sure 𝜌. Based on the generalized correlation, an algorithm of
SML, called correlation similarity measure learning (CSML),
is proposed. It aims at learning a correlation similarity
measure for classification. The details are summarized in
Algorithm 1.

4.1. Objective Function. “Correlation” is one of widely used
measures to reflect the similarity between two random vari-
ables. Correlation is also termed as normalized correlation,
correlation coefficient, Pearson’s correlation, or cosine sim-
ilarity, and hereafter correlation for simplicity. Two samples
(e.g., images) are represented as two vectors 𝑥

𝑖
and 𝑥

𝑗
in a

feature space, and then the standard form of correlation is

corr (𝑥
𝑖
, 𝑥
𝑗
) =

𝑥𝑇
𝑖
𝑥
𝑗

√𝑥𝑇
𝑖
𝑥
𝑖√𝑥
𝑇

𝑗
𝑥
𝑗

. (13)

In learning tasks, to make the similarity measure flexible to
sample data, we define a generalized correlation.

Definition 2. The generalized correlation of random vectors
𝑥
𝑖
and 𝑥

𝑗
is defined as

𝜌 (𝑥
𝑖
, 𝑥
𝑗
) =

𝑥𝑇
𝑖
𝑀𝑥
𝑗

√𝑥𝑇
𝑖
𝑀𝑥
𝑖√𝑥
𝑇

𝑗
𝑀𝑥
𝑗

, (14)

where 𝑀 ∈ 𝑅𝐷×𝐷 is a parameter matrix and symmetric
positive semidefinite; for example,𝑀 ⪰ 0.

So, in the paper, let 𝑀 = 𝑊𝑊
𝑇, where 𝑊 =

[𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑑
] ∈ 𝑅𝐷×𝑑 and 𝑑 is an alternative parameter.

Generally, matrix 𝑀 parameterizes a family of the corre-
lations on the vector space 𝑅𝐷. Specifically, when 𝑀 is
an identity matrix 𝐼

𝐷×𝐷
, the generalized correlation in (14)

becomes the standard correlation.
This type of correlation measure assigns different impor-

tance on series of features rather than equally processing
as standard correlation coefficient does. It enhances the
flexibility of the similarity measure.The parameter matrix𝑀
could be adaptive for sample data.

Equation (14) can be modified to its equivalent form as

𝜌 (𝑥
𝑖
, 𝑥
𝑗
,𝑊) =

tr (𝑊𝑇𝑥𝑇
𝑖
𝑥
𝑗
𝑊)

√tr (𝑊𝑇𝑥𝑇
𝑖
𝑥
𝑖
𝑊)√tr (𝑊𝑇𝑥𝑇

𝑗
𝑥
𝑗
𝑊)

, (15)

where tr(⋅) denotes the trace of a matrix.
Substitute (15) into the optimization problem (12) and

then we obtain the objective function as follows:

𝐿 (𝑊) = ∑
𝑖 ̸= 𝑗

tr (𝑊𝑇𝑥
𝑖
𝑥𝑇
𝑗
𝑊)

√tr (𝑊𝑇𝑥
𝑖
𝑥𝑇
𝑖
𝑊)√tr (𝑊𝑇𝑥

𝑗
𝑥
𝑗
𝑊)

⋅ (𝛿
𝐼

𝑖𝑗
− 𝛿
𝑃

𝑖𝑗
) .

(16)

4.2. Intrinsic Graph and Penalty Graph. Intrinsic graph 𝐺𝐼

and penalty graph 𝐺𝑃 are both structural representations
based on pairwise object comparisons. For such a repre-
sentation, class overlap does not exist if the objects can be
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unambiguously labeled; there are no real-world objects in the
application which belong to more than one class. Moreover,
this structural representation can utilize the prior knowledge
or supervised information in an alternative way, which will
be discussed later.

4.2.1. Global Constraints. For 𝐺𝐼, the node 𝑥
𝑖
and the node

𝑥
𝑗
are connected by an edge if 𝑥

𝑖
and 𝑥

𝑗
belong to the same

class, otherwise not connected. For 𝐺𝑃, the edge between 𝑥
𝑖

and 𝑥
𝑗
is constructed if 𝑥

𝑖
and 𝑥

𝑗
belong to different classes,

otherwise not constructed. In our experiments, the global
scheme is adopted.

4.2.2. Local Constraints. For𝐺𝐼, only consider each pair of 𝑥
𝑖

and 𝑥
𝑗
from the same class. The node 𝑥

𝑖
and the node 𝑥

𝑗
are

connected if 𝑥
𝑗
is among the most nearest 𝑘𝐼 nodes from 𝑥

𝑖

or 𝑥
𝑗
is in the circle neighbor region 𝜀𝐼

𝛾
of 𝑥
𝑖
. This is based on

neighbor Euclidean distance. For𝐺𝑃, only consider each pair
of 𝑥
𝑖
and 𝑥

𝑗
from the different classes. The edge between 𝑥

𝑖

and𝑥
𝑗
is constructed if𝑥

𝑗
is among themost nearest 𝑘𝑃 nodes

from 𝑥
𝑖
or 𝑥
𝑗
is in the circle neighbor region 𝜀𝑃

𝛾
of 𝑥
𝑖
. Here, 𝑘𝐼,

𝜀𝐼
𝛾
, 𝑘𝑃, and 𝜀𝑃

𝛾
are all alternative parameters. It is obvious that

the local scheme is appropriate for unsupervised learning and
semisupervised learning.

