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A B S T R A C T

In radiotherapy treatment planning, optimization is essential for achieving the most favorable plan by adjusting
optimization criteria. This study introduced an innovative approach to automatically fine-tune optimization
parameters for volumetric modulated arc therapy prostate planning, ensuring all constraints were met. A
knowledge-based planning model was invoked, and the fine-tuning process was applied through an in-house
developed script. Among 25 prostate plans, this fine-tuning increased the number of plans meeting all con-
straints from 10/25 to 22/25, with a reduction in mean monitor units per gray without increasing plan’s
complexity. This automation improved efficiency by saving time and resources in treatment planning.

1. Introduction

Treatment planning in radiation therapy is performed by the medical
physics team utilizing the treatment planning system (TPS) and
computed tomography images. Recent advancements in auto-planning
have significantly enhanced modern radiation therapy, aiming to
improve efficiency, consistency and treatment plans quality [1,2].
Knowledge-based planning (KBP), employing machine learning, is one
approach in this field [3]. It requires a dataset of high-quality plans to
establish a disease model. The model then identifies correlations be-
tween dosimetric and geometric features in the training dataset for each
organ at risk (OAR) and planning target volume (PTV) to estimate the
dose-volume histogram (DVH). Despite its lower inter-operator vari-
ability and better efficiency, manual adjustments are often necessary
once the treatment plan is generated [4,5]. An alternative auto-planning
technique utilizes deep learning, typically employing a U-Net model to
predict an entire dose distribution [6]. Nonetheless, manual refinement
of optimization objectives may still be necessary to achieve clinical goals

[7]. Another auto-planning technique is multi-criteria optimization
(MCO) [8,9], where multiple plans are automatically generated, each
meeting the constraints following the Pareto principle. Each plan is
optimized to the extent that it cannot be improved without affecting at
least one other criterion. Although an interactive navigator facilitates
the selection of a clinically optimal plan, this task may prove challenging
and requires intensive computing resources. Another auto-planning
method adopts an a priori strategy [10,11], using a constraint-based
“wish-list” per protocol to generate the solution. However, this “wish-
list” may require modification for individual patient cases. Since this
adaptation is not integrated into the workflow and requires generating
and saving a new initial set of protocol-based constraints, it can be a
time-consuming. An alternative approach allows for the automatic
generation of plans using an intelligent optimization engine (IOE) [12].
Users are required to rank the clinical goals from the most to the least
important. IOE then converts these clinical goals for both PTVs and
OARs into the optimization objective function. While this method gen-
erates plan more efficiently than manual planning, adapting the initial

* Corresponding author.
E-mail address: hasan.cavus@jessazh.be (H. Cavus).

Contents lists available at ScienceDirect

Physics and Imaging in Radiation Oncology

journal homepage: www.sciencedirect.com/journal/physics-and-imaging-in-radiation-oncology

https://doi.org/10.1016/j.phro.2024.100619
Received 30 April 2024; Received in revised form 29 July 2024; Accepted 30 July 2024

mailto:hasan.cavus@jessazh.be
www.sciencedirect.com/science/journal/24056316
https://www.sciencedirect.com/journal/physics-and-imaging-in-radiation-oncology
https://doi.org/10.1016/j.phro.2024.100619
https://doi.org/10.1016/j.phro.2024.100619
https://doi.org/10.1016/j.phro.2024.100619
http://crossmark.crossref.org/dialog/?doi=10.1016/j.phro.2024.100619&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Physics and Imaging in Radiation Oncology 31 (2024) 100619

2

objectives may be necessary [13,14].
In the majority of the aforementioned options for auto-planning,

manual adjustments are typically necessary to meet the prespecified
constraints. Therefore, the purpose of this paper was to develop a novel
approach to automatically fine-tune the optimization parameters for
volumetric modulated arc therapy (VMAT) plans as a proof-of-principle
generated using the KBP method, specifically for patients with prostate
cancer. To achieve this, a script was developed to automate the process
by invoking the KBPmodel and applying the fine-tuning process without
manual user input.

