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Abstract

Probing the architecture, mechanism, and dynamics of genome
folding is fundamental to our understanding of genome function in
homeostasis and disease. Most chromosome conformation capture
studies dissect the genome architecture with population- and
time-averaged snapshots and thus have limited capabilities to
reveal 3D nuclear organization and dynamics at the single-cell
level. Here, we discuss emerging imaging techniques ranging from
light microscopy to electron microscopy that enable investigation
of genome folding and dynamics at high spatial and temporal reso-
lution. Results from these studies complement genomic data,
unveiling principles underlying the spatial arrangement of the
genome and its potential functional links to diverse biological
activities in the nucleus.
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Introduction

The eukaryotic cell nucleus is a complex biological system that

hosts the genomic DNA in the form of chromatin. A myriad of regu-

latory factors (proteins, RNAs, metabolites, etc.) reside in the

nucleus and participate in biological activities that decode, transmit,

and maintain the genetic information (i.e., transcription, DNA repli-

cation, DNA repair).

How the human genome with a total DNA length of ~2 m is

wrapped onto nucleosomes and further folded into chromosomes

remains a mystery in cell biology. In past decades, genome organi-

zation has been extensively probed by genomic methods based on

chromatin conformation capture (3C) and its variants (e.g.,4C, 5C,

Hi-C, Micro-C; Dekker et al, 2002; de Wit & de Laat, 2012; Hsieh

et al, 2015; Dekker & Mirny, 2016). In 3C-based assays, the

“distance” between two genomic positions is estimated by their

contact frequency or the proximity-ligation probability after

chemical crosslinking and nuclease fragmentation. One unique

advantage of 3C-based techniques is that the sequence information

is inherently embedded in the data and millions of pairwise contact

frequencies are measured in parallel. As a result, these techniques

have provided significant insights into chromosome folding at a

wide range of length scales (Fig 1). Specifically, it was found that

chromosomes are organized into mega-base pair (Mbp)-sized active

(A) and inactive (B) compartments that are further folded into sub-

Mbp topologically associating domains (TADs) and then into even

smaller contact loops (Lieberman-Aiden et al, 2009; Dixon et al,

2012; Nora et al, 2012; Sexton et al, 2012; Rao et al, 2014). Compart-

ments correlate well with chromatin state-specific epigenetic marks,

and TADs appear to constrain chromatin interactions (e.g.,

enhancer-promoter) within their boundaries marked by convergent

CTCF sites. Contact loops are thought to form by a loop extrusion

mechanism driven by the Cohesin ring (Alipour & Marko, 2012;

Sanborn et al, 2015; Fudenberg et al, 2016). Recently, protein-

mediated chromatin contact maps have been generated by combin-

ing chromatin immunoprecipitation with proximity ligation (Tang

et al, 2015; Mumbach et al, 2016). We here refer to a few excellent

reviews that comprehensively cover the concepts, methods, and

insights from these genomics studies (Dekker & Mirny, 2016; Yu &

Ren, 2017; Rowley & Corces, 2018; Kempfer & Pombo, 2020;

McCord et al, 2020).

The pairwise contact frequency measured by 3C-based methods,

however, does not always correlate with the physical distance of

loci pairs (Williamson et al, 2014), raising the intriguing possibility

that the nonlinearity associated with chemical crosslinking, varia-

tion of proximity-ligation efficiency in heterogeneous chromatin

environments, and non-equilibrium loop extrusion dynamics could

hinder faithful reconstruction of the 3D spatial genome architecture

from genomic data (Fudenberg & Imakaev, 2017). In addition,

recent single-cell Hi-C assays revealed substantial variability of

chromatin structures in individual cells and found that TADs repre-

sent reconstitution after population averaging (Bintu et al, 2018),

suggesting that 3C-based techniques mainly capture cell population-

and time-averaged “snapshots” of the genome configuration. It is

worth mentioning that several ligation-free genomic methods have

been developed to map higher-order chromatin interactions and

positioning relative to nuclear landmarks (e.g., nuclear envelope

and bodies) by sequencing thin cryo-sectioned nuclei (Beagrie et al,
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2017; preprint: Fiorillo et al, 2020), DNA-chromatin complexes

(Quinodoz et al, 2018; Zheng et al, 2019), and proximity-based

enzymatic modifications (van Steensel & Belmont, 2017; Chen et al,

2018b; Girelli et al, 2020). However, these methods still involve

sectioning or destruction of cells and rely on statistical models to

indirectly infer chromatin arrangement in the nucleus.

To address these limitations, emerging microscopy approaches

have been developed to directly observe genomic features in fixed

samples and track chromatin dynamics in live cells. Results from

these studies begin to piece together a single-cell view of the 3D

genome topology complementary to what is derived from genomic

data, revealing new insights underlying genome organization and

function.

Imaging the spatial organization of the genome

Light microscopy (LM) and electron microscopy (EM) are indispens-

able tools for studying genome folding which occurs at a wide range

of length scales spanning several orders of magnitude (Fig 1). No

one-size-fit-all microscope exists to capture all scales at once. LM

revealed that chromosomes (up to ~100 Mbp) form ~micron-sized

“territories” (Cremer & Cremer, 2001, 2010) but is limited at resolv-

ing smaller genomic features, due to the Abbe diffraction limit

(~200–300 nm in xy and ~600 nm in z). EM can image molecular

structures (e.g., nucleosomes ~10 nm in diameter) down to the

atomic level. However, chromatin fibers generally have low contrast

in commonly used EM stains. Therefore, a knowledge gap exists

between 10 nm and 200 nm (~150 bp to a few hundred kilobase

pairs or kbp). Within this range, essential biological activities occur,

such as chromatin looping, nucleosome packing, enhancer-

promoter interactions, and the assembly of transcription and repli-

cation machineries.

Recent development of super-resolution imaging techniques and

labeling tools has broken barriers in both LM and EM at unprece-

dented resolution and scale. Here, we provide an overview of these

technologies and conceptual advances derived from them (Table 1).

Fluorescence LM

The discovery of genetically encoded fluorescent proteins, self-

labeling tags, better affinity reagents, and organic dyes has made

fluorescence LM a useful tool for biology, owing to the possibility of

non-invasive live imaging and the labeling specificity (Liu et al,

2015). Specific genomic DNA labeling can be achieved by DNA fluo-

rescence in situ hybridization (FISH), which hybridizes sequence-

specific, fluorescently labeled DNA probes to the genome in chemi-

cally fixed cells. DNA FISH measures the 3D distance between

genomic loci and DNA positioning relative to nuclear landmarks.
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chain

Genomic distance ~100 Mbp
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Figure 1. Spatial scale of genome organization.