4.3. AffinityWeights. After determining the edge distribution
of constraint graph, it needs to assign affinity weights to the
edges. Suppose 𝑑(𝑥

𝑖
, 𝑥
𝑗
) = (𝑥

𝑖
− 𝑥
𝑗
)
𝑇
(𝑥
𝑖
− 𝑥
𝑗
) is the distance

between 𝑥
𝑖
and 𝑥

𝑗
. Following existing work, here we have

two variations for weighting the edges: (1) Gaussian kernel
or other kernels: 𝛿

𝑖𝑗
= 𝑒−𝑑

2
(𝑥𝑖 ,𝑥𝑗)/𝑡 and (2) simple-minded:

𝛿
𝑖𝑗
= 1, if 𝑖 and 𝑗 are connected; otherwise, 𝛿

𝑖𝑗
= 0. These

two ways have respective advantages and shortages. Δ𝐼 and
Δ
𝑃 can choose different weighting schemes and parameters.

It provides the flexibility in practical application. The latter
scheme is adopted in our method.

4.4. Closed-Form Solution for CSML. Motivated by [40], in
this section, we will give a closed-form solution for SML to
avoid the iterative optimization over high-dimensional space.
For the optimization problem (12), additionally, we introduce
an orthogonal constraint; that is, 𝑤𝑇

𝑖
𝑤
𝑗
= 0, for all 𝑖 ̸= 𝑗.

The problem (12) may be transformed into the following
maximum optimization:

max 𝐽 = ∑
𝑖 ̸= 𝑗

tr (𝑊𝑇𝑥
𝑖
𝑥
𝑇

𝑗
𝑊)𝛿
(𝐼−𝑃)

𝑖𝑗

s.t. tr (𝑊𝑇𝑥
𝑖
𝑥
𝑇

𝑖
𝑊) = 1, ∀𝑖

𝑤
𝑇

𝑖
𝑤
𝑗
= 0, ∀𝑖 ̸= 𝑗,

(17)

where 𝛿(𝐼−𝑃)
𝑖𝑗

is short for 𝛿𝐼
𝑖𝑗
−𝛿𝑃
𝑖𝑗
. For simplicity, introduce the

matrix notation

𝑆
𝛿
= ∑
𝑖 ̸= 𝑗

𝛿
(𝐼−𝑃)

𝑖𝑗
𝑥
𝑖
𝑥
𝑇

𝑗
. (18)

In fact, 𝑆
𝛿
is a weighted sum of covariance matrices of

sample data. Next, 𝑤
𝑖
will be computed, respectively. To

obtain the best discriminant vector 𝑤
1
, we introduce the

following Lagrange function with multipliers 𝜆
𝑖
:

𝐽
𝐿1
= 𝑤
𝑇

1
𝑆
𝛿
𝑤
1
− 𝜆
1
(𝑤
𝑇

1
𝑥
1
𝑥
𝑇

1
𝑤
1
− 1)

− ⋅ ⋅ ⋅ − 𝜆
𝑛
(𝑤
𝑇

1
𝑥
𝑛
𝑥
𝑇

𝑛
𝑤
1
− 1) .

(19)

Considering 𝜆
1
= 𝜆
2
= ⋅ ⋅ ⋅ = 𝜆

𝑛
= 𝜆, compute the partial

derivative of 𝐽
𝐿1

with respect to 𝑤
1
and set it to zero; then

𝑆
𝛿
𝑤
1
= 𝜆𝑆
𝑒
𝑤
1
, (20)

where

𝑆
𝑒
=

𝑚

∑
𝑖=1

𝑥
𝑖
𝑥
𝑇

𝑖
. (21)

Here,𝑤
1
is the eigenvector of 𝑆−1

𝑒
𝑆
𝛿
associatedwith the largest

eigenvalue.
To obtain other 𝑤

𝑖
, we introduce the following Lagrange

function with multipliers 𝜆 and 𝜇
𝑖
:

𝐽
𝐿
=

𝑚

∑
𝑙=1

𝑤
𝑇

𝑙
𝑆
𝛿
𝑤
𝑙
− 𝜆(

𝑚

∑
𝑙=1

𝑤
𝑇

𝑙
𝑆
𝑒
𝑤
𝑙
− 𝑛) − 𝜇

1
𝑤
𝑇

𝑚
𝑤
1

− 𝜇
2
𝑤
𝑇

𝑚
𝑤
2
− ⋅ ⋅ ⋅ − 𝜇

𝑚−1
𝑤
𝑇

𝑚
𝑤
𝑚−1
.

(22)

𝑤
𝑚

can be obtained by maximizing the above Lagrange
function. As the above process, compute the partial derivative
of 𝐽
𝐿
with respect to 𝑤

𝑚
and set it to zero:

𝜕𝐽
𝐿

𝜕𝑤
𝑚

= 2𝑆
𝛿
𝑤
𝑚
− 2𝜆𝑆

𝑒
𝑤
𝑚
− 𝜇
1
𝑤
1
− 𝜇
2
𝑤
2

− ⋅ ⋅ ⋅ − 𝜇
𝑚−1
𝑤
𝑚−1

= 0.

