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Mycobacterium tuberculosis (Mtb) is the causative agent of human tuberculosis (TB) which
primarily infects the macrophages. Nearly a quarter of the world’s population is infected
latently by Mtb. Only around 5%–10% of those infected develop active TB disease,
particularly during suppressed host immune conditions or comorbidity such as HIV,
hinting toward the heterogeneity of Mtb infection. The aerosolized Mtb first reaches the
lungs, and the resident alveolar macrophages (AMs) are among the first cells to encounter
theMtb infection. Evidence suggests that early clearance ofMtb infection is associated with
robust innate immune responses in resident macrophages. In addition to lung-resident
macrophage subsets, the recruited monocytes and monocyte-derived macrophages
(MDMs) have been suggested to have a protective role during Mtb infection. Mtb, by
virtue of its unique cell surface lipids and secreted protein effectors, can evade killing by the
innate immune cells and preferentially establish a niche within the AMs. Continuous efforts to
delineate the determinants of host defense mechanisms have brought to the center stage
the crucial role of macrophage phenotypical variations for functional adaptations in TB. The
morphological and functional heterogeneity and plasticity of the macrophages aid in
confining the dissemination of Mtb. However, during a suppressed or hyperactivated
immune state, the Mtb virulence factors can affect macrophage homeostasis which may
skew to favor pathogen growth, causing active TB. This mini-review is aimed at summarizing
the interplay of Mtb pathomechanisms in the macrophages and the implications of
macrophage heterogeneity and plasticity during Mtb infection.

Keywords: Mycobacterium tuberculosis, innate immunity, macrophage heterogeneity, phenotype switching,
metabolic reprogramming, trained immunity
INTRODUCTION

Tuberculosis (TB), the oldest global pandemic since prehistoric times, is caused by Mycobacterium
tuberculosis (Mtb) which has co-evolved with humans for around 70,000 years (1, 2). While the
exact evolutionary age ofMtb is contentious, it has been a cause of significant concern at least since
Neolithic human expansion (3–5). As per the current estimates, a quarter of the world’s population
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has a latent form of TB (6) and around 10% of themmay develop
active TB during their lifetime (7). Annually, nearly 10 million
people are affected with TB which causes nearly 1.2 million
deaths (8). The situation is further complicated due to increasing
numbers (21%, 0.46 million) of drug-resistant TB (9). Moreover,
the control and management of TB has currently been affected
due to the unprecedented COVID-19 pandemic ravaging the
world (10). As a result, there have been a decrease in notifications
and treatment trends and an enhanced mortality for TB. The
WHO has therefore flagged concerns about the retardation in the
milestones envisaged for the END-TB program (11). With
decreased notification and treatment trends and enhanced
mortality reported, the COVID-19 pandemic has been
suggested to have reversed the years of progress made in TB
control efforts (11).

The reductive evolution of the genome has enabled Mtb to
evolve into a more virulent and successful pathogen (12, 13). The
reductive evolution of Mtb from its evolutionarily close and
mildly virulent species including M. kansasii and M. marinum
has been reported (14–16). The actual size of the genome in
common ancestors of mycobacteria is ambiguous; hence, it
remains an open question whether a large number of open
reading frames (ORFs) were lost during the reductive evolution.

Macrophages are the frontline cells of innate defense and are
present in every major tissue. Macrophages play crucial roles in
maintaining tissue integrity, homeostasis, and wound repair and
regulating inflammatory processes (17, 18). Mtb also makes
efficient use of macrophage heterogeneity and plasticity for
productive infection and dissemination. Following infection
through the aerosol route, mostly alveolar macrophages (AMs)
in the lungs harbor Mtb. To survive immune or drug pressure,
Mtb can acquire and maintain a “metabolically slowed” latent
infection phase within the macrophages, which are the primary
innate immune responders for eliminating the intracellular
pathogens (19–24). However, it is largely unclear which
macrophage subtype(s) Mtb prefers for its latent residency
program. Mtb, thriving within the macrophages, has evolved a
number of mechanisms to evade or counter the host immune
response (25). As a result, macrophages serve as a suitable niche
for the survival of Mtb, making it one of the most successful
pathogens (26).

Macrophages are characterized based on their functional and
spatial heterogeneity. For example, Kupffer cells that populate
the liver and the glial cells or microglia present in the brain are
both subtypes of macrophages. Ontologically, the resident
macrophages that arise from the embryonic yolk sac remain
within their designated tissue spaces for a lifetime or differentiate
from the bone marrow (fetal liver at the prenatal stage)-derived
myeloid mononuclear cells, giving rise to mature macrophages in
virtually all the tissues (27, 28).

The primary organ for TB infection is the lungs which are
predominantly populated by fetal liver monocytes, bone-
marrow-derived resident AMs, and self-renewing macrophages
that originate from the yolk sac (27–30). In response to
inflammation, the recruited blood monocytes can differentiate
into AMs in the tissue microenvironment and are termed as
Frontiers in Immunology | www.frontiersin.org 2
recruited AMs (31, 32). Interestingly, in a mouse model of mixed
AMs, embryonic host-derived and donor-derived postnatal
macrophages displayed minor (0.1% of all the genes) yet
conserved differences in transcriptomic signature and exhibited
overlapping functional attributes (29). Further studies have
revealed significant differences in the metabolic, proliferative,
and inflammatory states of the resident and recruited AMs.
Macrophages derived from the circulatory monocytes are more
proliferative and pro-inflammatory, are short-lived, and derive
energy primarily from glycolysis (32).

The interstitial macrophages (IMs) are relatively stable and
short-lived as compared with the AMs (33) and are localized in
either the alveolar interstitial or peribronchial regions (31).
Recent studies have described two distinct lineages of IMs
consisting of 1) Lyve1lowMHC-IIhigh IMs with a role in antigen
presentation and 2) Lyve1highMHC-IIlow perivascular IMs
involved in wound healing and tissue repair (31). These
subsets of IMs are conserved in mice and humans (33–35).

Depending on the activation status, macrophages were
initially categorized into M1 type with pro-inflammatory
attributes and M2 type with anti-inflammatory features (36,
37). However, the dichotomy of M1 and M2 types is now
considered an oversimplification of the complex functional
heterogeneity of the macrophages (38). Recent studies have
shown diversity in macrophage populations which do not
exhibit typical characteristics of either the M1 or M2
sublineages (39, 40). Therefore, a dynamic classification is
needed to incorporate different subsets of macrophages, which
may characterize beyond the dimorphic M1/M2 paradigm. The
present classification of macrophages does not account for the
microenvironmental conditioning and immunological stimulus
which direct M1/M2 diversification. A clear-cut demarcation of
the M1/M2 subset becomes obscure due to the coexistence of
diverse stimuli in the inflamed tissues (41).