The mammalian genome is hierarchically organized at distinct spatial scales. From right to left, DNA is wrapped onto histone octamers and forms a chain of nucleosome
clutches. The chromatin fiber folds into chromatin loops which are further organized into domains (e.g., TADs). Domains with similar chromatin state and activity are
coiled together into compartments (e.g., active A and inactive B) across individual chromosomes (for simplicity, one mitotic chromosome is shown). The physical scale
and genomic distance are indicated as below, along with microscopy methods suitable for probing the corresponding scale.
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Table 1. List of major imaging methods to study 3D genome organization and dynamics.

Methods Description Throughput
Microscope/
Resolution Measurements References

Fluorescence Light Microscopy

3D FISH BAC/fosmid/ PCR-derived
double-stranded probe for in situ
hybridization

Tens to hundreds
of cells

Confocal Gene positioning, 3D
distance

Solovei and Cremer (2010),
Bienko et al (2013)

HIPMap High-throughput FISH, automatic
image and statistical analysis

Hundreds of cells Opera confocal
high-throughput
imaging system

Gene positioning, 3D
distance

Shachar et al (2015)

CryoFISH Cryosectioning + FISH in 2D Tens to hundreds
of cells

Confocal High-resolution 2D-
distance

Branco and Pombo (2006),
Barbieri et al (2017)

OligoSTORM Oligopaint(single strand
probe)+STORM; large step size (30
kbp-1Mbp)

Tens to hundreds
of cells

STORM, super-
resolution

Volume, density, surface
area, domain overlap

Beliveau et al (2015), Wang
et al (2016), Bintu et al
(2018), Nir et al (2018)

OligoDNA-PAINT Oligopaint +DNA-PAINT Tens of cells DNA-PAINT,
super-resolution

Nanoscale domain
structure

Beliveau et al (2015)

ORCA Oligopaint+barcoding+sequential
imaging (2-10 kbp bin)

Thousands of
cells

Wild field +
Auto-fluidics

Chromatin folding path
tracing

Mateo et al (2019)

Hi-M Oligopaint + barcoding +
sequential imaging (~4 kbp bin)

Thousands of
cells

Wild field +
Auto-fluidics

Chromatin folding path
tracing

Cardozo Gizzi et al (2019)

DNA-MERFISH Oligopaint + combinatorial
barcoding and decoding

Thousands of
cells

Custom built
microscope +
Auto-fluidics

Genome-scale
chromatin organization

Su et al (2020)

DNA SeqFISH+ Oligopaint + combinatorial
barcoding and decoding

Thousands of
cells

Spinning disk
confocal+ Auto-
fluidics

Genome-scale imaging
(~1Mb) and chromatin
folding (~25kb)

Takei et al (2021)

ATAC-see Transposase-assisted integration
of fluorescent probes into
accessible chromatin

Tens to hundreds
of cells

Confocal Gross accessible
chromatin pattern in
different cell types and
during cell cycle

Chen et al (2016)

ATAC-PALM Transposase-assisted integration
of photoactivatable fluorescent
probes + LLSM_based PALM
imaging

Tens of cells 3D whole nucleus
super-resolution
(xy ~ 20 nm,
z ~ 50 nm)

Accessible chromatin
domains architecture
(e.g., size, shape,
density, connectivity).

Xie et al (2020)

3D-SIM Structured illumination pattern,
Moir�e fringes

Tens to hundreds
of cells

~2-fold
resolution
improvement (xy
~100 nm )

Chromatin and nucleus
organization

Schermelleh et al (2008),
Miron et al (2020)

STED Donut-shaped beam to deplete
fluorescence except at the donut
center

Tens of cells Point scanning,
xy ~ 50 nm

Genome organization
protein, chromatin
regulator

Gu et al (2020)

MINFLUX Stochastic switching, donut-
shaped beam excites fluorescence
except at the donut center

Tens of cells Molecular
resolution (xy ~
nm)

Nanometer scale
ultrastructure

Balzarotti et al (2017)

Electron Microscopy

ChromEMT DRAQ5 binds and photosensitizes
chromatin DNA followed by SEM
and tomography

Tens of cells SEM and
tomography

Ultrastructure of
chromosome in situ, 5-
24 nm nucleosome
chains

Ou et al (2017)

FIB-SEM Iterative surface milling by
gallium ions + SEM

Tens of cells SEM
~4-8 nm xyz

Cellular ultrastructure.
Chromatin domains

Miron et al (2020)

3D-EMISH Cryosectioning + FISH + EM + 3D
reconstruction

Hundreds of cells Scanning EM
Improved z

1.7 Mbp chromatin
folding

Trzaskoma et al (2020)

Correlative Light and Electron Microscopy

Correlative Cryo-
SR/ FIB-SEM

Cryo-fixation, SR light microscopy
followed by correlative FIB-SEM
imaging

Tens of cells Cryogenic SIM/
PALM, FIB-SEM
(~4-8 nm xyz)

Euchromatin and
heterochromatin in
different cell types

Hoffman et al (2020)
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Recently, a high-throughput DNA FISH platform (HIPMap) was

developed to study gene positioning in single cells at scale. It was

found that the chromosome positioning is regulated by nuclear

structure components (e.g., nuclear envelope, centromeres), chro-

matin remodelers, and the DNA replication machinery (Shachar

et al, 2015) and that the spatial genome organization is highly

heterogeneous in single cells, with low chances of co-localization

(<30% for 350 nm cutoff) between two “interacting” loci detected

by Hi-C (Finn et al, 2019). These results are consistent with previous

single-cell Hi-C results that genome folding is intrinsically variable

at both the loop and the TAD level (Stevens et al, 2017). For better

structure preservation, DNA FISH was combined with Tokuyasu

cryosectioning (CryoFISH) to image the HoxB gene loci (~700 kb)

and revealed homotypic contacts associated with active and poised

chromatin states (Barbieri et al, 2017). CryoFISH also detected

extensive chromosomal intermingling (Branco & Pombo, 2006;

Simonis et al, 2006), suggesting abundant trans-contacts between

chromosome “territories”, consistent with results from other

genomic studies (Loviglio et al, 2017; Tan et al, 2018; Monahan

et al, 2019).

Another advancement in DNA FISH technology is the invention

of a new type of DNA probes. Specifically, conventional DNA FISH

probes are usually long double-stranded genomic fragments derived

from BAC or PCR (tens to hundreds of kbp; Solovei & Cremer, 2010;

Bienko et al, 2013) with limited abilities to resolve fine genomic

features such as enhancers, insulators, and promoters (typically

~200 bp in size). Recent probe designs (named Oligopaints)

combine synthetic chemistry and molecular biology to produce

massive pools of short, thermodynamically tuned single-stranded

oligos. This technique enables labeling of chromosomal segments at

a flexible length scale (~5 kb to a few Mbp) under tunable

hybridization conditions and even painting of homologous chromo-

somes based on single nucleotide polymorphism (Beliveau et al,

2012, 2015). High-density labeling by Oligopaint probes satisfies the

Nyquist sampling criteria for reconstruction of chromatin structure

beyond the diffraction limit. Multiplexed sequential Oligopaints

have also been developed for imaging TAD structures across multi-

ple chromosomes in single cells. The mean spatial distance between

TADs was found to correlate well with Hi-C contact frequencies,

cross-validating ensemble Hi-C results (Wang et al, 2016).