2. Materials and methods

2.1. Patient data and treatment plan

A random retrospective selection of 25 patients with prostate cancer,
treated in 2022 and 2023, was chosen from the clinical database for
testing the automated fine-tuning process. Varian Eclipse TPS (v 15.6)
was used to perform this study. The treatment dose prescription was 60
Gy for the prostate and 44 Gy for the seminal vesicle over 20 fractions.
Anisotropic margins from the clinical target volume (CTV) to PTV were
applied (6 mm laterally and 8 mm in other directions). All patients
underwent VMAT treatment using two opposing full arcs with a beam
energy of 6 MV and collimator rotations of 30◦ and 330◦, respectively.
The dose calculation algorithm was Acuros XB (v 15.6, Varian Medical
Systems). The grid sizes used in the dose calculation and the optimiza-
tion were 0.25 cm. The institute constraints used to evaluate these
treatment plans were presented in the supplementary material.

The study was approved by the ethical committee of the Jessa Hos-
pital Hasselt, Belgium on 8/09/2021 (registration number 2021/086).

2.2. Knowledge-Based planning model

RapidPlanTM (RP) is a commercially available auto-planning appli-
cation that uses a KBP approach developed by Varian Medical Systems.
A KBP model for prostate plans using the VMAT technique was created
in the RP application using high-quality plans (N=41) from cases treated
between April 2020 and July 2022. The structures used to train the
model included the PTV, bladder, rectum, bowel, left femoral head, and
right femoral head. This KBP model can be integrated into the Varian
Eclipse TPS.

2.3. Script design

An in-house C# binary plug-in script was developed using the Eclipse
Scripting APITM (Varian Medical Systems, Palo Alto) for VMAT prostate
plans. This script invoked the KBP model and applied the fine-tuning
process with a single click. The script was divided into three parts:

First, data preparation was conducted prior to optimization. This
involved generating the PTVs (PTV-high and PTV-low) and the neces-
sary structures for optimization. Two arcs were then created and
configured according to the previously described specifications. The
treatment isocenter was positioned at the center of the total PTV (sum of
PTV-high and PTV-low), with the jaws adjusted to be 5 mm from this
total PTV. Additionally, dynamic multileaf collimators were incorpo-
rated within both arcs.

Second, the KBP model was invoked. To accomplish this, the PTVs
and OARs were matched with the corresponding structures in the KBP
model. Prescribed doses for each PTV were then assigned, allowing the
KBPmodel to estimate the DVH. The optimizer function was started, and
once completed, the dose distribution was calculated. A treatment plan
was generated and normalized to ensure that the mean target volume
(PTV-high) matched the prescribed dose.

Lastly, the fine-tuning process was performed. For this, the plan
generated with KBP model was evaluated using the predefined con-
straints (supplementary material). If all constraints were met, the script

stopped, and the plan was saved in the database. However, if one or
more constraints were not met, additional objectives presented in
Table 1 were incorporated into the optimizer based on the relevant
structures. Subsequently, the optimization function restarted, and the
dose distribution was recalculated. The treatment plan underwent re-
evaluation, and if the same constraint remained unmet, the priority
value of the corresponding objective was increased by 10 units. If a new
constraint was unmet, additional objectives were once again integrated
in the optimizer.

The fine-tuning process automatically stopped after 10 loops if one or
more constraints remained unmet, as an additional loop did not provide
significant benefits. In such cases, the script generated all 10 plans,
allowing for selection of the least unfavorable plan.

2.4. Evaluation: Monitor unit and complexity metric

The first metric used to compare plans was the number of monitor
units per gray (MU/Gy). The second parameter, introduced by Younge
et al. (2012) [15], for evaluation was the complexity metric (CM). This
metric is defined as:

CM =
1
MU

∑n

i=1
MUi x

yi
Ai

where MU is the number of monitor units of the arc, n is the number of
control point apertures,MUi is the number of MUs of the i-th aperture, Ai
is the area of the i-th aperture and yi is the aperture perimeter excluding
the MLC leaf ends of the i-th aperture. An increase in the CM of a plan
indicates that the plan is more complex. This metric was automatically
calculated using an in-house C# binary plug-in script.