(23)

Multiply the two sides of (23) by 𝑤𝑇
𝑚
; then

𝜆 =
𝑤𝑇
𝑚
𝑆
𝛿
𝑤
𝑚

𝑤𝑇
𝑚
𝑆
𝑒
𝑤
𝑚

. (24)

Thus 𝜆 represents the expression to be maximized.
Considering (23), multiply its two sides successively by
𝑤𝑇
1
𝑆−1
𝑒
, . . . , 𝑤𝑇

𝑚
𝑆−1
𝑒
, and then obtain𝑚 − 1 equations:

𝜇
1
𝑤
𝑇

1
𝑆
−1

𝑒
𝑤
1
+ ⋅ ⋅ ⋅ + 𝜇

𝑚−1
𝑤
𝑇

1
𝑆
−1

𝑒
𝑤
𝑚−1

= 2𝑤
𝑇

1
𝑆
−1

𝑒
𝑆
𝛿
𝑤
𝑚
,

𝜇
1
𝑤
𝑇

2
𝑆
−1

𝑒
𝑤
1
+ ⋅ ⋅ ⋅ + 𝜇

𝑚−1
𝑤
𝑇

2
𝑆
−1

𝑒
𝑤
𝑚−1

= 2𝑤
𝑇

2
𝑆
−1

𝑒
𝑆
𝛿
𝑤
𝑚
,

...

𝜇
1
𝑤
𝑇

𝑚−1
𝑆
−1

𝑒
𝑤
1
+ ⋅ ⋅ ⋅ + 𝜇

𝑚−1
𝑤
𝑇

𝑚−1
𝑆
−1

𝑒
𝑤
𝑚−1

= 2𝑤
𝑇

𝑚−1
𝑆
−1

𝑒
𝑆
𝛿
𝑤
𝑚
.

(25)
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If we use matrix notations,

𝜇
𝑚−1

= [𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑚−1
]
𝑇
,

𝑊
𝑚−1

= [𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚−1
] ,

𝐷
𝑚−1

= [𝐷
𝑚−1

𝑖𝑗
] = [𝑊

𝑚−1
]
𝑇

𝑆
−1

𝑒
𝑊
𝑚−1
,

𝐷
𝑚−1

𝑖𝑗
= 𝑤
𝑇

𝑖
𝑆
−1

𝑒
𝑤
𝑗
.

(26)

The previous set of (𝑚 − 1) equations can be represented in a
single matrix relationship:

𝐷
𝑚−1
𝜇
𝑚−1

= 2[𝑊
−1
]
𝑇

𝑆
−1

𝑒
𝑆
𝛿
𝑤
𝑚

(27)

or in another form

𝜇
𝑚−1

= 2[𝐷
𝑚−1
]
−1

[𝑊
−1
]
𝑇

𝑆
−1

𝑒
𝑆
𝛿
𝑤
𝑚
. (28)

Let us multiply the two sides of (23) by 𝑆−1
𝑒
:

2𝑆
−1

𝑒
𝑆
𝛿
𝑤
𝑚
− 2𝜆𝑤

𝑚
− 𝜇
1
𝑆
−1

𝑒
𝑤
1
− 𝜇
2
𝑆
−1

𝑒
𝑤
2

− ⋅ ⋅ ⋅ − 𝜇
𝑚−1
𝑆
−1

𝑒
𝑤
𝑚−1

= 0.

(29)

This can be expressed using matrix notation as

2𝑆
−1

𝑒
𝑆
𝛿
𝑤
𝑚
− 2𝜆𝑤

𝑚
− 𝑆
−1

𝑒
[𝑊
𝑚−1
]
𝑇

𝜇
𝑚−1

= 0. (30)

Including (28), we have

𝐿𝑤
𝑚
= 𝜆𝑤
𝑚
, (31)

where 𝐿 = (𝐼 − 𝑆−1
𝑒
[𝑊𝑚−1]

𝑇
[𝐷𝑚−1]

−1
𝑊𝑚−1)𝑆−1

𝑒
𝑆
𝛿
. Consider-

ing 𝜆 as the criterion to be maximized, 𝑤
𝑚
is the eigenvector

of 𝐿 and is associated with the largest eigenvalue of 𝐿.

4.5. Singularity of 𝑆
𝑒
. Tomodel the similaritymeasure, it only

needs to obtain the 𝑑 largest eigenvalues of 𝐿 to constitute
𝑊 = [𝑤

1
, . . . , 𝑤

𝑑
]. However, involving with the inverse

of 𝑆
𝑒
, it cannot be applied when 𝑆

𝑒
is singular due to the

small sample size problem. The small sample size problem
occurs frequently in practice. In many applications, the
dimensionality of the sample features is extraordinarily high
while the number of samples is much small in comparison.
When the number of samples is smaller than that of features,
the small sample size problem occurs, for example, face
recognition, text document classification, image retrieval,
and cancer classification with gene expression profiling. The
dimensionality of input space is high while the sample is
often lacking. To handle this problem, the direct method is
to replace 𝑆−1

𝑒
with the pseudoinverse matrix 𝑆†

𝑒
. However,

it does not guarantee that graph-preserving criterion is still
optimized by the largest eigenvectors involved with 𝑆†

𝑒
. Here,

the problem is similar to that in LDA. For the singularity in
LDA, there are several frequently used methods, which can
be modified for SML. The common way is to add a singular
value perturbation to 𝑆

𝑤
to make it nonsingular [41]. Null

subspace method and direct LDA [42] are both well known.

Another one is kernel Fisher’s discriminant (KFD), which is
a nonlinear extension to LDA. Maximum margin criterion
(MMC) [43] modified the criterion in the fraction form into
a difference one, which avoids the small sample size. In this
work, we first employ PCA to reduce the dimensionality of
the feature space to 𝑛 − 1, where 𝑛 is the number of samples
and then apply SMLon the dimensionality-reduced subspace.