Although laser scanning confocal microscope and its variants

have achieved increased spatial resolution, the improvement is

generally modest (Huff, 2015). Recently, super-resolution (SR)

imaging-based techniques have been developed to study genome

organization in single cells beyond the diffraction limit. SR micro-

scopy can be broadly classified into single-molecule localization-

based microscopy (SMLM, including PALM/STORM, etc.), struc-

tured illumination microscopy (SIM), and stimulated emission

depletion microscopy (STED) (Liu et al, 2015).

Imaging genome organization by SMLM

With the discovery of photoactivatable and photoswitchable fluo-

rophores (Patterson, 2002; Bates et al, 2005), SMLM was developed

to achieve a resolution far below the diffraction limit (Betzig, 1995;

Betzig et al, 2006; Hess et al, 2006; Rust et al, 2006). The ability of

SMLM to improve spatial resolution (~20 nm in xy and ~50 nm in z)

relies on two key steps—sparse isolation and centroid localization

of single molecules in densely labeled samples. The underlying

structure is reconstructed based on localization precision and local-

ization density distribution in space (Legant et al, 2016). Here, we

review recent advances in investigating 3D genome organization by

SMLM-based techniques.

OligoSTORM and its variants

Stochastic optical reconstruction microscopy (STORM) utilizes

stochastic activation of photoswitchable fluorophores to achieve

single-molecule isolation and localization (Rust et al, 2006; Bates

et al, 2007). Such fluorophores are usually attached to affinity

reagents (primary or secondary antibodies) for labeling. STORM

imaging of histone H2B revealed that nucleosomes are assembled

into heterogeneous “clutches” (tens to hundreds of nanometers;

Ricci et al, 2015). Interestingly, a lower clutch density was found in

Table 1 (continued)

Methods Description Throughput
Microscope/
Resolution Measurements References

Live cell imaging

SMT Sparse labeling with self-labeling
tag and tracking in real time

Tens of cells HILO or TIRF,
single-molecule
resolution

Chromatin regulator
diffusion, target search
and binding dynamics

Mazza et al (2012),
Gebhardt et al (2013), Chen
et al (2014b), Xie et al
(2017), Hansen et al (2017)

Chromatin
tracking

Non-editing(CRISPR/Cas9) or
editing (DNA arrays)

Tens to hundreds
of cells

Spinning disk,
Airyscan FAST,
SIM, LLSM

Chromatin mobility and
interactions

Chen et al (2013), Ochiai
et al (2015), Chen et al
(2018a), Alexander et al
(2019)

3D-EMISH, serial block-face scanning electron microscopy with in situ hybridization; 3D-SIM, 3D structured illumination microscopy; ATAC-PALM, assay of
transposase-accessible chromatin with photoactivated localization microscopy; ATAC-see, assay of transposase-accessible chromatin with visualization;
ChromEMT, chromosome EM tomography; Cryo-SR, cryo super-resolution microscopy; DNA SeqFISH+, DNA sequential FISH; DNA-PAINT, DNA-based point
accumulation for imaging in nanoscale topography; FIB-SEM, focused ion beam-scanning electron microscopy; Hi-M, high-throughput, high-resolution, high-
coverage microscopy; HIPMap, high-throughput imaging positioning mapping; LLSM, lattice light-sheet microscope; MERFISH, multiplexed error-robust FISH;
MINFLUX, minimal emission fluxes; ORCA, optical reconstruction of chromatin architecture; SMT, single-molecule tracking; STED, STimulated Emission Depletion
Microscopy; STORM, Stochastic Optical Reconstruction Microscopy.
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embryonic stem cells (ESCs) compared with differentiated cells,

consistent with the enrichment of 10-nm accessible chromatin mesh

in ESCs revealed by electron spectroscopic imaging (Fussner et al,

2010).

Photoswitchable fluorophores can also be conjugated to

barcoded Oligopaints probes for STORM (named OligoSTORM),

which enables investigation of the genome with ~20–50 nm resolu-

tion (Beliveau et al, 2015), improving distance measurements, and

quantification of domain volume, density, sphericity, overlaps, etc.

(Boettiger & Murphy, 2020).

OligoSTORM was used to image chromatin fragments (~10–
500 kbp) with distinct epigenetic states (active, inactive, repressed)

in Drosophila (Boettiger et al, 2016). Consistent with earlier

biochemical and conventional FISH measurements (Gilbert et al,

2004), active chromatin de-condenses the most, which may facilitate

access by regulatory factors. In contrast, repressed chromatin has

the highest degree of compaction and displays minimal overlaps

with neighboring active domains, ensuring limited access and

robust gene suppression. Similar observations were made by Oligo-

STORM imaging of 8 Mbp of human chromosome at 100-1000 kbp

steps (Nir et al, 2018). OligoSTORM was also used to trace ~1–
2 Mbp chromosomal segments in human cells with ~30 kbp bin

steps (Bintu et al, 2018), showing that chromatin fiber is organized

into globular domains, termed TAD-like domains, with diameters of

hundreds of nanometers, consistent with results in Drosophila and

mouse cells (Szabo et al, 2018, 2020). It was also found that the

boundary location between TAD-like domains is variable with

higher probabilities at some but not all CTCF-binding sites, suggest-

ing that CTCF-defined TAD boundaries in Hi-C genomic studies

likely result from population averaging. Perhaps, the most surpris-

ing result is that disruption of loop extrusion by acute Cohesin

depletion does not alter the prevalence of TAD-like domain struc-

tures and only decreases the positioning probability of domain

boundaries, suggesting that Cohesin-independent mechanism(s)

must be at play to organize such structures (Bintu et al, 2018).

Optical reconstruction of chromatin architecture (ORCA) and Hi-

M (high-throughput, high-resolution, high-coverage microscopy)

utilize much smaller Oligopaint probe segments (~2–10 kbp) and

sequential centroid localization to image fine-scale chromatin fold-

ing (Cardozo Gizzi et al, 2019, 2020; Mateo et al, 2019). ORCA was

multiplexed with RNA FISH to probe the relationship between chro-

matin folding and gene transcription within a 700 kbp bithorax

complex (BX-C) region at 10-kbp resolution and a 130-kbp sub-

segment at 2-kbp resolution in Drosophila embryos (Mateo et al,

2019) (Fig 2A, lower left panel). These high-resolution and high-

throughput assays (hundreds to thousands of cells) permit investi-

gation of the long-lasting question regarding enhancer–promoter

communication (~ tens of kbp) in single cells even within the tissue

context. Surprisingly, it was found that the proximity of BX-C gene

promoter to well-known enhancers only shows weak association

with transcription, different from another report showing that stable

enhancer–promoter contacts are coupled with gene activation (Chen

et al, 2018a).