3. Results

Among the 25 prostate cases tested using this script, all constraints of
10 treatment plans were met with only the KBP model. The fine-tuning
process addressed the unmet constraint in another 12 cases, resulting in
an increase in the number of total plans meeting all constraints from 10/
25 to 22/25. Specifically, the fine-tuning process resolved the Dmax
(body) constraint in 7 cases, V60Gy (rectum) constraint in 7 cases, V60Gy
(bladder) constraint in 2 cases, and D50% (PTV-high) constraint in 1 case

Table 1
Objectives and priorities for each structure added to the optimizer via the
developed script during the fine-tuning process if one of more constraints were
not met.

Type ID Objective
type

Vol (%) Dose
(Gy)

Priority

Target PTV-high (60
Gy)

Lower 100 58.8 120
Upper 0 61.8 120

Target PTV-low (44
Gy)

Lower 100 43.56 120
Upper 0 61.8 120

Body External Upper 0 63.9 550
Organ Bladder Upper 0 63 150

Upper 4.5 54 120
Upper 22.5 44.1 100
Upper 45 36.9 100
Upper 54 27.9 100

Organ Rectum Upper 0 54 150
Upper 20 45 100
Upper 33.9 36 100
Upper 51 27 100
Upper 61.4 23.4 100
Upper 76.7 18 100
Mean / 27 100

Organ Bowel Upper V58.5Gy x
0.9

52.7 80

Upper V41Gy x 0.9 36.9 80
Upper V36Gy x 0.9 32.4 80

Organ Femoral heads Upper 45 36.9 50

H. Cavus et al.
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by adding the corresponding objectives presented in Table 1 into the
optimizer. The convergence of a plan for which all constraints were
initially unmet, through the fine-tuning process for one case is shown in
Table 2. However, for 3 cases not all constraints could be met after 10
loops.

Fig. 1a and 1b respectively display the comparison between the
result of the KBP (first loop) and fine-tuning (last loop) regarding the
MU/Gy and the CM for the 12 cases that required the fine-tuning process
to generate plans meeting all constraints. The mean MU/Gy was 381 ±

50 for KBP and 357 ± 42 for fine-tuning, while the mean CM was 0.19±

0.04 for KBP and 0.18 ± 0.03 for fine-tuning. Fig. 1c illustrates the
estimated planning time of the script in the background for these 12
cases. This estimation assumes that the initial loop (KBP) lasted 5 min,
with each loop of the fine-tuning process requiring an additional 2 min.

4. Discussion

The focus of this study was to improve prostate VMAT plans, initially
generated by a KBP model through an in-house developed automatic
fine-tuning process. While the KBP model is known to be more efficient
than manual planning [16], manual refinement is often necessary to
achieve clinical goals [17]. To improve planning efficiency and reduce
manual interaction, a one-click script was developed. This script first
utilized the KBP model and then applied a fine-tuning process. Conse-
quently, both processes were fully automated within this script, allow-
ing the generation of more plans meeting constraints without manual
intervention.

Among the plans requiring the fine-tuning process to meet all con-
straints, the values of constraints between the first loop (KBP) and the
last loop (fine-tuning) were slightly different, except for hot spots within
the target volume. Despite the KBP model being configured from high-
quality plans, it often had difficulties to manage high doses within the
target volume [18]. Ayuthaya et al (2022) [19] improved the KBPmodel
by increasing the number of VMAT plans used for KBPmodel training for
prostate cancer. While this enhancement improved the treatment plans,
manual refinements remained necessary. The fine-tuning process
introduced in this study evaluated the treatment plans and automati-
cally added additional optimization objectives to address unmet

constraints.
A parameter used to compare both plans was the number of MU/Gy.