5. Kernel CSML

CSML is used to find a global linear transformation matrix
although the graph with local constraints may capture local
nonlinear properties. Inmany cases, kernel trick is an efficient
technique to extend a linear method to its nonlinear version.

To perform our linear method in reproducing kernel
Hilbert space (RKHS), we consider the problem in a feature
space F induced by a nonlinear mapping 𝜙 : 𝑅

𝑛 →

F. We can define a Mercer’s kernel function: 𝑘(𝑥, 𝑦) =
⟨𝜙(𝑥), 𝜙(𝑦)⟩ = 𝜙𝑇(𝑥)𝜙(𝑦), where 𝑘(⋅, ⋅) is a positive semidefi-
nite kernel.

In the feature space F, the generalized correlation simi-
larity measure has the form

𝜌 (𝜙 (𝑥
𝑖
) , 𝜙 (𝑥

𝑗
) ,𝑊)

=
𝜙𝑇 (𝑥
𝑖
)𝑊𝑊𝑇𝜙 (𝑥

𝑗
)

√𝜙𝑇 (𝑥
𝑖
)𝑊𝑊𝑇𝜙 (𝑥

𝑖
)√𝜙𝑇 (𝑥

𝑖
)𝑊𝑊𝑇𝜙 (𝑥

𝑗
)

.
(32)

Of course, it has the equivalent form

𝜌 (𝜙 (𝑥
𝑖
) , 𝜙 (𝑥

𝑗
) ,𝑊)

=
tr (𝑊𝑇𝜙 (𝑥

𝑖
) 𝜙𝑇 (𝑥

𝑗
)𝑊)

√tr (𝑊𝑇𝜙 (𝑥
𝑖
) 𝜙𝑇 (𝑥

𝑖
)𝑊)√tr (𝑊𝑇𝜙 (𝑥

𝑗
) 𝜙𝑇 (𝑥

𝑗
)𝑊)

.

(33)

Since, in the feature spaceF,𝑊 lies in the linear combination
of 𝜙(𝑥

1
), 𝜙(𝑥
2
), . . . , 𝜙(𝑥

𝑛
), it can be defined as

𝑊 = Φ(𝑋) 𝛼, (34)

where Φ(𝑋) = [𝜙(𝑥
1
), 𝜙(𝑥
2
), . . . , 𝜙(𝑥

𝑛
)] represents the

training data in feature space F and 𝛼 = [𝛼
𝑖𝑗
]
𝑛×𝑑

. Specially,
𝛼
𝑗
= [𝛼
1𝑗
, 𝛼
2𝑗
, . . . , 𝛼

𝑛𝑗
]
𝑇 and 𝑤

𝑗
= ∑
𝑛

𝑖=1
𝛼
𝑖𝑗
𝜙(𝑥
𝑖
) = Φ(𝑋)𝛼

𝑗
.

Substitute (33) and (34) into (17) and obtain

max 𝐽 = ∑
𝑖 ̸= 𝑗

tr (𝛼𝑇Φ(𝑋)𝑇𝜙 (𝑥𝑖) 𝜙(𝑥𝑗)
𝑇

Φ (𝑋) 𝛼) 𝛿
(𝐼−𝑃)

𝑖𝑗

s.t. tr (𝛼𝑇Φ(𝑋)𝑇𝜙 (𝑥𝑖) 𝜙(𝑥𝑖)
𝑇
Φ (𝑋) 𝛼) = 1, ∀𝑖

𝛼
𝑖

𝑇
Φ(𝑋)
𝑇
Φ (𝑋) 𝛼𝑗 = 0, ∀𝑖 ̸= 𝑗.

(35)

Define kernel matrix as

𝐾 = [𝑘 (𝑥
𝑖
, 𝑥
𝑗
)]
𝑛𝑛
= [𝑘
𝑖𝑗
]
𝑛𝑛
. (36)
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Let

𝑆
𝑘

𝛿
= ∑
𝑖 ̸= 𝑗

𝛿
𝑖𝑗
Φ(𝑋)
𝑇
𝜙 (𝑥
𝑖
) 𝜙(𝑥
𝑗
)
𝑇

Φ (𝑋) = 𝐾Δ𝐾,

𝑆
𝑘

𝑒
=

𝑛

∑
𝑖=1

Φ(𝑋)
𝑇
𝜙 (𝑥
𝑖
) 𝜙(𝑥
𝑖
)
𝑇
Φ (𝑋) = 𝐾𝐾,

𝑆
𝑘
= Φ(𝑋)

𝑇
Φ (𝑋) = 𝐾.

(37)

The following Lagrange function with multipliers 𝜆 and 𝜇
𝑖
is

introduced:

𝐽
𝐿
=

𝑑

∑
𝑙=1

𝛼
𝑇

𝑙
𝑆
𝑘

𝛿
𝛼
𝑙
− 𝜆(

𝑑

∑
𝑙=1

𝛼
𝑇

𝑙
𝑆
𝑘

𝑒
𝛼
𝑙
− 𝑛)

− 𝜇
1
𝛼
𝑇

𝑚
𝛼
1
− 𝜇
2
𝛼
𝑇

𝑚
𝛼
2
− ⋅ ⋅ ⋅ − 𝜇

𝑚−1
𝛼
𝑇

𝑚
𝛼
𝑚−1
.