The enormous barcoding capacity of Oligopaints enables high-

resolution chromatin imaging at scale. Recently, massive multiplexed

Oligopaints integrate RNA FISH and protein immunofluorescence to

map genome-scale chromatin organization and transcriptome at high

spatial resolution (Su et al, 2020). The results validated the

previously reported association of transcription states with A/B

compartments and nuclear landmarks (Fig 2A, lower right panel).

Interestingly, it was found that trans-chromosomal and long-range

(>75 Mbp) cis-chromosomal interactions occur preferentially

between active compartments, suggesting that regulations specific to

active chromatin mediate these contacts. Recently, another multi-

modal imaging study (DNA SeqFISH+, RNA SeqFISH, and antibody

oligo conjugation) interrogated chromatin structure, chromatin

states, nuclear bodies, and gene expression in single cells (Takei et al,

2021), revealing that combinations of epigenetic marks could define

nuclear zones with active genes pre-positioned near their surfaces.

Taken together, Oligopaint-based imaging methods, OligoSTORM

and also DNA-PAINT (Jungmann et al, 2010; Beliveau et al, 2015),

when combined with the automated microfluidic system for sequen-

tial rounds of hybridization, allow in situ “spatial genomics” study

of the structure–function relationship between genome organization

and gene regulation. Remarkably, the pairwise distances measured

by Oligopaints appear to agree well with the contact frequency

matrix from population-based Hi-C methods (Wang et al, 2016;

Bintu et al, 2018; Cardozo Gizzi et al, 2019; Mateo et al, 2019),

although the peak Pearson correlation coefficient was found at a

relatively large genomic distance (~400–600 nm) (Su et al, 2020)

and the correlation scaled differently for individual chromosomes

(Takei et al, 2021).

3D ATAC-PALM

Roughly 2-3% of the eukaryotic genome consists of accessible regu-

latory elements (enhancers, promoters, insulators, etc.) crucial for

cell type-specific gene expression (Levine et al, 2014; Klemm et al,

2019). The assay for transposase-accessible chromatin (ATAC) was

developed to efficiently label accessible regions in the genome

(Buenrostro et al, 2013). Specifically, ATAC uses a hyperactive

transpose (Tn5) to insert DNA probes into accessible chromatin

with high density (Adey et al, 2010). DNA probes can be coupled

with sequencing adaptors or fluorescent dyes to map accessible

chromatin sites in the linear genome (ATAC-seq) or in the nucleus

(ATAC-see) (Buenrostro et al, 2013, 2015; Chen et al, 2016). Inter-

estingly, ATAC-see revealed unconventional accessible chromatin

enrichment at the nuclear periphery in human neutrophil for coordi-

nating the chromatin extrusion process underlying native immunity

(Chen et al, 2016).

The diffraction limit, however, prohibits ATAC-see from

precisely localizing the regulatory DNA elements and reconstructing

the 3D structure of the accessible genome at nanometer scales. To

overcome this limitation, we recently developed a super-resolution

imaging platform, 3D ATAC-PALM, that combined transposon

biochemistry with photoactivatable Janelia Fluor 549 (PA-JF549)

(Grimm et al, 2016) and lattice light-sheet microscopy (LLSM) (Xie

et al, 2020) (Fig 2B). In this setup, the ultrathin lattice light sheet

(~500 nm) (Chen et al, 2014a) allows efficient utilization of the

photon budget for 3D single-molecule localization by eliminating

out-of-focus background and photo-bleaching. 3D ATAC-PALM

overcomes the narrow axial range (1–4 µm) in other 3D SMLM tech-

niques (Huang et al, 2008; Pavani et al, 2009; Abrahamsson et al,

2013). Combined with cylindrical lens-based optical astigmatism,

the high photon output of PA-JF549 ensures precise localization
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(around ~20 nm in xy and ~50 nm in z) and 3D reconstruction of

the accessible genome. Distinct from DNA FISH, gentle, and non-

denaturing ATAC labeling conditions (37°C, neutral pH) could mini-

mize the perturbation of genome architecture.

By analyzing 3D ATAC-PALM with multiple algorithms, we

found that the accessible genome is organized into spatial clusters

with characteristic size and density called accessible chromatin

domains (ACDs) (Fig 2B). 3D ATAC-PALM is compatible with multi-

modal imaging to simultaneously detect RNA and proteins, reveal-

ing that ACDs spatially co-localize with active compartments,

encompass actively transcribed genes, and are spatially segregated

from heterochromatin. Coupled with genetic perturbation, 3D

ATAC-PALM revealed that CTCF loss leads to increased clustering

and compaction of accessible chromatin, probably due to unre-

strained loop extrusion by Cohesin (Xie et al, 2020). This result is

consistent with genomic data that CTCF removal disrupts local insu-

lation in loop domains (Nora et al, 2017).

SIM

SIM surpasses the diffraction limit by illuminating the sample with

structured light patterns, which generates Moir�e fringes for mathe-

matically recovering of higher frequencies (finer details) in the image

(Gustafsson, 2000; Wu & Shroff, 2018). SIM typically achieves 2-fold

improvement of lateral resolution (~100 nm in xy). Further develop-

ment by including a grating and a spatial light modulator improves

the axial resolution and imaging speed (Gustafsson et al, 2008; Kner

et al, 2009). SIM does not require labels with photo-switching or

photo-activation properties, and multicolor imaging is much easier

to implement compared with other SR techniques. These advantages

have made SIM widely used in diverse biological contexts including

imaging the nuclear organization.

For example, multicolor 3D-SIM imaging of nuclear periphery

resolved single nuclear pore complexes embedded within the

nuclear lamina network (Schermelleh et al, 2008). 3D-SIM has also

been used to visualize compositional features of X chromosome (ac-

tive vs inactive Barr body), network of chromatin domain clusters

(a few hundred nm), and the interchromatin lacunae (Smeets et al,

2014). Multicolor 3D-SIM imaging of DNA, nascent RNA, and RNA

polymerase II (Pol II) revealed that a network of channels, called

the interchromatin compartment, starts at nuclear pores and

expands throughout the nuclear space (Markaki et al, 2010). Simi-

larly, it was found that chromatin forms chain-like reticular struc-

tures composed of chromatin domains (CDs) with a diameter of

~200–300 nm that co-localize with putative TADs (Miron et al,

2020; Fig 2C). Markers of active transcription and architecture

proteins tend to reside at the periphery of CDs whereas those

involved in gene silencing are enriched in the interior. Likewise,

nascent RNAs or associated RNPs are preferentially localized to the

interchromatin lacunae outside of CDs (Miron et al, 2020), in agree-

ment with results from another study (Shah et al, 2018). These

results suggest that CDs may constitute the physical units of chro-

mosome and potentially function as molecular “sieves” to filter

nuclear machineries based on sizes to control their access to regula-

tory sites. More efforts should be made to characterize the relation-

ship of CDs with putative TADs or compartmental domains (Rowley

& Corces, 2018) and the physical rules underlying CD formation.