An increase in this parameter typically results in a higher total body
radiation dose due to radiation leakage and internal scatter [20], which
increases the risk of radiation-induced second malignancies [21,22].
Previous studies have indicated that the KBP approach used in this
research tends to increase the MU/Gy compared to manual planning
[23,24]. However, in this study the plans generated with the fine-tuning
process had a slightly lower mean MU/Gy than those generated by the
KBP model. Furthermore, the comparison of CM showed no significant
difference between both plans. The fine-tuning process did not increase
the plan’s complexity, thereby dose accuracy for prostate cases [25,26].
Additionally, the estimation of script’s execution time in the background
was considered acceptable for routine clinical use. Although the pa-
tient’s treatment plan was unavailable in the TPS during this process, no
time was wasted for the user.

The main strength of this work lies in the general and rapid appli-
cability of the fine-tuning process in daily clinical practice. The script
was developed to be easily applicable in the TPS where the KBP model
was already in use for prostate VMAT plans. Additionally, the script ran
completely in the background. However, further refinement of the script
could be developed to achieve the same goal more efficiently.

Although the results are promising, their current scope is limited to
patients with prostate cancer undergoing radiotherapy treatment
following a prescription, as detailed in section 2.1. However, prostate
cancer treatments may involve different dose prescriptions and addi-
tional dose levels for secondary boost volumes. Additionally, other type
of cancer has a unique anatomical region nearby, leading to different
sets of dose constraints. Therefore, an interesting direction for future
research is to expand the scope of the study to generalize the method,
ensuring its applicability across various type of dose prescriptions, target
volumes, and disease sites (such as rectum, lung, etc.).

In conclusion, the current study aimed to develop a one-click script
utilizing a KBP model and a fine-tuning process to generate more plans
meeting all constraints. The results demonstrated that this script effec-
tively addressed a significant number of plans that initially did not meet
the constraints. Furthermore, the observed reduction in MU/Gy with the
fine-tuning process, without affecting plan’s complexity, indicated that

Table 2
The adjustment of the DVH parameter against institute constraints within the script for a particular case necessitated the fine-tuning process to meet all constraints.
PTV-high: PTV volume receives 60 Gy; PTV-low: PTV volume receives 44 Gy. (*) Unmet constraint before rounding.

Structures Constraints KBP Fine-Tuning

Loop1 Loop2 Loop3 Loop4 Loop5 Loop6 Loop7 Loop8 Loop9

PTV-high D99 (%)
D95 (%)
D50 (%)
D5 (%)
V107 (cm3)

92.0
95.6
100.2
103.5
0.1

90.7
94.9
100.3
103.9
0.4

91.4
95.0*
100.3
103.8
0.1

91.2
95.1
100.3
103.7
0.1

91.2
95.1
100.4
103.5
0.0

91.2
95.1
100.4
103.6
0.0*

91.2
94.9
100.3
103.7
0.0

91.4
95.2
100.3
103.6
0.0*

91.2
95.1
100.4
103.4
0.0

PTV-low D99 (%)
D95 (%)

96.9
98.0

95.7
98.4

97.6
98.8

98.0
99.0

97.7
99.1

97.9
99.1

98.1
99.1

98.1
99.1

97.9
98.8

Body V107 (cm3) 0.1 0.5 0.2 0.2 0.0* 0.1 0.0* 0.0* 0.0
Bladder V63.6 (cm3)

V60 (%)
V49 (%)
V41 (%)
V31 (%)

0.3
6.0
17.3
21.0
26.2

0.2
6.9
17.2
21.3
26.4

0.2
3.2
17.2
21.3
27.0

0.2
3.9
17.2
21.4
27.1

0.1
4.0
17.2
21.4
27.1

0.2
4.1
17.1
21.3
27.0

0.1
4.0
17.3
21.5
27.0

0.1
4.7
17.3
21.6
27.3

0.1
4.4
17.3
21.7
27.2

Rectum V60 (cm3)
V50 (%)
V40 (%)
V30 (%)
V26 (%)
V20 (%)
Dmean (Gy)