Hence, it was proposed to categorize macrophages based on
the effector molecules they produce (Figure 1), for example, M
(IFN-g), M(IL-4), or M(IL-10) (42). M1-activated macrophage
markers include inducible nitric oxide synthase (iNOS)/eNOS,
IFN-g, STAT-4, T-bet, SOCS3, CCR7, and CCL19/21. M1-
activated macrophages have the absence (or low expression) of
arginase-1/2, CD206, CD163, MerTK, STAT-3/6, Ym1/2, Fizz1,
and MRC1 markers, which are predominantly expressed in M2-
biased macrophages (43–48). M1 macrophages were also
subcategorized as classical and innate activated macrophages,
M1a and M1b, respectively (49).

M2-activated macrophages showed greater diversity as
compared with the M1 macrophages. Several subtypes of M2
macrophages such as the M2a/b/c and M2d are categorized
based on different activation states and associated cytokine/
chemokine signaling. M2a macrophages express CD206
(mannose receptor), differentiate in response to IL-4 and IL-13
(mainly produced by Th2 cells, mast cells, and basophils), and
can downregulate pro-inflammatory responses (36, 47).

M2b macrophages, activated by immune complexes and TLR
agonists, produce both pro- and anti-inflammatory cytokines
(49). M2b differentiation is induced by IL-1R ligand or exposure
May 2022 | Volume 13 | Article 747799
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to LPS. This phenotype is marked by a low expression of IL-12
and a high expression of IL-10 which favors Th2 type immune
response (50).

M2c macrophages express anti-inflammatory cytokines such
as IL-10, IL-21, TGF-b, or glucocorticoids. M2c macrophages are
upregulated during the scavenging activity of the cellular debris
and are associated with tissue remodeling (36, 47). Mtb-
permissive M2c macrophages that get differentiated via
activation of IL-10/STAT-3 signaling display angiogenic
characteristics and are implicated in TB pathogenesis (43, 51).

M2d macrophage phenotypes were characterized from Fra-1-
mediated differentiation of RAW264.7 macrophages upon
induction with tumor cells. M2d macrophages have a
characteristic low expression of IL-12 and high expression of
IL-6 and IL-10 and exhibit immunosuppressive features of
tumor-assoc iated macrophages (TAMs) (52) . M2d
macrophages are also derived by co-stimulation with TLR and
adenosine receptor agonists and are characterized by high levels
of IL-10, VEGF, and iNOS expression, which are independent of
IL-4Ra expression (53, 54).
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Despite all these findings, characterization of the exact surface
markers for distinguishing monocyte/macrophage subsets is
challenging due to overlapping markers and due to the
existence of hybrid subpopulations co-expressing both M1/M2
markers (55, 56). Therefore, renewed attempts are required to
precisely describe cell surface markers which can define and
delineate different macrophage subsets.

In Mtb infection, the enormous macrophage heterogeneity
makes it difficult to delineate the macrophage subtypes that are
protective or pathogenic in nature. In Mtb-infected lungs,
distinct macrophage subtypes such as the AMs, monocyte-
derived macrophages (MDMs), and IMs have been identified
(30). In the initial stage of infection, AMs act as a niche for Mtb
(57); later on, AMs move to the pulmonary interstitium to
disseminate infection to other cell types including the recruited
macrophages (58). The macrophages in murine lungs display
additional heterogeneity with the presence of three distinct
subsets of IMs: (IM)-1, 2, and 3 (34). Although IMs have a
protective role in TB (59, 60), it is possible that some IM subsets
can be potentially pathogenic which needs to be investigated.
FIGURE 1 | Heterogeneity of bone-marrow- or monocyte-derived macrophages and their physiological roles with reference to TB. The fate and function of recruited
macrophages are generally shaped with influence from the local environment, stimulatory signals, and type of infection. Effector cells, including Th1/NK cells and
APCs, displaying antigenic peptides from intracellular pathogens (or due to stimulation with LPS/IFN-g), give rise to the M1 type of pro-inflammatory macrophages
that either clear or restrain (through granulomatous response) intracellular infections including Mycobacterium tuberculosis (Mtb). M1 macrophages are generally
characterized by a high level of pro-inflammatory mediators such as TNF-a, IFN-g, IL-6, IL-12, IL-1b, IL-15, IL-23, CXCL-10, COX-2, and ROS/RNI and a low level of
immune-regulatory molecules including IL-10, IL-4, TGF-b, and COX-1. In parallel, during invasion by an extracellular pathogen, Th2 cells/mast cells/basophils (or
stimulation with IL-4, IL-10, IL-13, and immune complexes) act to differentiate macrophages toward the M2 state that generally ensure clearance of extracellular
parasites. M2 macrophages are generally characterized by the production of a high level of IL-10, IL-1Ra, CCL17, CCL18, CCL22, Arg-1, fizz-1, Ym-1, COX-1,
ALOX, etc. and a low level of TNF-a, IL-12, IL-23, and COX2 among others and further divided into various subtypes such as M2a, M2b, M2c, and the most
recently described M2d. They are known for their role in promoting intracellular infections, for example, AMs in Mtb infection.
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Additionally, a separate subset of lipid-rich foamy macrophages
(FMs) has also been characterized in the Mtb-infected lungs
(discussed later) (23, 61). Also, a recent study has identified
distinct subsets of macrophages in the lungs of tumor-bearing
mice, which do not fall under the purview of the common M1/
M2 paradigm (40). The exact roles of these novel subsets of
macrophage in Mtb infection are yet to be established and may
be of significant interest in future studies.
SEQUEL OF INFECTION AFTER
INHALATION OF AEROSOLIZED MTB

The AMs are the first responder cells that encounter the
aerosolized Mtb. AMs are poor at processing and presenting
antigen to the T cells and produce minimal amounts of anti-
mycobacterial effector molecules including the reactive oxygen
and nitrogen species (62). Depletion of AMs in mice resulted in
reducedMtb burden and enhanced survival of animals (63). Upon
encounter withMtb, AMs engulf the bacilli in a phagosome which
may fuse with the acidic lysosome. This process, called
phagolysosome maturation, is subverted by Mtb to escape
lysosomal sequestration and killing (64–66). Recent reports
suggest that Mtb has evolved to not only survive but also
replicate within phagosomes (67). Mtb perforates the
phagosomal membrane and leaks out to the cytosol of the
macrophage (68–70) where it can replicate or cause necrosis of
the infected cells to disseminate, thereby infecting bystander cells
(71, 72). Analogous to the lytic and lysogenic phases of the virus
life cycle,Mtb probably represents a two-stage intracellular growth
model. In the first stage of intracellular growth,Mtb resides in the
phagosome where it replicates. In the subsequent stage, it reaches
the cytosol where it can replicate and disseminate. However, the
mechanistic details on howMtbmanages to replicate in the cytosol
are largely unclear and need to be explored.