The combination of lattice light-sheet microscopy with SIM

(Chen et al, 2014a) could enable high speed imaging with low

photo-toxicity for probing genome organization and dynamics in

living cells.

STED

Stimulated emission depletion microscopy uses a donut shape

depletion beam to induce spontaneous fluorescence emission. This

effectively reduces the size of the excitation point spread function

and increases the spatial resolution (Hell & Wichmann, 1994). STED

retains the point-scanning and pinhole feature of confocal micro-

scopy while improving the resolution without post-imaging process-

ing like SIM or SMLM. Further technical improvement of laser

pattern, speed, and commercialization has made STED a useful tool

to probe complex biological systems (Vicidomini et al, 2018).

The tunability of STED beam to encode and retrieve spatial infor-

mation in the phasor plot reduces the background and improves the

resolution for imaging sub-nuclear structures (Sarmento et al,

2018). STED microscopy was recently used to study genome organi-

zation protein CTCF in mouse ESCs (Gu et al, 2020) (Fig 2D). With

a lateral resolution of ~65 nm, STED microscopy reveals that CTCF

forms clusters of 2–8 molecules, with a small fraction (~25%)

coupled with Cohesin. CTCF clusters are spatially co-localized with

both active (H3K4me3) and repressive (H3K27me3) histone

◀ Figure 2. Genome organization revealed by super-resolution and electron microscopy.

(A) Probing chromatin folding by Oligopaint DNA FISH. (Upper panel) schematics of the sequential hybridization approach in ORCA. The genomic targets are binned into
small DNA segments hybridized with Oligopaint probes carrying distinct barcodes. Each barcode is sequentially bound by complementary fluorescent readout probes,
imaged, and enzymatically removed. The centroids of binned DNA segments are used to reconstruct the chromatin structure. Panel adopted from Mateo et al (2019)
with permission. (Lower left panel) The above process is extended to image multi-Mbp compartments at smaller bins (lower left) and entire chromosome at larger bins
(lower right panel). Panel adopted from Su et al (2020) with permission. (B) Imaging the accessible genome architecture by 3D ATAC-PALM. (Upper panel). The Tn5
transposon conjugated with a photoactivable fluorophore is covalently inserted into accessible genomic sites. (Lower panel) The final 3D reconstructed accessible
genome conformation in a single ESC is shown. (C) 3D-SIM imaging of chromatin labeled with DAPI reveals curvilinear chains of chromatin domains (CDs). Adopted from
Miron et al (2020) with permission. (D) CTCF with the dL5 peptide that binds the fluorogen malachite green in mouse ESCs. Upper left, a confocal image. Upper right, a
STED image of the same cell (lateral resolution ~65 nm). Lower panel, a zoom-in view of the STED imaging. Panel adopted from Gu et al (2020) with permission. (E)
ChromEMT reveals 5–24 nm nucleosome chains of various density in the nucleus. Upper panels, mitotic chromosome. Lower panels, interphase chromosome. The left
panel shows a single tomographic slice. The right panel shows the rendered chromatin chains. Image adopted from Ou et al (2017) with permission. (F) (Upper panel)
FIB-SEM imaging of a cryo-preserved HeLa cell at 4-nm isotropic resolution. Scale bar, 5 μm. (Lower panel) Zoom-in view of two boxed regions. Blue asterisks show 200–
300 nm nucleosome clusters with characteristic ~10-nm-sized dots. Putative linker segments are shown in blue arrowheads. Adopted from Miron et al (2020) with
permission. (G) Correlative Cryo-SIM and FIB-SEM imaging of the nucleus in the granule neuron progenitor with euchromatin (H3.3) and heterochromatin (HP1) color-
coded. Adopted from Hoffman et al (2020) with permission.
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modifications but not with RNA polymerase II, suggesting that

CTCF-mediated chromatin contact and transcription are spatially

separated processes. Interestingly, transcription inhibition appeared

to increase CTCF clustering, which could be reversed by Cohesin

depletion, suggesting a counterbalancing role of transcription in

CTCF clusters.

Recently, MINFLUX (minimizing fluorescence fluxes) microscopy

was developed by combining core concepts of SMLM and STED

microscopy (Balzarotti et al, 2017). Fluorophores are stochastically

activated one at a time. Instead of using maximal photons to localize

the centroid position, MINFLUX uses a doughnut-shaped excitation

beam to trace and determine where the fluorescence flux is mini-

mal. MINFLUX has achieved localization precision down to ~1–
3 nm with two orders of magnitude higher temporal resolution

(~10 μs). However, MINFLUX only allows tracking of one molecule

at a time, which could be harnessed to probe very fast chromatin

dynamics and interactions (e.g., enhancer–promoter or transient

loop anchor interactions) in live cells.

EM

Transmission EM or scanning EM was used to image chromatin

architecture in vitro and in fixed cells (Rouquette et al, 2010).

However, in contrast to membrane structures (e.g., mitochondria,

endoplasmic reticulum), or larger protein structures (e.g., ribo-

somes, condensed nucleosomes) which are highlighted by conven-

tional stains, the phosphorus and nitrogen-rich genomic DNA fibers

are not directly labeled and appear to have poor contrast in conven-

tional EM stains.

To overcome this challenge, serial block-face scanning EM was

combined with in situ hybridization (3D-EMISH) and silver staining

to examine the folding of a 1.7 Mbp chromatin (Trzaskoma et al,

2020). Another method called ChromEMT (chromatin EM tomogra-

phy) was developed to employ photosensitizer (DRAQ5) to enhance

DNA contrast and determine chromosome ultrastructure (Ou et al,

2017). DRAQ5 selectively binds to the DNA minor groove and upon

photo-activation generates highly localized, short-lived singlet

oxygen species, which react with and polymerize diaminobenzidine

(DAB) for local osmium deposition, rendering DNA fibers selectively

visible under EM. Because DNA within each nucleosome (~146 bp)

could maximally bind ~14 DRAQ5 molecules, single nucleosomes

(~10 nm) can be readily visualized. ChromEMT revealed that both

interphase and mitotic chromatin are organized into disordered 5-

24 nm chains with heterogeneous local densities, challenging the

traditional text-book view of the 30 nm-chromatin fiber as the inter-

mediate chromatin unit in situ (Fig 2E).