0.6
17.7
23.6
30.4
33.7
40.6
23.4

0.8
17.5
23.7
30.8
34.0
39.9
23.3

1.5
17.9
23.9
31.1
34.5
40.7
23.9

0.9
17.9
24.2
31.7
35.1
41.3
24.1

1.3
17.9
24.2
31.5
35.0
41.3
24.1

0.9
17.9
24.4
31.8
35.1
41.4
24.2

1.3
17.9
24.7
32.1
35.7
42.3
24.4

1.0
17.8
24.3
31.7
35.2
42.1
24.3

0.9
18.1
24.8
32.3
35.8
42.8
24.4

Bowel V58.5 (cm3)
V41 (cm3)
V36 (cm3)

0.7
10.3
13.5

0.5
11.2
15.3

0.7
11.7
15.6

1.0*
11.6
15.3

0.9
11.7
15.5

0.8
12.1
16.0

0.6
11.8
16.1

1.0
12.5
16.8

0.7
12.6
16.5

Femoral head left V41 (%) 2.7 1.3 7.3 9.3 7.8 7.5 10.3 9.9 9.3
Femoral head right V41 (%) 0.7 1.2 3.5 2.8 4.6 3.3 6.2 3.0 3.2
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it allowed for the generation of treatment plans that deliver the dose
more efficiently without compromising dosimetric accuracy.
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org/10.1016/j.phro.2024.100619.

References

[1] Ouyang Z, Liu Shen Z, Murray E, Kolar M, LaHurd D, Yu N, et al. Evaluation of
auto-planning in IMRT and VMAT for head and neck cancer. J Appl Clin Med Phys
2019;20:39–47. https://doi: 10.1002/acm2.12652.

[2] Kawamura M, Kamomae T, Yanagawa M, Kamagata K, Fujita S, Ueda D, et al.
Revolutionizing radiation therapy: the role of AI in clinical practice. J Radiat Res
2024;65:1–9. https://doi: 10.1093/jrr/rrad090.

[3] Masi K, Archer P, Jackson W, Sun Y, Schipper M, Hamstra D, et al. Knowledge-
based treatment planning and its potential role in the transition between treatment

planning systems. Med Dosim 2018;43:251–7. https://doi: 10.1016/j.meddos.20
17.10.001.

[4] Kaderka R, Hild SJ, Bry VN, Cornell M, Ray XJ, Murphy JD, et al. Wide-Scale
Clinical Implementation of Knowledge-Based Planning: An Investigation of
Workforce Efficiency, Need for Post-automation Refinement, and Data-Driven
Model Maintenance. Int J Radiat Oncol Biol Phys 2021;111:705–15. https://doi: 10
.1016/j.ijrobp.2021.06.028.

[5] Chang ATY, Hung AWM, Cheung FWK, Lee MCH, Chan OSH, Philips H, et al.
Comparison of Planning Quality and Efficiency Between Conventional and
Knowledge-based Algorithms in Nasopharyngeal Cancer Patients Using Intensity
Modulated Radiation Therapy. Int J Radiat Oncol Biol Phys 2016;95:981–90.
https://doi:10.1016/j.ijrobp.2016.02.017.

[6] Nguyen D, Lin MH, Sher D, Lu W, Jia X, Jiang S. Advances in Automated Treatment
Planning. Semin Radiat Oncol 2022;32:343–50. https://doi: 10.1016/j.se
mradonc.2022.06.004.

[7] Borderias-Villarroel E, Huet Dastarac M, Barragán-Montero AM, Helander R,
Holmstrom M, Geets X, et al. Machine learning-based automatic proton therapy
planning: Impact of post-processing and dose-mimicking in plan robustness. Med
Phys 2023;50:4480–90. https://doi: 10.1002/mp.16408.

[8] Craft D, Halabi T, Shih HA, Bortfeld T. An approach for practical multiobjective
IMRT treatment planning. Int J Radiat Oncol Biol Phys 2007;69:1600–7.
https://doi: 10.1016/j.ijrobp.2007.08.019.

[9] Craft D, Monz M. Simultaneous navigation of multiple Pareto surfaces, with an
application to multicriteria IMRT planning with multiple beam angle
configurations. Med Phys 2010;37:736–41. https://doi: 10.1118/1.3292636.