Mtb disrupts membrane-compartment integrity through the
ESX-1 (73–75) and phthiocerol dimycocerosates (PDIM) (76)
dependent mechanisms, both of which are generally absent in
avirulent mycobacteria including the vaccine strain M. bovis
BCG (77). ESX-1 is a component of the Mtb-specific type VII
secretion system (T7SS) consisting of subclusters, ESX-1–5 (75,
78). The main effector of the Mtb ESX-1 system, ESX-A (ESAT-
6), along with its substrate ESX-B (CFP-10) can cause membrane
perforation (72, 79–81). The other components of the ESX
system, ESX-3, ESX-H, and ESX-G, can also block
phagolysosome maturation by inhibiting the ESCRT
(endosomal sorting complex required for transport) assembly
(82, 83).Mtb can also modulate apoptotic pathways (84–86) and
autophagy (64, 86–89). The ESX-1 system effectors, including
ESAT-6 and espB, suppress autophagy to favor mycobacterial
survival inside the host cells (90, 91). ESAT-6 is known to induce
apoptosis in Mtb-infected macrophages by inducing ROS
production (92). The role of ESAT-6 is equally established in
causing membranolytic activities and necrotic death of the
infected host cells (72, 79–81). AcpM (Rv2244), an acyl career
Frontiers in Immunology | www.frontiersin.org 4
protein ofMtb, inhibits the ROS/JNK signaling pathway to arrest
macrophage apoptosis, which can have potential implications in
virulence and pathogenesis of mycobacteria (93). Moreover,
Mtb-infected macrophages attain the M2 phenotype that
produces IL-10 and lowers the ER stress to block apoptosis,
thereby favoring intramacrophage bacillary survival (94).

Thus,Mtb has evolved multiple strategies to breach the innate
immune defenses and can modulate macrophages into a
permissive niche for its quiescent growth. The inhibition of
phagolysosome maturation, dissemination via translocation to
the cytosol, and modulation of programmed cell death
mechanisms are all part of its defense strategies.
MACROPHAGE HETEROGENEITY IN TB

Samuel Behar and coworkers had demonstrated the role of
innate immune cells including macrophages for the clearance
ofMtb in an aerogenic infection model (95). The study showed a
positive correlation between the augmented of protection against
TB and early lymphatic dissemination of Mtb in resistant B6
mice, as compared with the susceptible strains. The study also
showed that clearance of Mtb was associated with its rapid
systemic spread, which causes potent immune priming and
anti-mycobacterial response. Interestingly, T and B
lymphocytes had no role in protection, which emphasized the
crucial role of macrophages and other innate immune cells as
primary defenders against TB infections (95).

Early clearance of Mtb has been associated with heightened
innate immune responses and trained immunity (96, 97),
notwithstanding the host genetic variability (98). Trained
immunity, caused by epigenetic and metabolic reprogramming
of innate immunity, confers cross-protection to the host against
various pathogens (99). Trained immunity is non-specific and
maintains a short-term memory that is independent of a somatic
gene rearrangement scheme of adaptive immune cells (100).
Monocytes/macrophages and NK cells are the major cells
involved in trained immunity-mediated defense in TB and
other infections (96, 97, 101–104).

In a study on human PBMC-derived macrophages, distinct
DNA methylation patterns were observed in BCG-vaccinated
responders compared with non-responders. Promoter sequences
of genes responsible for immune responses showed loss of
methylation, which corroborated with increased ex-vivo anti-
mycobacterial activity (105). In mice, intravenous BCG
administration led to epigenetic and metabolic reprogramming
of hematopoietic stem cells, resulting in enhanced myelopoiesis
at the expense of lymphopoiesis (106). Preferential myelopoiesis
in BCG-immunized mice gave rise to monocytes and
macrophages with “trained immunity” features that were
associated with protection against Mtb infection in vitro and in
vivo (106). In another report, priming of human monocytes (and
mice) with fungal cell wall PAMP (b-glucan) resulted in
enhanced protection against unrelated TB infection via IL-1
signaling-dependent trained immunity (107).
May 2022 | Volume 13 | Article 747799
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In mice, monocytes and macrophages display at least two
distinct phenotypes based on the level of expression of Ly6c, a
surface marker present on the cells of myeloid origin (108–110).
Ly6chigh monocytes are recruited to the site of inflammation,
while the Ly6clow subset patrols the blood vessels for vascular
integrity (110, 111). Monocytes that infiltrate the site of
inflammation or injured tissues can differentiate into cells that
are either pro- or anti-inflammatory, depending on the
microenvironmental stimulus. Ly6chigh pro-inflammatory
monocytes convert into anti-inflammatory M2 macrophages
and affected the significant regression of the atherosclerotic
plaque (112) or inflammation-induced damage of liver tissue
during chronic infection caused by Schistosoma mansoni (113).
Inflammatory Ly6chigh monocytes/macrophages have a
protective role against Brucella abortus infection (114), in
contrast to their detrimental role in controlling visceral
leishmaniasis caused by Leishmania donovani (115). Although
Ly6c+(high/low) monocytes and monocyte-derived macrophages
were significantly mobilized in TB-infected mice (111) and
contributed to rBCG30 vaccine-induced protection (116), their
exact role in the protection or pathogenesis of TB is yet to be fully
elucidated. Infection with Mtb can modulate the macrophage
from a pro-inflammatory to an anti-inflammatory cell type (25,
117), and the recruited monocyte-derived permissive M2
macrophages may also contribute to this pool; however, it is
yet to be established. Two excellent reviews have been published
on the functional and phenotypical heterogeneity of the cells of
the mononuclear phagocyte system in the context of TB, which
can be perused for a greater understanding of the topic (68, 118).
INTERACTIONS OF LUNG ALVEOLAR
MACROPHAGES WITH MTB

The upper regions of the lungs are constantly exposed to
particulate stimulants like dust, pollen, and organic and
inorganic particles as well as microbes (29, 119, 120).
Macrophages can sense the pathogen/damage-associated
molecular patterns (PAMPs/DAMPs) using the cell surface
pathogen recognition receptors (PRRs) and initiate appropriate
immune responses for clearance or containment of an
underlying stimulant. Recurrent exposure causes persistent
innate immune activation in the lungs. A subset of lung
macrophages plays a regulatory/suppressive role in limiting the
collateral immunopathological consequences (62, 119). AMs,
given their predominant immunoregulatory role, are involved
in taming excessive inflammation during Mtb infection (30, 62,
121). Despite their host-protective roles, AMs serve as a niche for
Mtb and help subdue immune surveillance for Mtb clearance
(58–60, 122). Mtb can subvert continuous innate cell resistance
by masking its crucial PAMPs beneath the stealth coat of
specialized PDIM lipids on its surface (120). It was suggested
that PDIMs protect the Mtb from recognition and killing by
highly phagocytic iNOS+ M1 macrophages and facilitate its
smooth passage to the distal regions of the lungs (120). Mtb
traverses through the pathogen-eliminating environment in the
Frontiers in Immunology | www.frontiersin.org 5
upper respiratory tract and preferentially resides in the distal
ends of the lungs, and the mechanism by which Mtb reaches its
preferred niche is largely unclear.