Recently, focus-ion beam scanning EM (FIB-SEM) was harnessed

to study the nuclear organization from Cryo-fixed mammalian cells

(Miron et al, 2020). The FIB-SEM utilized iterative surface layer

milling to achieve ultra-high-resolution 3D whole nucleus visualiza-

tion at <10 nm isotropic resolution (Xu et al, 2017). High-pressure

freezing before freeze substitution with osmium tetroxide ensures

the best possible ultrastructural preservation, revealing chromatin

domains of nucleosome aggregates in the size range of ~200–
300 nm (Fig 2F). However, due to the poor contrast on DNA, these

high electron density regions likely reflect the histone component

of heterochromatin or nucleoli observed in traditional EM studies.

The average size of chromatin domain identified by this method is

almost one order of magnitude larger than what was observed by

ChromEMT, which could result from differences in sample prepara-

tions (cryo-fixation vs conventional fixation) or in DNA labeling

(direct imaging vs contrast enhancement). The combination of

DRAQ5 staining, Cryo-fixation, and FIB-SEM could reveal chro-

matin organization in both euchromatin and heterochromatin with

high fidelity.

Correlative light and electron microscopy (CLEM)

To achieve protein-specific imaging in the context of ultra-

structures, cryo-3D super-resolution (Cryo-SR) imaging was

combined with block-face EM to examine the whole cell volume

(Hoffman et al, 2020). Fluorescent-labeled cells were first frozen

under high pressure in vitreous ice in milliseconds to preserve cell

ultrastructure, eliminating potential artifacts induced by chemical

fixation (Schnell et al, 2012; Teves et al, 2016). Under cryogenic

temperatures cooled by liquid helium (−265°C, 8K), typical fluores-
cent proteins and dyes show much reduced photo-bleaching,

increasing the photon budget stored in the sample for improving

spatial resolution in 3D-SIM and PALM imaging. Finally, the same

sample was processed for 3D FIB-SEM at 4 or 8 nm isotropic resolu-

tion followed by CLEM registration at nanometer precision.

This method was used to image chromatin structure in mouse

cerebellum granule neurons and their progenitors with both euchro-

matin (H3.3-SNAP-JF552) and heterochromatin (HP1-mEmerald)

labeled (Fig 2G). Correlating the Cryo-SIM light microscopy with

FIB-SEM data allowed the classification of chromatic regions based

on known molecular markers (H3.3 or HP1). Surprisingly, the

correlative analysis revealed significantly more H3.3-enriched hete-

rochromatin and less H3.3-depleted euchromatin in the differenti-

ated neurons compared with progenitor cells. This study also

revealed blurred euchromatin–heterochromatin boundary during

neural differentiation, arguing for the necessity of using a combina-

tion of LM and EM to dissect the mechanism of chromatin folding.

Live cell imaging of the genome

The genome is a highly dynamic structure with functional events

occurring at temporal scales spanning multiple order of magnitudes

(Fig 3). Whereas the diffusion of regulatory proteins is very fast (mi-

croseconds), genomic changes associated with cell differentiation

can take days or weeks. During a cell cycle, Hi-C results show that

compartments, TADs, or loops are lost in mitosis and then re-

established in G1 phase (Naumova et al, 2013). Even in the inter-

phase, only ~40–50% of Cohesin and CTCF molecules engage in

chromatin interactions with an average residence time ~20 min and

~1 min, respectively, suggesting that TADs and loops may dynami-

cally form and break (Hansen et al, 2017). Therefore, it is impera-

tive to use live imaging to study molecular dynamics associated

with genome organization (Fig 3).

One strategy is to infer genome topology from the dynamics by

which regulatory protein factors search for target sites in the

nucleus. In the past decade, the development of self-labeling tag

(e.g., HaloTag) and bright, photostable, live cell compatible organic
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dyes (e.g., Janelia Fluor or JF dyes) (Fig 4A) has greatly facilitated

live cell single-molecule tracking (SMT) of regulatory proteins

within the nucleus (Fig 4B; Liu et al, 2015). Transcription factors

(TFs) that bind to distinct types of DNA regulatory elements have

been characterized by SMT in both interphase and mitotic cells

with high spatial precision (~20 nm) and fast temporal dynamics

(~5–10 ms) (Mazza et al, 2012; Gebhardt et al, 2013; Chen et al,

2014b; Liu et al, 2015; Teves et al, 2016; Xie et al, 2017). A general

consensus from these studies is that site-specific TFs employ a 3D

diffusion dominated search mode interspersed with many non-

specific collisions with chromatin before the relatively stable

dwelling event at cognate sites (Fig 4C). The angular distribution

of SMT trajectories reflects how TFs explore the local nuclear

geometry. c-MYC adopts an isotropic, non-compact mode whereas

P-TEFb displays an anisotropic, compact search mode (Izeddin

et al, 2014; Fig 4D). By using long-term single-molecule imaging

based on tunable sparse labeling, we observed that TF Sox2 stably

binds and dynamically hops in spatially restricted regions whereas

H2B molecules are rather static, suggesting that local topological

structures could sequester TF movements potentially for localized

gene regulation (Liu et al, 2018; Fig 4E). By coupling motion blur

and LLSM imaging, we systematically mapped the long-lived Sox2-

binding events (likely cognate enhancers) in living ESCs. Interest-

ingly, we observed that Sox2 stable binding sites form 3D clusters,

spatially segregated from heterochromatin and correlated with RNA

Pol II enrichment (Liu et al, 2014; Fig 4F). Moreover, acute deple-

tion of the genome architectural proteins CTCF or Cohesin could

significantly promote the spatial Sox2 enhancer clustering and

reduce the Sox2 target search efficiency but significantly increase

its dwell time (preprint: Xie et al, 2019), likely due to enhanced

higher-order cooperative interactions as previously discovered

(Chen et al, 2014b; Xie et al, 2017).

TAD boundaries are enriched for CTCF-binding sites (Dixon

et al, 2012). Deletion, inversion, or mutation of CTCF motifs

disrupted chromatin loops (Sanborn et al, 2015) whereas ectopic

insertion of CTCF sites introduced synthetic loops (Redolfi et al,

2019). CTCF forms spatially restricted clusters that partially corre-

late with Cohesin (Hansen et al, 2017). To understand the function

of CTCF clusters, SMT reveals that CTCF exhibits significant aniso-

tropic diffusion within a range of ~200 nm, indicating repeated site

escape and bouncing back within a narrow zone. Two-color SMT

and PALM imaging suggests that such zone likely corresponds to
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Figure 3. Temporal scale of genome dynamics.