(38)

Comparing with the analysis of CSML, some notations are
introduced:

𝜇
𝑚−1

= [𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑚−1
]
𝑇
,

𝛼
𝑚−1

= [𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑚−1
] ,

𝐵
𝑚−1

= [𝐵
𝑚−1

𝑖𝑗
] = [𝛼

𝑚−1
]
𝑇

(𝑆
𝑘

𝑒
)
−1

𝑆
𝑘
𝛼
𝑚−1
,

𝐵
𝑚−1

𝑖𝑗
= 𝛼
𝑇

𝑖
(𝑆
𝑘

𝑒
)
−1

𝑆
𝑘
𝛼
𝑗
.

(39)

Note that the above notations are a little different from
(26). Similarly, the final solution is obtained: 𝛼

1
is the largest

eigenvector of 𝑆𝑘
𝑒

−1

⋅ 𝑆𝑘
𝛿
and 𝛼
𝑚
is the largest eigenvector of the

matrix

(𝐼 − (𝑆
𝑘

𝑒
)
−1

𝑆
𝑘
[𝛼
𝑚−1
] [𝐵
𝑚−1
]
−1

[𝛼
𝑚−1
]
𝑇

) (𝑆
𝑘

𝑒
)
−1

𝑆
𝑘

𝛿
. (40)

Here, we note that the problem of the eigenvalue decom-
position of (40) is ill-posed because the rank of the square
matrix 𝑆𝑘

𝑒
is less than or equal to 𝑛 − 1 and then 𝑆𝑘

𝑒
is singular.

To handle the singularity of 𝑆𝑘
𝑒
, we simply add a small positive

perturbation to 𝑆𝑘
𝑒
, that is, replay 𝑆𝑘

𝑒
by 𝑆𝑘
𝑒
, where

𝑆
𝑘

𝑒
= 𝑆
𝑘

𝑒
+ 𝜇𝐼. (41)

We set 𝜇 = 10−3 in this work.

6. Discussion

6.1. The Trace-Ratio, Ratio-Trace, and Trace-Difference. It is
known that the trace-ratio optimization problem is noncon-
vex and has no closed-form solution. CSML is the typical
one of this type of problem. To solve such a problem, there
have been some attempts. The most popular is to transform
such problems into the ratio-trace problem. For (16), the
corresponding ratio-trace form is

𝐿̃ (𝑊) = ∑
𝑖 ̸= 𝑗

tr(
𝑊𝑇𝑥
𝑖
𝑥𝑇
𝑗
𝑊

√𝑊𝑇𝑥
𝑖
𝑥𝑇
𝑖
𝑊√𝑊𝑇𝑥𝑗𝑥𝑗𝑊

)(𝛿
𝐼

𝑖𝑗
− 𝛿
𝑃

𝑖𝑗
) ,

(42)

which can be approximately solved with the general eigen-
value decomposition (GEVD) method:

𝑆
𝛿
𝑤
𝑘
= 𝜏
𝑘
𝑆
𝑒
𝑤
𝑘
, (43)

where 𝜏
𝑘
is the 𝑘th largest eigenvalue of theGEVDassociating

with the eigenvector 𝑤
𝑘
and 𝑤

𝑘
constitutes the 𝑘th column

vector of the matrix𝑊. Finally,𝑀 = 𝑊𝑊𝑇 and the measure
is learned. It can be seen that it is a suboptimal solution of the
optimal problem (17) proposed in this paper. As pointed in
[44], despite the existence of a closed-form solution for ratio-
trace optimization problem, its approximation may sacrifice
the potential classification capability of the derived low-
dimensional feature spaces and is unstable for supervised
classification. Guo et al. [45] converted such trace-ratio
problem to a trace-difference one. However, it is solved by
the iterative algorithm. For the detailed analysis on these
attempts, we will refer the readers to the prior work [44, 45].

In this work, an alternative approximate optimization
problem and its solution are presented. The denominator of
the original trace-ratio objective function is fixed and then
the numerator is maximized alone. In fact, the problem (16)
can be approximated to the trace-difference one as follows:

𝐿̂ (𝑊) = tr (𝑊𝑇 (𝑆
𝛿
− 𝜆𝑆
𝑒
)𝑊) , (44)

which is the same as the objective function in [45]. However,
the following operations of CSML are very different from
those in [45]. In CSML it just involves the eigenvalue
decomposition, which is more simple and comprehensible.

6.2. Computational Complexity. The computational cost of
CSML mainly comes from two parts. The first part is
graph construction, that is, connecting each sample with its
nearest neighbors, and its computational cost is 𝑂(𝑛2𝐷). The
next part is the matrix eigenvalue decomposition, and its
computational cost is 𝑂(𝑑𝐷3). So the overall cost is𝑂(𝑑𝐷3 +
𝑛2𝐷). For comparison, Table 1 illustrates the computational
costs of several distance metric learning and dimensionality
reductions related to CSML, where 𝑇 is the number of
iterations. We can see that Xing’s method is most expensive
on computational cost. Our approaches CSML and KCSML
are both more efficient than other several related algorithms.

7. Experiments

To evaluate proposed algorithms CSML and KCSML, in
this section, we perform several image classification experi-
ments on diverse databases and compare them with another
popular related work. These comparable methods include
principal component analysis (PCA), random subspace two-
dimensional PCA (RS-2DPCA), linear discriminant analysis
(LDA), local preserving projection (LPP), marginal fisher
analysis (MFA) [27], correlation embedding analysis (CEA),
correlation discriminant analysis (CDA), improved similarity
measure-based graph embedding (ISM-GE) [46], and max-
imal similarity embedding (MSE) [47]. PCA is taken as a
baseline method. RS-2DPCA stands for the state of the art of
unsupervised dimensionality reduction technique. LDA is a
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Table 1: Computational costs of related algorithms.