A two-pronged explanation of this phenomenon has been
proposed based on the zebrafish model of TB. First, Mtb evades
scrutiny by the mycobactericidal iNOS+ macrophages in the
lungs by using cell surface PDIM lipids in a TLR2/MyD88-
dependent manner (120). Secondly, virulent mycobacteria (such
as M. marinum) exploit a unique lipid effector, phenolic
glycolipid (PGL), to secrete CCL2, a chemokine ligand for
CCR2, which recruits permissive macrophages to the infection
site in a STING–CCL2–CCR2-dependent manner. This same
mechanism may also facilitate the transfer ofMtb from the lung-
resident AMs to the recruited permissive monocytes/
macrophages for survival and dissemination (123).

Interestingly, a transcriptional repressor coded by Mtb
Rv3167c negatively regulates PDIM expression, and a loss-of-
function mutant (Mtb DRv3167c) was demonstrated to have an
enhanced ability to escape the phagosome to the cytosol with
augmented autophagic and necrotic cell death (124). The
observed effects were attributed to the enhanced PDIM levels
and were reversed in the double deletion mutant (Mtb DRv3167c
Dmmpl7) with impaired PDIM production, confirming the
central role of PDIM behind the enhanced virulence (124).
More recently, PDIMs have been implicated in Mtb infection
of the epithelial/endothelial cells (125, 126). Apart from other
effectors that partner with PDIM in the Mtb virulence program,
the ESX-1 operon effectors are also determined to be essential for
PDIM conferred virulence to Mtb (127). BCG can produce
PDIM but cannot escape phagosome due to a lack of RD
components including ESX-1. Exploiting this fact, it was
shown that transforming BCG with ESX-1 enables it to escape
the phagosome, confirming that both PDIMs and ESX-1 are
required for mycobacteria to escape the phagosomes (76).
Concomitantly, multiple mutant strains impaired in producing
PDIMs (DppsD, Dmas, DdrrC, Dhrp1, and Drv0712) were
inefficient in secreting ESX-1 effectors, highlighting the co-
dependability of PDIMs and ESX-1 system proteins for
mycobacterial virulence (128).

In addition to the recruited permissive macrophages, the
lungs (murine) are home to the highly heterogeneous
macrophage population (34, 40). The latest insight into the
heterogeneity of lung macrophages in TB has been provided in
a study by Cohen et al. (58) The study revealed an unexpected
role of AMs and demonstrated that AMs translocate Mtb away
from the alveolar space to the interstitium before the arrival of
recruited myeloid cells in mice lungs. This is orchestrated jointly
by Mtb ESX-1 components and host MyD88/IL-1R/ASC-
mediated inflammasome signaling. The unexpected role of
Mtb-infected AMs in traversing the epithelial boundary to
deliver bacilli to the recruited monocytes/macrophages in
interstitial space has renewed the interest in redefining the
macrophage realm in TB-infected lungs. Plausibly, the newly
identified monocyte-derived recruited AMs (31, 32) may overlap
with the population identified by Cohen et al. (58) which are
responsible for Mtb dissemination.
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THE ROLE OF RECRUITED INTERSTITIAL
MACROPHAGES IN TB

Recently, Russell and coworkers defined the dynamics,
phenotype, and role of different macrophage subsets in the
lungs of Mtb-infected mice using fluorescent Mtb reporter
strains and macrophage transcriptomics data (59, 60). They
demonstrated that Mtb predominantly inhabits the lung’s
resident AMs for their unchecked growth, while monocyte-
derived macrophage subsets (IMs) restrict Mtb survival in the
lungs. It is apparent thatMtb faces less stress in AMs than in the
IMs, making AMs a permissive niche for bacilli. These two
macrophage subsets have shown distinct inflammatory states
as a result of adopting different metabolic programs. The
immunometabolic circuit of TB-loaded macrophages is
described in Figure 2. It was demonstrated that AMs
predominantly sustained fatty acid oxidation (FAO) and
oxidative phosphorylation (OXPHOS), while pro-inflammatory
IMs were committed to glycolysis for their sustenance. It has
been shown that recruitment of macrophages is CCL2
Frontiers in Immunology | www.frontiersin.org 6
dependent, and in CCL2-deficient mice, the migration and
transformation of circulatory monocytes into the lung’s IMs is
abolished with concomitant loss of Mtb infection control (59).
The results were divergent from the earlier reports in the
zebrafish infection model of M. marinum, where the Mtb lipid
PGL exploits the host CCL2–CCR2 axis to recruit permissive
macrophages which serve as a niche for Mtb growth (120, 123).
These divergent findings need to be interpreted with caution as
both studies were done in different model systems with different
species of virulent mycobacteria (59, 120). This example also
insinuates caution while translating findings from one model
system to another and in humans ultimately. Additionally, it
should also be noted that majority of the studies were carried out
on cell lines in vitro which are not the exact representation of the
complex macrophage landscape in tissues (129).

Nonetheless, the exact deciding factor(s) for the fate of
mycobacteria-loaded macrophage is unknown. It could be
dependent on the ontogeny of macrophages (embryonic or
bone-marrow-derived) or the tissue microenvironment. The
bone-marrow-egressed monocyte-derived macrophages are
FIGURE 2 | An immunometabolic circuit that dictates macrophage fate and function in tuberculosis. M1 macrophages that restrict Mtb proliferation are generally
glycolytically active and utilize more glucose to meet increased energy demand as a result of enhanced proliferation. M1 macrophages skip the tricarboxylic acid (TCA)
cycle and prefer energetically favored lactate production from pyruvate even in the absence of oxygen (Warburg effect) to which support rapid cellular turnover and
generation of anti-mycobacterial oxidative burst. Instead of the TCA cycle, they utilize the pentose phosphate pathway and citric acid cycle for extra-mitochondrial
utilization of available fatty acids to meet increased energy demands to support activation of pro-inflammatory genes including NF-kb, IRF-3/5, STAT-1, and HIF-1a
and their downstream effectors such as TNF-a, IL-12, IFN-b/g, CCL-5, and CXCL-4/9/10/11 to restrict Mtb growth. In stark contrast, both AMs and M2 macrophages
that support Mtb persistence/proliferation elect cost-inefficient mitochondrial oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) pathways to meet
cellular demands. Mtb exploit these pathways to hijack host cells and utilizes the host’s own lipids to thrive in hibernation for longer periods. In M2 macrophages, it
induces the cellular expression of anti-inflammatory mediators including STAT-3/6, C-Maf, and HIF-2a that stimulate the production of downstream anti-inflammatory
effectors including IL-10, IL-1Ra, IL-4Ra, Arg-1/2, and PPAR-g among others and thus make a permissive environment for Mtb growth as well persistence.
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important innate responder cells during Mtb infection. The
monocyte mobilization to Mtb-infected lungs is the result of
emergency monopoiesis in bone marrow, rather than
recruitment from blood (111). The classical Ly6chigh

monocytes can replenish the local macrophage reservoir in
Mtb-infected lungs, differentiate into protective IMs, and
support local innate resistance against Mtb (59). Recruited
inflammatory monocytes (Ly6chigh) enter the lung parenchyma
and give rise to multiple subsets of macrophages and DCs.
Among them, CD11chighCD11b+Ly6chigh DCs are involved in
the transport of Mtb to the lungs draining mediastinal lymph
nodes (111). Interestingly, Mtb hampers antigen processing and
presentation by delaying the migration of local DCs to the
draining lymph nodes during early infection. It uses this
strategy as a means to delay the arrival of adaptive immune
cells in infected lungs by ~10–12 days in mice (130) and up to
6 weeks in humans (7) to establish a chronic infection. Plausibly,
the recruited monocyte-derived DCs in Mtb-infected lungs may
represent a host strategy to pose a counter to Mtb-mediated
suppression of adaptive immune priming of naive DCs and T
cells in the local lymph nodes.
MTB PROMOTES BIASED M2 SHIFT IN
MACROPHAGES TO DAMPEN HOST
IMMUNE DEFENSE