The mammalian nucleus hosts a wide range of functional events with distinct temporal kinetics. TF diffusion is fast and non-specific chromatin collision is transient.
Specific TF-chromatin interaction usually lasts a few or tens of seconds. The enhancer to promoter interaction is very dynamic in the second’s range. The residence time
for CTCF and Cohesin is ~60 s and ~20 min, respectively. Transcription bursts with frequency in the range of minutes. Chromatin domains disappear in the mitotic phase
and re-establish in the G1 phase with a lifetime of a few hours. Whereas cell cycle typically takes ~1 day, differentiation typically lasts a few days or even weeks. Wide
field microscopy including those used in SMT is suited to probe the fast dynamic events reaching milliseconds resolution. Confocal microscopy and STED microscopy are
based on point-scanning and thus are slower. SIM, Airyscan FAST and spinning disk confocal have improved temporal resolution and are gentle imaging modalities for
live cells. Although MINFLUX can only track one molecule at a time, it can reach a temporal resolution of microseconds, suitable for tracking very fast events. The lattice
light-sheet microscopy is particularly suited for long-term live cell imaging.
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CTCF clusters and an “anisotropy diffusion through transient trap-

ping in zones” model was proposed to explain such dynamics. Inter-

estingly, the RNA-binding domain of CTCF increases the on rate of

CTCF binding to chromatin and thus its target search efficiency

(Hansen et al, 2020).

Just as the RNA-binding domain of CTCF could accelerate its on

rate kinetics, the transactivation domain of Sox2 could modulate its

3D target search and impact chromatin binding (Chen et al, 2014b).

These observations suggest that “grammars” encoded in non-DNA-

binding regulatory domains regulate target search kinetics. Recently,

a large cohort of TFs, cofactors, and RNA polymerase II were found

to contain intrinsically disordered regions (IDRs) and form locally

high concentrated hubs, which are thought to compartmentalize

complex and heterogeneous molecular interactions for transcription

regulation (Cho et al, 2018; Chong et al, 2018; Lu et al, 2018; Sabari

et al, 2018). SMT shows that proteins within the hub have signifi-

cantly higher residence time (~60 s), suggesting that these hubs

could increase the on rate and concomitantly decrease the off rate

(Chong et al, 2018). This hub-mediated stabilizing effect could

potentially regulate chromatin interactions, in line with a recent
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theoretical predictions (Shrinivas et al, 2019) and mechanical chro-

matin fiber selection (pull-in targets and exclude non-targets) by a

light-inducible system (Shin et al, 2018).

Live cell imaging of chromatin dynamics

Chromatin structure and dynamics could also be directly imaged in

living cells. For example, live cell PALM imaging of tightly

chromatin-bound histone H2B (H2B-PA-mCherry) was used to

examine global chromatin structure and mobility in live HeLa cells

at single nucleosome resolution. It was found that chromatin exists

in the form of clusters or domains with largely constant domain

structure (typical radius ~110 nm) throughout different cell cycle

phases and that nucleosome clusters at nuclear periphery are denser

and less mobile than those at the nuclear interior (Nozaki et al,

2017). Although unable to distinguish distinct epigenetic states (ac-

tive vs inactive), single nucleosome imaging provides global infor-

mation on changes in chromatin dynamics under various

perturbations. For example, inhibition of transcription elongation

has an undetectable impact on chromatin structure but increases the

mobility of chromatin (Nozaki et al, 2017; Nagashima et al, 2019).

Considering the enrichment of transcriptional apparatus in the inter-

chromatin lacuna (Miron et al, 2020), this observation suggests that

the assembly of the preinitiation complex might reduce the mobility

of target genes, which likely involves the hyper-phosphorylated

form of RNA Pol II. Supporting this notion, the unstructured C-

terminal repeats of the largest subunit of RNA Pol II form condensed

droplet in vitro and quickly dissolve upon phosphorylation likely for

promoter escape and transcription elongation (Boehning et al,

2018).

Single-molecule tracking of histone H2B was also used to recon-

struct the chromatin mobility landscape in multiple cell types

(Lerner et al, 2020). The average displacement and radius of con-

finement of H2B movement were used to classify chromatin into dif-

ferent mobility states to discriminate their regulatory function

(Fig 4G). Heterochromatin correlates with low mobility, whereas

increased mobility correlates with regulatory factor binding with the

notable exception of pioneering factors. An emerging theme from

this study is that chromatin mobility correlates with its function. It

would be interesting to perform epigenetic state-specific chromatin

labeling to further understand the nature of chromatin dynamics

and function.

Locus-specific labeling is challenging in live cells as the major-

ity of DNA binders are in the 3D diffusion and non-specific bound

fractions, generating significant background that masks specific

binding sites (Chen et al, 2014b; Normanno et al, 2015; Xie et al,

2017). An effective strategy is to construct repetitive DNA arrays

to achieve localized signal amplification above the background.

Such examples include the lac operator (LacO) array (Robinett

et al, 1996), tet operator (TetO) array (Lucas et al, 2014),

ANCHOR3/ParB (Germier et al, 2017), MS2/PP7 RNA aptamer

repeats (Chen et al, 2018a), among others (Figure 4H). These

strategies normally require non-trivial effort of genome editing at

endogenous loci. As an alternative, the CRISPR Cas9 genome-

editing system has been repurposed for genome imaging by using

GFP-tagged, catalytically dead Cas9 targeted by an array of single

guide RNA (sgRNA) (Chen et al, 2013). The naturally existing

genomic repeats and the feasibility of delivering a large amount of

sgRNA make Cas9 a promising method for genome imaging in

living cells. Several variants were recently developed based on

engineering sgRNA structure and expression (e.g., extended loop,

hybrid sgRNA; Ma et al, 2016, 2018; Wang et al, 2019) or concate-

merization (Gu et al, 2018) (Fig 4I). Cas9 was also compatible

with other signal amplification systems such as SunTag or ArrayG

for long-term imaging of specific genomic loci (Tanenbaum et al,

2014; Ghosh et al, 2019). When combined with selective plane

illumination techniques such as LLSM, specific locus labeling and

signal amplification could potentially enable the observation of

single loci for hours and provide quantitative information on the

visco-elasticity of the nuclear environment.

Mechanisms of genome organization

Chromatin loops and TADs
The ring-like Cohesin is proposed to be the primary molecular

machinery driving loop formation, as Cohesin loss markedly elimi-

nates chromatin loops (Uhlmann, 2016; Rao et al, 2017). As a result,

factors that regulate Cohesin binding to chromatins such as CTCF,

NIPBL, and WAPL also play key roles in the formation of loops and

TADs (Haarhuis et al, 2017; Nora et al, 2017; Schwarzer et al, 2017;

◀ Figure 4. Live cell imaging of transcription factor and chromatin dynamics.