Algorithm Computational cost
The method of Xing et al. (Xing’s) 𝑂(𝐷

6
)

Themethod of Xiang et al. (Xiang’s) 𝑂(𝑇𝐷4)

Correlation Discriminant Analysis
(CDA) 𝑂(𝑇(𝐷4 + 𝐷2𝑛3))

Correlation Embedding Analysis (CEA) 𝑂(𝑇(𝐷4 + 𝐷2𝑛3))

Correlation Similarity Measure Learning
(CSML) 𝑂(𝑑𝐷3 + 𝑛2𝐷)

Kernel CSML 𝑂(𝑑𝐷3 + 𝑛2𝐷)

Figure 1: Samples from the Yale database.

basic supervised discriminant technique. LPP andMFA stand
for the state of the art of dimensionality reduction technique.
CEA and CDA use standard correlation as their measure and
closest to our method. Particularly, CEA is also designed in
the graph-preserving framework. ISM-GE andMSE are both
the most recent achievements of embedding learning based
on the correlation metric, which are close to our method.
ISM-GE defines a new improved similaritymeasure by fusing
the Euclideanmetric and the correlationmetric and then per-
forms graph embedding learning with the newmeasure.MSE
searches for global linear dimensional reduction directions
which preserve the local pairwise correlation similarity.

Face recognition is the classical application of image
classification, which depends critically on a measure. The
face databases Yale [48] and CMU PIE [49] are adopted.
The MNIST is a popular handwritten digits database. We
choose a subset from it as our experimental database. The
image samples from the three databases are shown in Figures
1, 2, and 3, respectively. All the methods in experiments
use centering and normalization as their preprocessing. The
final classification is based on the simple nearest neighbor
(NN) classifier. In all experiments, Gaussian kernel is adopted
and the kernel width is set to the standard variance 𝜎 =

sqrt(∑𝑛
𝑗=1
‖𝑥
𝑗
− 𝑥‖
2
/𝑛). All of the results reported for those

algorithms in comparison are from the best tuning of their
parameters. 𝑑 in the table denotes the projection dimension
when the best performance is got in PCA, RS-2DPCA, LDA,
LPP, MFA, CDA, CEA, ISM-GE, and MSE. For CSML and
KCSML, 𝑑 denotes the number of largest eigenvectors to
constitute the parameter matrix𝑊 for CSML and the matrix
𝛼 for KCSML, respectively.

7.1. Classification on the Yale Database. The Yale Face
Database contains 165 grayscale images of 15 individuals.
There are 11 images per subject, varying on facial expression
and configuration: center-light, w/glasses, happy, left-light,
w/no glasses, normal, right-light, sad, sleepy, surprised, and
wink. The images are cropped and resized into 32 × 32

Figure 2: Samples from the CMU PIE database.

Figure 3: Samples from the MNIST database.

pixels. The feature of each image is represented by a
1,024-dimensional column vector. A random subset with 𝑝
images per individual is taken with labels to form the training
set, where 𝑝 = 2, 3, 4, 5, 6, 7. The rest of the database is
considered to be the testing set. For each given𝑝, 50 randomly
splits are constituted. The results reported in Table 2 are the
average values for 50 splits.

From comparisons in Table 2, we can observe that all the
supervised methods outperform the unsupervised method
PCA. It is easy to understand it since more class label
information is introduced. We also see that CSML and
KCSML both outperform the other competitive methods
under all configurations, particularly, no matter being with
sufficient or insufficient quantity of sample data. It confirms
that the proposed generalized correlation similarity measure
can effectively capture the intrinsic affinity structure of the
data. The more experimental results in [21] show that PCA,
LDA, and LPP perform better based on the correlation NN
classifier. In our experiments, the correlation based methods
(CDA, CEA, CSML, and KCSML) outperform the other
methods based on Euclidean distance. In most cases, the
kernel extension of CSML is better than its original version.
From these results, it is obvious that the similarity measure is
more effective in recognition tasks than Euclidean distance.

7.2. Classification on the CMU PIE Database. The CMU PIE
database contains 41,368 images of 68 people, each person
under different poses, illumination conditions, and expres-
sions. We select a subset, which contains images under five
near frontal poses, different illuminations, and expressions.
There are 170 images for each individual and 11,554 images in
all.The images are cropped and resized to be 32×32 pixels. As
processed in the former experiment, each image is unfolded
as a column vector. A random subset with 𝑝 = 5, 10, 20, 30
images per individual is taken to form the training samples.
The results in Table 3 are also average results of 50 splits for
each 𝑝.

From Table 3, CSML and KCSML greatly outperform the
other competitive methods. PCA still performs worst. The
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Table 2: Classification performance comparison on the Yale database.