Usually, bacterial pathogens induce a pro-inflammatory immune
milieu that modulates macrophage polarization toward the M1
state, which can clear acute infections (47). Intracellular bacterial
pathogens includingMtb (61), Listeria monocytogenes (131), and
Brucella abortus (114) modulate macrophages toward an anti-
inflammatory M2 state. This M1/M2 bias synchronizes
intracellular bacterial fitness to favor either persistence or
proliferation. Macrophages may kill Mtb or serve as a reservoir
for intracellular Mtb persistence and proliferation and may be
involved in immune regulation as well (87). M1–M2 switch in
macrophages skews the transition from acute to chronic
infection. Mtb has evolved strategies to escape M1-activated
macrophage killings and drive phenotypic switch to the M2
polarization state to promote chronic infection (43, 117).

In an acute Mtb infection, the macrophage switches to the
M1-polarized state and activates downstream PRR signaling to
produce multiple host-protective effectors including reactive
oxygen (ROS) and nitrogen (NO) species (47) and host
defensins such as cathelicidin-related anti-mycobacterial
peptide (Cramp) (132), all of which help kill Mtb. M1
macrophages initiate granuloma formation as a means to
contain the infection. Overt M1 activation induces an
exaggerated pro-inflammatory response that hampers tissue
homeostasis and granuloma intactness. As a result, M1
macrophages skew toward M2 polarization to regulate
inflammation and to promote tissue repair during Mtb
infection progression in the chronic phase (121, 133). This
plastic behavior during macrophage polarization depends on
the distinct immune microenvironment, a result of extensive
Frontiers in Immunology | www.frontiersin.org 7
metabolic reshuffling. Macrophages undergo a metabolic shift
from aerobic glycolysis to mitochondrial OXPHOS and
glutamine metabolism (134) cater to its energy requirements
during Mtb infection. In the lung lesions of TB patients, M1
macrophages are mostly present in non-granulomatous sites,
whereas M2 macrophages predominate necrotic as well as non-
necrotic granulomatous zones, which point to the principal role
of M2 macrophages in granulomatous reactions as well as
possible M1–M2 transition during infection (135).

ESAT-6 plays a significant role to skew M2 polarization for
Mtb survival during an infection (94). Serine proteases
(thrombin and trypsin) (136) and heat shock proteins Hsp70
(DnaK), Hsp60, and Hsp16.3 of Mtb are also involved in M2
polarization to shield the bacteria from the host immune
pressure (137–139). ER stress-mediated apoptosis is typical in
M1 macrophages to control infection (94). Apoptosis induces a
drastic T-cell response which is less favorable for Mtb growth
and dissemination (140). In contrast, cell death via necrosis,
together with M2 shift in early infected macrophages, provides a
permissive environment for Mtb proliferation (47). Thus,
macrophage polarization is a crucial mechanism of virulence
and pathogenesis of Mtb with contribution of multiple host and
pathogen effectors, which needs to be explored in greater detail.
DIFFERENTIAL METABOLISM IN M1/M2-
POLARIZED MACROPHAGES

Macrophage metabolic plasticity plays a significant role in
disease pathology (141). Macrophage polarization defines the
distinct metabolic profile of macrophages that drives differential
macrophage activation (142). M1 cells actively use aerobic
glycolysis (known as the Warburg effect in cancer cells) for
bioenergetics and biosynthetic intermediates and also induce
pentose phosphate pathway for ROS production. In contrast to
M1, M2 cells prefer mitochondrial OXPHOS and glutamine
metabolism as carbon and nitrogen sources, similar to the
resting macrophages (36, 134, 143, 144). Arginine metabolism
is involved in the differential regulation of macrophage
polarization. L-arginine is a common substrate for iNOS as
well as arginase-1. M1 macrophages produce iNOS that
catabolizes arginine into L-citrulline and NO, which mediate
cytotoxicity to control bacterial infection. Arginase-1 produces
polyamine, L-ornithine, and urea linked to the wound-healing
activity of M2 macrophages (145, 146). During TB, both iNOS
(M1) and arginase (M2) compete for arginine, and this
competition eventually shapes the dominant macrophage
phenotype and functionality (M1 or M2), which is crucial for
mycobacterial control (134). Lipid metabolism is also found to be
differentially regulated in macrophage polarization. The COX-2
gene is upregulated in M1 macrophages, whereas COX-1 is
upregulated in M2 macrophages (147) . Membrane
phospholipid-derived downstream metabolites of arachidonic
acid (AA), prostaglandins, leukotrienes, and lipoxins play a
diverse and essential role in shaping the immune response in
TB, primarily by modulating cell death type (148–152). The
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delicate balance between the production and bioavailability of
lipoxin A-4 (LXA-4) and prostaglandin E-2 (PGE-2) largely
dictates the programmed death in Mtb-infected macrophage
(148, 149). Mtb causes macrophage necrosis by inducing LXA-
4 production and inhibiting PGE-2 (148). PGE-2 production is
critical for apoptotic death of macrophage (148) and regulates
anti-TB immune response primarily through its engagement
with E prostanoid-2 (EP-2) receptor (153). While EP-2
promotes type 2 immune response (154), mice deficient in EP-
2 develop pathogenic Th17 and Treg responses associated with
poor clearance of Mtb.

Iron utilization is a classic hallmark ofMtb infection with the
predominant role of PE/PPE proteins (155–161). M1
macrophages can sequester iron by high ferritin and low
ferroportin ratio and also via heme uptake to maintain the
bacteriostatic effect. This scenario is reversed in M2
macrophages, which reduces iron storage and releases iron to
favor tissue repair and cell remodeling (162, 163). Heme is a
cellular reserve of iron and Mtb is known to utilize heme for
intracellular subsistence (159, 161, 164, 165). Heme oxygenase-1
(HO-1) has been reported to be upregulated in Mtb-infected
mice, rabbits, and macaques (166). The induction of HO-1 is
dependent on NADPH oxidase-dependent ROS production and
nuclear translocation of the transcription factor NRF-2, which is
mediated by ESAT-6 (166). Inhibition of HO-1 controls Mtb
infection in macrophages in vitro and in mice via upregulation of
NOS-2/IFN-g and enhanced expansion of T lymphocytes (167,
168), which might be the result of macrophage reprogramming
toward the pro-inflammatory M1 state. Furthermore, the
essential Mtb gene ripA rewires the macrophage metabolism
toward glycolysis by inhibiting mitochondrial oxidative
phosphorylation (169). The glycolysis induced in RipA-treated
RAW264.7 macrophages indicates RipA-mediated modulation
of the macrophage phenotype which, however, was associated
with poor intramacrophage growth control of recombinant
Mycobacterium smegmatis expressing Mtb RipA. This
observation, while underlining an important role of Mtb RipA,
also motivates fresh investigations into the macrophage
modulatory roles of unexplored Mtb effectors beyond common
ESX system proteins.
MACROPHAGE M1/M2 PARADIGM:
CONFLICTING EVIDENCE FROM
HUMAN TB