[10] Heijmen B, Voet P, Fransen D, Penninkhof J, Milder M, Akhiat H, et al. Fully
automated, multi-criterial planning for Volumetric Modulated Arc Therapy - An
international multi-center validation for prostate cancer. Radiother Oncol 2018;
128:343–8. https://doi: 10.1016/j.radonc.2018.06.023.

Fig. 1. MU/Gy and the complexity metric values for the 12 cases that needed the fine-tuning (FT) process are presented in (a) and (b) respectively. The blue
represents the values of the first loop (KBP) and the orange the value of the last loop (FT). (c) shows script’s estimated planning time in the background of these
12 cases.

H. Cavus et al.

https://doi.org/10.1016/j.phro.2024.100619
https://doi.org/10.1016/j.phro.2024.100619
https://doi%3a+10.1002/acm2.12652
https://doi%3a+10.1093/jrr/rrad090
https://doi%3a+10.1016/j.meddos.2017.10.001
https://doi%3a+10.1016/j.meddos.2017.10.001
https://doi%3a+10.1016/j.ijrobp.2021.06.028
https://doi%3a+10.1016/j.ijrobp.2021.06.028
https://doi%3a10.1016/j.ijrobp.2016.02.017
https://doi%3a+10.1016/j.semradonc.2022.06.004
https://doi%3a+10.1016/j.semradonc.2022.06.004
https://doi%3a+10.1002/mp.16408
https://doi%3a+10.1016/j.ijrobp.2007.08.019
https://doi%3a+10.1118/1.3292636
https://doi%3a+10.1016/j.radonc.2018.06.023


Physics and Imaging in Radiation Oncology 31 (2024) 100619

5

[11] Sharfo AW, Voet PW, Breedveld S, Mens JW, Hoogeman MS, Heijmen BJ.
Comparison of VMAT and IMRT strategies for cervical cancer patients using
automated planning. Radiother Oncol 2015;114:395–401. https://doi: 10.1016/j.
radonc.2015.02.006.

[12] Varian. Ethos Algorithms Reference Guide. Publication ID: P1035867-330-C; 2019.
[13] Pokharel S, Pacheco A, Tanner S. Assessment of efficacy in automated plan

generation for Varian Ethos intelligent optimization engine. J Appl Clin Med Phys
2022;23:e13539. https://doi: 10.1002/acm2.13539.

[14] Calmels L, Sibolt P, Åström LM, Serup-Hansen E, Lindberg H, Fromm AL, et al.
Evaluation of an automated template-based treatment planning system for
radiotherapy of anal, rectal and prostate cancer. Tech Innov Patient Support.
Radiat Oncol 2022;22:30–6. https://doi: 10.1016/j.tipsro.2022.04.001.

[15] Younge KC, Matuszak MM, Moran JM, McShan DL, Fraass BA, Roberts DA.
Penalization of aperture complexity in inversely planned volumetric modulated arc
therapy. Med Phys 2012;39:7160–70. https://doi: 10.1118/1.4762566.

[16] Amaloo C, Hayes L, Manning M, Liu H, Wiant D. Can automated treatment plans
gain traction in the clinic? J Appl Clin Med Phys 2019;20:29–35. https://doi:
10.1002/acm2.12674.

[17] Hussein M, South CP, Barry MA, Adams EJ, Jordan TJ, Stewart AJ, et al. Clinical
validation and benchmarking of knowledge-based IMRT and VMAT treatment
planning in pelvic anatomy. Radiother Oncol 2016;120:473–9. https://doi: 10.10
16/j.radonc.2016.06.022.

[18] Wu H, Jiang F, Yue H, Zhang H, Wang K, Zhang Y. Applying a RapidPlan model
trained on a technique and orientation to another: a feasibility and dosimetric
evaluation. Radiat Oncol 2016;11:108. https://doi.org/10.1186/s13014-016-
0684-9.

[19] Ayuthaya IIN, Suriyapee S, Sanghangthum T. Validation of RapidPlan Knowledge-
Based Model for Volumetric-Modulated Arc Therapy in Prostate Cancer. J Med
Phys 2022;47:250–5. https://doi: 10.4103/jmp.jmp_138_21.