Method 2 Train 3 Train 4 Train 5 Train 6 Train 7 Train
Error (%) d Error (%) d Error (%) d Error (%) d Error (%) d Error (%) d

PCA 56.6 ± 6.3 29 50.6 ± 8.3 44 47.4 ± 7.2 58 43.8 ± 6.5 74 40.8 ± 7.4 32 39.5 ± 5.1 30
RS-2DPCA 44.2 ± 6.0 17 32.5 ± 5.4 17 27.6 ± 5.9 17 22.4 ± 5.2 17 17.5 ± 6.3 17 16.1 ± 5.2 17
LDA 52.8 ± 7.5 10 35.1 ± 5.9 14 27.1 ± 5.3 14 21.2 ± 5.7 14 18.7 ± 4.9 14 17.6 ± 4.6 14
LPP 42.6 ± 6.8 14 31.2 ± 7.0 14 27.3 ± 6.2 19 21.1 ± 4.8 23 17.8 ± 5.8 24 16.3 ± 5.4 21
MFA 41.7 ± 7.4 18 33.6 ± 6.5 23 28.4 ± 5.9 27 21.5 ± 5.2 20 16.1 ± 5.3 19 15.2 ± 4.0 25
CDA 43.2 ± 5.9 19 32.9 ± 5.8 22 26.8 ± 6.7 23 20.3 ± 5.4 18 16.9 ± 6.8 26 16.0 ± 6.2 19
CEA 42.0 ± 6.1 21 30.7 ± 4.3 25 25.2 ± 4.9 18 19.2 ± 5.1 19 15.3 ± 5.4 20 14.1 ± 4.8 18
ISM-GE 43.1 ± 6.5 19 29.2 ± 5.9 20 23.6 ± 6.8 19 17.5 ± 6.3 20 14.7 ± 5.6 22 12.5 ± 5.1 19
MSE 42.4 ± 7.2 23 32.3 ± 6.7 24 28.2 ± 5.2 22 19.6 ± 5.9 21 16.2 ± 5.1 24 15.3 ± 5.7 22
CSML 40.3 ± 6.8 14 29.4 ± 5.6 19 22.7 ± 6.1 13 17.8 ± 4.7 20 13.4 ± 4.2 19 11.7 ± 5.2 15
KCSML 37.4 ± 7.1 18 28.7 ± 6.3 24 23.1 ± 7.5 21 15.9 ± 6.0 26 10.2 ± 5.4 21 9.6 ± 6.1 27

Table 3: Classification performance comparison on the CMU PIE database.

Method 5 Train 10 Train 20 Train 30 Train
Error (%) d Error (%) d Error (%) d Error (%) d

PCA 76.6 ± 4.3 334 64.8 ± 4.6 673 48.6 ± 3.8 982 37.9 ± 3.5 1023
RS-2DPCA 44.5 ± 4.1 18 28.3 ± 3.5 18 20.1 ± 2.6 18 9.6 ± 2.2 18
LDA 42.0 ± 3.6 67 29.7 ± 3.7 67 21.5 ± 2.9 67 10.9 ± 3.2 67
LPP 38.0 ± 4.8 67 29.6 ± 3.5 139 20.2 ± 3.3 147 10.8 ± 2.7 86
MFA 36.8 ± 4.4 72 28.2 ± 2.8 69 17.5 ± 2.6 68 9.8 ± 3.0 77
CDA 34.7 ± 3.9 85 23.5 ± 2.5 76 17.3 ± 2.3 79 8.9 ± 2.6 82
CEA 33.5 ± 4.2 241 22.1 ± 2.7 196 14.8 ± 1.9 283 8.4 ± 1.7 129
ISM-GE 32.6 ± 4.1 76 20.7 ± 3.2 73 11.3 ± 2.7 77 6.8 ± 1.6 79
MSE 34.9 ± 4.5 223 25.4 ± 2.5 226 19.0 ± 2.1 230 9.2 ± 1.9 221
CSML 30.4 ± 3.7 201 16.8 ± 2.3 215 9.2 ± 2.2 194 6.1 ± 1.5 192
KCSML 31.8 ± 4.3 211 17.1 ± 2.9 253 6.5 ± 2.4 200 4.3 ± 2.1 203

selected subset used in the experiment contains more than 10
thousand images. From the experimental results in Table 3,
we can conclude that the proposed similarity measure is
effective and reliable on large scale databases. It further
demonstrates the ability of the generalized correlation mea-
sure to capture the intrinsic structure of high-dimensional
data.

7.3. Classification on the MNIST Database. The MNIST
database consists of 60, 000 handwritten digit images from
the larger database NIST. We select randomly 500 images for
each digit and then 5000 images in total from MNIST, to
constitute a smaller subset as our experimental database.The
images have been normalized into 28 × 28 pixels. The feature
of each digit is represented by a 784-dimensional vector. As
processed in the former experiments, the subset with 𝑝 =
50, 100, 150, 200, 250, 300 images per digit was taken to form
the training sample set. And the all left images are taken as
testing samples for each training subset. Also, for each 𝑝, 50
random splits are constituted. The results in Table 4 are also
average results of 50 splits for each 𝑝.

With the experimental results in Table 4, the similar
conclusion can be obtained.

7.4. Effects of Parameter Selection. In our proposed algorithm,
the 𝑘-nearest neighbor search is twice applied. The first one

is used for affinity graph construction in terms of the local
constraints. 𝑘𝐼 for intrinsic graph and 𝑘𝑃 for penalty graph
can be different and chosen with empirical values. Here, we
assume 𝑘𝐼 = 𝑘𝑃 = 𝑘

1
to simplify the analysis. In the

above experiments, we adopt the global scheme to construct
pairwise affinity graphs (intrinsic graph and penalty graph)
avoiding tedious tuning work. The other one, denoted by 𝑘

2
-

NN, is used as the final classifier. For fairness, in the above
experiments, all the compared methods uniformly use the
same simple 1-nearest neighbor as the final classifier. In this
subsection, to show more details of our proposed algorithm,
we analyze the effects of these two types of parameters on the
recognition performance.