Much that has been said and known about the heterogeneity of
macrophages in TB is learned from animal models, primarily
mice. Very few studies are available or being done that aim to
characterize monocyte/macrophage dynamics in human lungs, a
primary site of Mtb infection. This might be, in part, due to the
ethical and anatomical challenges associated with collecting tissue/
BAL samples from human lungs. While the M1/M2 dichotomy is
largely established in the lungs and spleen of mice, the
macrophage identity is not as demarcated in humans, and
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considerably divergent phenotypical heterogeneity has been
reported in macrophages from various anatomical origins (55,
56, 122).

Emerging reports have indicated the presence of mixed
macrophage phenotype (co-expressing both M1/M2 markers) in a
range of conditions (55, 56, 170). AMs from human lungs, obtained
from two geographically distinct populations of the UK andMalawi,
were immunophenotyped. These AMs displayed mixed expression
of M1 (CD80/86) and M2 (CD163/206) markers, which challenges
the established dichotomy of the macrophage phenotypical identity
(56). Another study has reported circulatory macrophage
(CD204+CD163+CD206+TLR4+CD80+CD86+) and monocyte
(CD14+CD206+CD163+CD204+TLR4+CD80+CD86+) populations
that expressed both M1/M2 markers in systemic sclerosis patients
and in interstitial lung disease (ILD) (55). In the context of TB,
Lavelette and colleagues used microarray and qRT-PCR-based
sequential approach to demonstrate differential immune response
trajectories in BALmacrophages, obtained from human TB patients
infected with clinical Mtb strains (170). Interestingly, differential
response to two clinical Mtb strains belonging to LAM (Latin
American and Mediterranean) lineage in pulmonary (the lung’s
AMs) and extrapulmonary (splenic macrophages or SMs) sites was
observed, with AMs showing a predominantly pro-inflammatory
phenotype and SMs displaying a largely attenuated response.
Moreover, when compared with uninfected macrophages from
healthy controls, the TB-infected AMs displayed an attenuated
transcriptomic response and regulation of critical gene sets related
to anti-TB responses including ISGs, IFITs, and GBPs (IFN
pathway), AIM2 (inflammasome) FCGR1A (fc receptor pathway),
and TREM (myeloid receptor pathway), which suggest modulation
of macrophage-specific immune responses. In addition to the tissue-
specific macrophage responses, the two clinical isolates (UT127 and
UT205) induced contrasting macrophage transcriptomic responses
in human macrophages (22 and 5 genes induced, respectively).
Differential responses were attributed to the altered virulence profile
of the two isolates, despite belonging to the same lineage (LAM)
(171), which suggest altered host immune trajectory as a plausible
function of intrahost microevolution of the Mtb bacilli. However,
the drug resistance profile of these isolates (which is unknown)
might have provided additional correlates to the observed
differential responses. Nonetheless, of the two isolates,
one induced apoptotic cell death (UT127), while the other
triggered necrosis (UT205), which itself attests to their altered
virulence profile. Interestingly, the one that induced necrosis
(UT205) displayed attenuated transcriptomic responses in
macrophages as well, suggesting its higher virulence and
immunosuppressive abilities.

In a latest attempt to characterize the spatial heterogeneity of
macrophage identity and function at the primary site of TB
infection, Pisu et al. recently defined at least four different
subsets, each of the interstitial macrophages (IM 1–4) and
alveolar macrophages (AM 1–4), in human bronchoalveolar
lavage (BAL) and in mice lungs (122). The study, employing
single-cell transcriptomic analysis of macrophages infected with
fluorescence reporter strains for intramacrophage Mtb fitness,
clearly defined substantial plasticity among lung macrophages.
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Both Mtb-permissive and Mtb-restrictive macrophage subsets
were spotted among the lung’s resident AMs (AM2 being the
most restrictive) and recruited IMs (IM2 being the most
permissive). In addition, the study also identified CD11clow

IMs/AMs in the lungs as predominantly permissive to Mtb
growth which allows the development of drug tolerance as well
(122). Of note, IMs and AMs were labeled restrictive and
permissive, respectively, to Mtb growth in a previous study by
the same group (60). Nevertheless, these lines of evidence
provide important insights into the macrophage heterogeneity
and plasticity in TB-infected lungs from mice and humans.
These data clearly suggest that both the IM and AM
sublineages of Mtb-infected macrophages contain permissive
and controller subpopulations. It is therefore time to
reconstruct the simplified dimorphic view of macrophage
heterogeneity and to assess the enormous phenotypical and
functional polymorphism present in Mtb-infected macrophage
which may have far-ranging implications.

In addition to macrophage ontogeny, significant
heterogeneity in Mtb-infected macrophages has been suggested
to be due to the genetic differences among the infecting strains
and lineage (171–174). Mtb isolates belonging to the
hypervirulent modern strains have been associated with a
lower inflammatory response in vitro by human or murine
macrophages due to the predominance of anti-inflammatory
M2-like monocytes/macrophages (175, 176).
MACROPHAGE M2 POLARIZATION AND
DRUG RESISTANCE IN MTB

Classically activated M1 polarization displays pro-inflammatory
and antimicrobicidal activities (129). In contrast, alternatively
activated M2 polarization plays a pivotal role in circumventing
host immune defense during Mtb infection and may result in
MDR/XDR-TB treatment failure to favor persistent infection
(135). M1/M2 polarization of macrophages has a crucial role in
the progression or regression of TB infection as a result of pro- or
anti-inflammatory responses they exert, respectively. It was
recently demonstrated that the M2 polarization rate and the
M2 to M1 polarization ratio were significantly higher in the
MDR/XDR-TB group as compared with the drug-susceptible TB
group (177), reflecting the crucial role of macrophage
polarization in drug resistance development. Thus, it may be
an attractive host-directed avenue to modulate macrophage
phenotype in drug-resistant (or even drug-sensitive) TB
infection, with or without chemotherapy.
MACROPHAGE PLASTICITY IN
MTB INFECTION