[20] Clemente S, Cozzolino M, Chiumento C, Fiorentino A, Caivano R, Fusco V. Monitor
unit optimization in RapidArc plans for prostate cancer. J Appl Clin Med Phys
2013;14:4114. https://doi: 10.1120/jacmp.v14i3.4114.

[21] Hall EJ. Intensity-modulated radiation therapy, protons, and the risk of second
cancers. Int J Radiat Oncol Biol Phys 2006;65:1–7. https://doi: 10.1016/j.ij
robp.2006.01.027.

[22] Cashmore J, Ramtohul M, Ford D. Lowering whole-body radiation doses in
pediatric intensity-modulated radiotherapy through the use of unflattened photon
beams. Int J Radiat Oncol Biol Phys 2011;80:1220–7. https://doi: 10.1016/j.ij
robp.2010.10.002.

[23] Ito T, Tamura M, Monzen H, Matsumoto K, Nakamatsu K, Harada T, et al. Impact of
Aperture Shape Controller on Knowledge-based VMAT Planning of Prostate
Cancer. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021;77:23–31. https://doi:
10.6009/jjrt.2021_JSRT_77.1.23.

[24] Kubo K, Monzen H, Ishii K, Tamura M, Kawamorita R, Sumida I, et al. Dosimetric
comparison of RapidPlan and manually optimized plans in volumetric modulated
arc therapy for prostate cancer. Phys Med 2017;44:199–204. https://doi:10.1016
/j.ejmp.2017.06.026.

[25] Bush K, Zavgorodni S, Gagne I, Townson R, Ansbacher W, Beckham W. Monte
Carlo evaluation of RapidArc oropharynx treatment planning strategies for sparing
of midline structures. Phys Med Biol 2010;55:4465–79. https://doi.org/10.1088/
0031-9155/55/16/S03.

[26] Fog LS, Rasmussen JF, Aznar M, Kjær-Kristoffersen F, Vogelius IR, Engelholm SA,
et al. A closer look at RapidArc® radiosurgery plans using very small fields. Phys
Med Biol 2011;56:1853–63. https://doi.org/10.1088/0031-9155/56/6/020.

H. Cavus et al.

https://doi%3a+10.1016/j.radonc.2015.02.006
https://doi%3a+10.1016/j.radonc.2015.02.006
https://doi%3a+10.1002/acm2.13539
https://doi%3a+10.1016/j.tipsro.2022.04.001
https://doi%3a+10.1118/1.4762566
https://doi%3a+10.1002/acm2.12674
https://doi%3a+10.1002/acm2.12674
https://doi%3a+10.1016/j.radonc.2016.06.022
https://doi%3a+10.1016/j.radonc.2016.06.022
https://doi.org/10.1186/s13014-016-0684-9
https://doi.org/10.1186/s13014-016-0684-9
https://doi%3a+10.4103/jmp.jmp_138_21
https://doi%3a+10.1120/jacmp.v14i3.4114
https://doi%3a+10.1016/j.ijrobp.2006.01.027
https://doi%3a+10.1016/j.ijrobp.2006.01.027
https://doi%3a+10.1016/j.ijrobp.2010.10.002
https://doi%3a+10.1016/j.ijrobp.2010.10.002
https://doi%3a+10.6009/jjrt.2021_JSRT_77.1.23
https://doi%3a+10.6009/jjrt.2021_JSRT_77.1.23
https://doi%3a10.1016/j.ejmp.2017.06.026
https://doi%3a10.1016/j.ejmp.2017.06.026
https://doi.org/10.1088/0031-9155/55/16/S03
https://doi.org/10.1088/0031-9155/55/16/S03
https://doi.org/10.1088/0031-9155/56/6/020

	Optimizing volumetric modulated arc therapy prostate planning using an automated Fine-Tuning process through dynamic adjust ...
	1 Introduction
	2 Materials and methods
	2.1 Patient data and treatment plan
	2.2 Knowledge-Based planning model
	2.3 Script design
	2.4 Evaluation: Monitor unit and complexity metric

	3 Results
	4 Discussion
	Declaration of Competing Interest
	Appendix A Supplementary data
	References