Figure 4 shows the error rate variations of CSML and
KCSML with different 𝑘

1
on the three databases. The corre-

sponding 𝑑’s are set to be the selected best ones in the above
corresponding experiments. We find that the recognition
performances of our proposed methods have a similar trend,
where the error rate becomes approximately stable when the
𝑘
1
are relatively large. This result confirms our intuition that

the larger 𝑘
1
covers the more constraints which are beneficial

to the description of embedded relations. So, in practice, we
suggest to choose a relatively larger 𝑘

1
, which is also the

reason why we choose the global scheme for affinity graphs
construction in the above comparison experiments.
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Figure 4: The behavior of the proposed methods under various 𝑘
1
. (a) CSML on Yale database, (b) KCSML on Yale database, (c) CSML on

CMU PIE database, (d) KCSML on CMU PIE database, (e) CSML on MNIST database, and (f) KCSML on MNIST database.
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Figure 5: The best dimension number 𝑑 for various 𝑘
2
: (a) on Yale database, (b) on CMU PIE database, and (c) on MNIST database.

Figure 5 shows the best dimension number 𝑑’s under
different 𝑘

2
on the Yale database with “7 Train,” the CMUPIE

with “30 Train,” and the MNIST with “300 Train.” We find
that the 𝑑’s have a very small variation with the changing of
the 𝑘
2
; that is, we can choose a similar 𝑑 for different 𝑘

2
. This

result suggests that, for a given dataset, its intrinsic dimension
number is determined no matter which classifier is selected.
However, this has no benefit to parameter selection in
practice. Generally, the parameter 𝑑 is set through time-
consuming cross-validation tests with empirical experiences.
In the above experiments, all the parameters 𝑑’s are chosen
by the threefold cross-validation tests in the empirical value
ranges.

7.5. Executive Time. In our experiments, we also consider the
comparison of computational efficiency of these algorithms.
TheCPU times of thesemethods are executed for fifty runs on
Yale with𝑝 = 7, CMUwith𝑝 = 30, andMNISTwith𝑝 = 300.

The result in log scale is summarized in Figure 6. It shows
that the executive times of CSML and KCSML are closest to
each other and both are far less than those of CEA and CDA,
which have comparable recognition rates with our presented
methods. It agrees with the theoretical analysis result in
Table 1. We could conclude that our presented methods are
more efficient than CEA and CDA.

8. Conclusion
In this paper, we have presented a general framework for
similaritymeasure learning (SML).The proposed generalized
correlation 𝜌 improves the flexibility of standard correlation.
Based on the generalized correlation, a specific algorithm
of SML, called CSML, and its kernel extension KCSML
are proposed. Their objective functions are in trace-ratio
form, which have no closed-form optimal solution. We
transform the two objective functions to their approximate
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Table 4: Classification performance comparison on the MNIST database.

Method 50 Train 100 Train 150 Train 200 Train 250 Train 300 Train
Error (%) d Error (%) d Error (%) d Error (%) d Error (%) d Error (%) d

PCA 16.1 ± 0.72 499 10.9 ± 0.46 517 9.2 ± 0.48 561 7.8 ± 0.33 578 7.0 ± 0.35 603 7.0 ± 0.28 610
RS-2DPCA 11.2 ± 0.42 18 7.3 ± 0.26 18 4.5 ± 0.21 18 3.8 ± 0.19 18 3.3 ± 0.20 18 2.0 ± 0.19 18
LDA 12.4 ± 0.53 9 9.2 ± 0.39 9 8.6 ± 0.27 9 7.0 ± 0.22 9 5.4 ± 0.24 9 4.6 ± 0.17 9
LPP 10.7 ± 0.47 56 6.7 ± 0.21 51 4.8 ± 0.25 43 3.5 ± 0.17 58 4.5 ± 0.14 69 1.9 ± 0.20 73
MFA 10.5 ± 0.42 114 7.1 ± 0.27 108 4.0 ± 0.23 121 3.7 ± 0.19 98 3.0 ± 0.17 105 1.8 ± 0.14 94
CDA 11.6 ± 0.38 49 6.2 ± 0.29 63 3.4 ± 0.26 70 3.3 ± 0.24 62 2.9 ± 0.22 54 2.2 ± 0.23 68
CEA 12.1 ± 0.43 31 5.9 ± 0.35 52 3.1 ± 0.16 62 3.8 ± 0.18 60 2.7 ± 0.17 83 1.6 ± 0.19 76
ISM-GE 10.8 ± 0.39 92 6.1 ± 0.32 91 3.3 ± 0.20 87 2.6 ± 0.17 94 1.9 ± 0.15 90 1.8 ± 0.17 91
MSE 11.5 ± 0.41 83 6.4 ± 0.28 85 3.7 ± 0.17 82 3.1 ± 0.22 87 2.7 ± 0.21 84 2.3 ± 0.19 83
CSML 9.4 ± 0.31 62 5.3 ± 0.26 79 3.6 ± 0.18 85 1.9 ± 0.16 83 1.3 ± 0.18 83 1.2 ± 0.13 89
KCSML 8.7 ± 0.36 74 4.7 ± 0.34 82 2.4 ± 0.16 85 2.2 ± 0.17 89 1.5 ± 0.12 93 1.1 ± 0.16 90
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Figure 6: Comparison on CPU time in log scale.

optimization problems and give their closed-form solutions.
The experiments on face recognition database and hand-
written digits database indicate that the proposed similarity
measure is effective to capture the intrinsic affinity structure
of high-dimensional data. Because of the flexibility of this
general framework, the CSML can also be modified to
the semisupervised version under local or global constraint
information, which is not contained in this paper. Other
experiments critically depending on the adopted measure,
such as clustering and image retrieval, will be performed as
the future work.
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