The majority of macrophages are not terminally differentiated
and are poised to reprogram either homeostatically or in
response to infection and other stimuli such as cytokines,
growth factors, hormones, small molecules, and metabolites
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including prostaglandins and leukotrienes. In TB-infected
mice, recruited macrophages have a dynamic expansion and
differentiation program, even during the chronic stage of
infection (111). Moreover, substantial diversity and plasticity of
macrophages have been observed in tuberculous granuloma (46,
178) which is spatially organized (133). The imbalance of this
spatially organized granulomatous structure, required for
containing Mtb, is reminiscent of progression to active TB and
is largely dictated by macrophage polarization metrics in the
granuloma microenvironment (179). Mtb transforms
macrophages into multiple subtypes through a variety of
mechanisms and exploits them for its survival.
MACROPHAGE REPROGRAMMING INTO
EPITHELIOID CELL, MULTINUCLEATED
GIANT CELL, AND FOAMY CELL

The macrophage at the core of granuloma undergoes a series of
morphological changes including epithelioid cell differentiation
to form “epithelioid” cells like macrophages. These epithelioid
cells can further develop into multinucleated giant cells (MGCs),
probably due to cell–cell fusion or cytokinesis failure (180–182).
One of the well-characterized virulence schemes of Mtb is the
modulation and differentiation of macrophages into lipid-rich
foam cells (23, 51, 61, 183) that serve as a niche for Mtb
persistence. In Mtb infection progression, macrophages convert
into foam cells by importing and accumulating host lipids,
mainly low-density lipoproteins (LDLs) and cholesterol (23,
51, 61, 183–185). In the following subsections, we will be
discussing the origin and functionality of these macrophage
subtypes which have been extensively studied and
characterized for their role in TB progression.

Epithelioid Cells or Histiocytes
Mtb reprograms macrophages for granuloma formation via E-
cadherin-dependent mesenchymal–epithelial transition.
Epithelioid cells are characterized as hypertrophic, flattened in
appearance, containing diffused cytoplasm and elongated nuclei
with the interdigitating cell membrane, which enable the cell to
stick and form an epithelioid barrier to persistently capture
available antigen (186). These inflammation- or infection-
induced histopathological transformations in macrophage
microanatomy resemble an epithelial cell, thus acquiring the
name epithelioid cells or histiocytes (187). Macrophage-derived
epithelioid cells form the central scaffold of organized
granulomas meant to be less accessible to immune cells and,
thus, provide a favorable niche for mycobacterial persistence
(186, 188–190). E-cadherin expression in motile mesenchymal
cells induces transformation into the epithelial structure via the
process of mesenchymal–epithelial transition (or vice versa) in
tissue development (191) and cancer (192). Cronan et al.
demonstrated that epithelial reprogramming is analogous to
the mesenchymal–epithelial transition and is conserved within
the tuberculous granuloma of mice and humans (186). They
confirmed that the macrophage forms adherence junctions,
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desmosomes, and tight junctions as a prestructure for stable
granuloma formation and speeds up infection trajectory. Host
angiogenic signaling has also been implicated in macrophage
epithelioid transition and formation of tuberculous granulomas
with an important role of vascular endothelial growth factor-
receptor (VEGF-R) (193). Therapeutic inhibition of granuloma
vascularization and angiogenesis using VEGF-R antagonists not
only reduces M. marinum infection in zebrafish but also
synergizes with the anti-TB drugs ri fampic in and
metronidazole to improve bacillary clearance (193). Recently,
signal transducer and activator of transcription (STAT)-6
signaling is found to be absolutely necessary for macrophage
epithelialization and granuloma formation (194). By analyzing
single-cell RNA-sequencing data from M. marinum and Mtb
granulomas from zebrafish and macaques, respectively, the study
concluded that the strong type-2 signaling mediated via the IL-
4R/STAT-6 derives macrophage epithelialization and granuloma
formation and is largely unaffected by the presence of robust
type-1 immune signals.

Multinucleated Giant Cells
MGCs are polykaryons of monocytic origin, where multiple
monocytes (or macrophages) fuse and differentiate into
specialized MGCs (180, 195). Macrophage fusion occurs in the
granulomatous region to form MGCs during mycobacterial
infection. Mtb cell wall lipids, trehalose dimycolate (TDM),
and lipomannan (LM) have been described to derive the
formation of MGCs (183). In addition, macrophage exposure
to cytokines IL-4 and IL-13 induces MGC formation (180).
MGCs also possess a specialized ability to uptake large and
opsonized complement particles mediated by CR3 signaling
(196). However, in the context of mycobacterial infection, it
was reported that MGCs contain very few bacilli and may be
unable to phagocytose invading bacilli (190, 197). Classical and
alternatively activated MGCs have been reported in acute and
chronic TB infections, respectively (195). It is thus possible that
MGCs typical of M2-type macrophages may enable rapid
progression of chronic infection in TB. However, due to the
paucity of credible evidence regarding the defined role
and function of MGCs, they may continue to be considered
a pathological hallmark of mycobacterial and other
granulomatous infections.

Interestingly, the differentiation of MGCs has been shown to
occur only in virulent Mtb complex organisms and not with
other avirulent mycobacteria (197). MGCs are integral to
granuloma formation and have a role in maintaining latency
or conferring tolerance to Mtb. Recently, MGCs have been
suggested to have originated from the common monocyte
progenitor (CMoP) or inducible monocyte progenitor (iMoP)
population in circulation (198). Their poor phagocytic activity
and absence in disseminated TB during immunosuppression is
intriguing and suggestive of their role as a niche for latent Mtb
(198).MGCs contain plenty of cholesterol and other fatty acids, a
preferred energy source for intracellular Mtb persistence (184).
Moreover, TLR2-mediated Mtb modulation of macrophages
induces excess NO production, leading to DNA damage and
impaired p53 function and consequential establishment and
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differentiation of permissive MGCs (199). While these reports
highlight that MGCs serve as a niche for mycobacterial survival,
some earlier reports have demonstrated the protective role of
MGCs in TB. Specifically, cytokines IFN-g and IL-3, in
combination with some other factors, have induced MGCs that
limit mycobacterial infection in vitro (200, 201). In the face of
these contrasting reports, more studies are required to assess the
exact role of MGCs in mycobacterial pathogenesis, particularly
in the context of humans. This gap in knowledge about the
functional role of MGCs is an active area for future research.

Foamy Macrophages
FMs are lipid-enriched macrophages formed due to uptake of
LDL or oxidized LDL via LDL receptor or scavenger receptor-A
(SR-A) and CD36, respectively, in response to TLR2 activation
by mycobacterial components, pro-inflammatory chemokines,
and cytokines (23, 61, 183, 202). The lipid-rich environment of
FMs allows Mtb transition into the latent phase with ample
access to nutrients in the form of intracellular lipids (203).

FMs can also arise through phagocytosis of platelets by
monocytes. Platelets, when co-cultured with monocytes in the
presence of mycobacteria, induce the formation of
multinucleated giant foam cells (185). Interestingly, despite
their increased phagocytic activity and BCG uptake, FMs
display predominantly the M2 phenotype and produce IL-10
abundantly (185).

LDL and lipid-loaded platelets break down into
triacylglycerol, phospholipids, and cholesterol (183). In
mycobacterial infection, cholesterol gets accumulated within
the macrophages in the form of lipid droplets or effluxes via
ATP-binding cassette (ABC) transporters (183, 204). The ABC
transporters, ABCA1 and G1, are key mediators of cholesterol
efflux and their absence exacerbates FM formation (183).
Accumulated cholesterol also modulates inflammatory
responses by producing leukotrienes and prostaglandins (183,
205, 206). Mtb also utilizes the host cholesterol using the mce4
locus (analogous to mammalian ABC transporters) for its
survival and persistence during the chronic phase of infection,
which supports its preference to induce differentiation of host
lipid-rich macrophages (184).

In addition, the triacylglycerol synthase 1 (Tgs1) ofMtb helps
in the accumulation of triacylglycerol (TAG)-derived fatty acids/
triglycerides in macrophages (207). Mtb’s cell wall long-chain
fatty acid and oxygenated mycolic acid induce human
macrophage differentiation into FMs, which serve as a nutrient
reservoir for the persistence of dormant Mtb for longer
periods (22).
THE HETEROGENEITY AND PLASTICITY
OF MACROPHAGES IN TUBERCULOUS
GRANULOMA

Small aerosol droplets containing Mtb from infected carriers
enter the lungs through inhalation where it is phagocytosed by
AMs (26). Mtb remains unhindered within AMs and recruits
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permissive macrophages through coordinated usage of surface-
expressed lipid PGL/PDIM (120). PDIM is a cell wall-derived
component present exclusively in the pathogenic strains of
mycobacteria (208, 209) and all clinical isolates of Mtb (26).
The conical shape of PDIM augments membrane fusion to allow
efficient Mtb uptake via endophagocytosis (210). PDIM is
transferred from the Mtb cell wall to the macrophage’s lumen
through the formation of PDIM aggregates in transient
membrane stalks and enhances the non-bilayer phase followed
by an endocytic uptake and phagosome formation (210). The
phagosomal encasement consists of both the host andMtb lipids,
where Mtb survives for an extended period and disseminates to
distant locations (210, 211).Mtb, once able to invade AMs in the
upper airways, finally settles down to the extreme ends of the
lungs (26, 120). Here, it replicates and triggers necrotic death of
the infected cells, thereby infecting bystander cells (30, 71) and
causing a cascade of immune reactions (212). These local
inflammatory reactions and release of myriad chemokines/
cytokines recruit neutrophils (30), MDMs (111), and DCs
(213) that engulf and transport Mtb to the draining lymph
nodes to activate T-cell-mediated adaptive immune response
(130). By the time the adaptive immune cells get activated and
reach the infected lungs, the cells of the innate immune system
and local non-immune cells cordon the Mtb in a granulomatous
structure, where adaptive T and B cells further add to make the
outermost layer (190). Thus, granuloma forms during the critical
time window when innate immunity fails to contain the growing
Mtb burden, following initial exposure, and adaptive immunity
cannot respond within time. Traditionally, granuloma has been
seen as a host-protective measure to contain Mtb infection (133,
214); however, growing evidence also suggests its pro-
mycobacterial role (186, 188–190, 194).

Macrophages, especially AMs, act as a perfect ecosystem for
intracellular adaptation of Mtb and to achieve persistent
infection. Mtb-encapsulated granulomas are a highly organized
structure containing a pro-inflammatory core and surrounding
periphery with a strong anti-inflammatory signature (133, 214),
thus holding a pro- and anti-inflammatory balance to keep itself
intact and non-disseminative. The formation of caseous necrotic
granuloma is the hallmark of uncontrolledMtb infection and TB
disease progression (190, 215). The classic necrotic granuloma
has a necrotic core containing extracellular bacteria surrounded
by epithelioid histiocytes and macrophages and an outer cuff of
macrophages intermixed with lymphocytes (214). As granuloma
matures, a number of cell-like granulocytes, monocytes, DCs, B
cells, T cells, NK cells, and fibroblasts migrate to the structure
and surround the macrophage core (141, 216, 217). This may
cause exaggerated and uncontrolled inflammation which induces
pathophysiological changes at the final stage of granuloma
formation and is associated with tissue damage and morbidity
(141). In a C3HeB/FeJ mouse model of tuberculous granuloma,
the central caseous necrotic regions are reminiscent of immune
defense and restrain the TB bacilli. However, dysregulated
inflammation-induced neutrophil and lymphocyte infiltration
causes liquefaction of packed granulomas that led to
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mycobacterial dissemination and development of active TB
(218, 219).

Cytokine signaling mediates the conversion of macrophages
into heterogeneous phenotypes within the granuloma encasing
TB bacilli. A computational model defines the metrics of
macrophage polarization as a function of cytokine signaling
(179). It examined the ratio of the temporal expression of
STAT-1 and NF-kb (pro-inflammatory) to STAT-3 (anti-
inflammatory) in the macrophage and concluded that the
expression level of NF-kb can dictate macrophage or
granuloma polarization and outcome in TB, whether protective
or disseminative.

In an in-vitro differentiated model of tuberculous granuloma
from human MDMs, M1 polarization of macrophages
predominated the early stage of granuloma formation and
decreased over time, while M2 polarization gradually increased
during the late stage of granuloma formation (135). The study
also utilized lung tissues from TB patients to show predominant
M2 polarization of macrophages in necrotic and non-necrotic
granulomatous lesions, whereas non-granulomatous sections
were mixed, populated with both M1 and M2 macrophages
(135). Thus, tuberculous granulomas are highly plastic with
spatial and temporal heterogeneity which dictates the eventual
outcome of Mtb infection.

Although the plasticity of macrophages has long been
appreciated, this dogma is getting challenged based on recent
epigenetics and single-cell transcriptomics studies that
hypothesize that the plasticity of macrophages is lost due to an
extended residency in a particular tissue type or restricted to
favor tissue homeostasis (31) or reprogram epigenetically
depending on the tissue microenvironment and local
inflammatory and metabolic signals during steady state or
inflammation (220, 221).

CONCLUDING REMARKS

The co-evolution of Mtb and its human host is in progress from
prehistoric times (2). Despite numerous efforts, Mtb eradication
is still a far-reaching target due to multiple factors. As
macrophages are considered to be the primary niche for
replication and persistence of Mtb, macrophage heterogeneity
and plasticity allow them to be in multiple phenotypic and
metabolic states which are skewed in favor of Mtb in the
granuloma. However, recent reports emanating from
epigenetics and single-cell transcriptomics studies have
contradicted the established dogma about the plasticity of
macrophages. Fresh evidence suggests that the plasticity of
macrophages is lost due to an extended residency in a
particular tissue type or is restricted to favor tissue homeostasis
(31). Studies aimed at defining the actual dynamics of complex
transitional states of macrophage populations based on tissue
microenvironment and epigenetic landscape will be key to
pinpoint the macrophage subsets as protective or pathogenic in
TB. Nonetheless, strategic manipulation of macrophage activity
and its phenotypic states can be effective to counter Mtb. Also,
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this may open new frontiers to clear off the persisting reservoir of
Mtb , which is a source of continued supply of new
infection cycles.
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