(A) (Upper panel) The development of self-labeling tag (HaloTag) facilitates SMT of genome regulatory proteins inside the mammalian cell nucleus. (Lower panel). The
imaging time (ΔtÞ is tailored to the dynamics of molecules (maximal diffusion coefficient, Dm) associated with the localization precision (σÞ: Given the same localization
precision, higher laser power and fast camera sampling rate allowed tracking of fast-moving molecules whereas lower laser power and slow sampling rates selectively
capture less mobile molecules. (B) SMT detection sensitivity. Molecules with D smaller than the Dm will be localized whereas those with larger D (D > DmÞ will undergo
motion blur and evade detection. Panel adopted from Hansen et al (2018) with permission. (C) Exploration of the nuclear environment by TFs probed by SMT. TFs toggle
between 3D diffusion and 1D collisions. One specific binding event (tdwell) is interspersed with several non-specific binding events (t3D). (D) Polar coordinate distribution
of the angle between two consecutive translocation steps from SMT of c-MYC and P-TEFb. c-MYC has isotropic distribution indicating non-compact exploration whereas
P-TEFb shows anisotropic distribution indicating compact exploration. Adopted from Izeddin et al (2014) with permission. (E) Kymograph demonstrating the sparse
labeling and long-term single-molecule tracking (up to 1,000s) of TF (e.g., Sox2). The long-term single-molecule imaging suggests that TF dynamically hops within
restricted domains. Adopted from Liu et al (2018) with permission. (F) Lattice light-sheet imaging of stable TF-binding events, presumably enhancers, in living cells. The
3D mapped enhancers are reconstructed (red) together with heterochromatin (marked by HP1-GFP) in a single mouse ESC. (G) SMT of histone H2B dynamics in living
cells. Two-parameter (average displacement and radius of confinement) analysis of trajectories showed distinct chromatin dynamic states. Adopted from Lerner et al
(2020) with permission. (H) A representative image of B cells from a transgenic mouse line containing ~240 copies of tetO array knocked-in at the IgH locus. The two IgH
loci were shown as two diffraction-limited spots. Adopted from Lucas et al (2014) with permission. (I) The chimeric array of gRNA oligonucleotides (CARGO) strategy was
employed to assemble 12 sgRNAs into one expression cassette to label a ~2 kb segment upstream the Fgf5 enhancer in mouse ESCs. Panel adopted from Gu et al (2018)
with permission.
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Wutz et al, 2017). 3D-SIM imaging of individual TAD domains

revealed that Cohesin facilitates intra-TAD chromatin contacts

(Szabo et al, 2020). On the other hand, Cohesin promotes intermin-

gling between neighboring TADs (Luppino et al, 2020) while CTCF

prevents this activity (Szabo et al, 2020). The emerging picture is

that the Cohesin ring extrudes chromatin DNA and generates high

probability contacts along its path until the extrusion is blocked by

convergent CTCF sites at the domain boundary (Alipour & Marko,

2012; Sanborn et al, 2015; Fudenberg et al, 2016). In line with this

model, super-resolution chromatin tracing experiments uncovered

that CTCF sites define the highest probability of domain boundaries

(Bintu et al, 2018). And CTCF depletion promotes inter-TAD

contacts and increases accessible chromatin density in ACDs (Szabo

et al, 2020; Xie et al, 2020).

Cohesin-mediated loop extrusion process is initiated by NIPBL,

followed by Cohesin translocation, and then stalled by factors

such as CTCF at loop anchors (Fig 5A). NIPBL was first identified

as a Cohesin loading factor. However, recent in vitro single-

molecule imaging experiments showed that NIPBL is essential

throughout the loop extrusion process (Davidson et al, 2019),

which is dependent on intrinsic ATPase activity of Cohesin to

hydrolyze ATP as the energy source (Davidson et al, 2019; Kim

et al, 2019). Interestingly, ATP is only required for the formation

but not the maintenance of loops, and blocking neither transcrip-

tion nor replication appears to impact loop maintenance (Vian

et al, 2018). Consistent with these results, high-resolution Hi-C/

Micro-C studies recently identified “stripes” formed by Cohesin

loading near high-affinity CTCF motifs and translocating asymmet-

rically throughout the contact domain (Vian et al, 2018; Hsieh

et al, 2020; Krietenstein et al, 2020).

Besides CTCF, Cohesin was also shown to interplay with other

factors to regulate genome topology. For example, upon CTCF loss,

Cohesin is found to position at active gene transcription start sites.

Cohesin is relocated to a “Cohesin island” downstream of active

genes in the absence of both CTCF and releasing factor WAPL in a

transcription-dependent manner (Ocampo-Hafalla et al, 2016;

Busslinger et al, 2017). These results suggest that RNA Pol II

machinery could move Cohesin along the DNA fiber, in agreement

with STED imaging result (Gu et al, 2020). In vitro single-molecule

imaging experiments suggested that nucleosomes and large-sized

DNA bound proteins are barriers to Cohesin translocation on DNA

(Davidson et al, 2016; Stigler et al, 2016). It is conceivable that the

physical size of certain chromatin-associated regulatory protein

complexes could modulate Cohesin extrusion and shape genome

organization.

Compartments
Compartments are maintained independently of ATP, transcription,

or replication (Vian et al, 2018). It is also unclear whether the epige-

netic state (active versus inactive) is the cause or the consequence

of compartment formation. However, compartments remain after

loss of loops and TADs upon Cohesin removal (Nora et al, 2017;

Rao et al, 2017; Schwarzer et al, 2017). Similarly, super-resolution

imaging experiments found that globular “TAD-like” domain struc-

tures, nanodomains within TADs, and chromatin domain zonations

persist after Cohesin depletion (Bintu et al, 2018; Miron et al, 2020;

Szabo et al, 2020), consistent with a Cohesin-independent mecha-

nism for establishing such chromatin contacts for compartmental-

ization.

Surprisingly, Cohesin loss even enhanced compartmental interac-

tions resulting in more intense plaid-like contact frequency maps

and forming hundreds of links within and across chromosomes

(Rao et al, 2017; Schwarzer et al, 2017). These results are consistent

with a competition between loop extrusion and compartmentaliza-

tion (Nuebler et al, 2018) but the underlying mechanisms await

further studies.

The affinity interactions between heterochromatic regions have

been demonstrated required for compartmentalization in hete-

rochromatin (Falk et al, 2019; Mirny et al, 2019), and a liquid–liquid
phase separation (LLPS) mechanism has been proposed. In vitro

reconstituted nucleosome arrays could also undergo LLPS under

physiological salt conditions. Linker histone H1, histone tail acetyla-

tion, and bromodomain binding all regulate the LLPS process (Gib-

son et al, 2019). Although the role of LLPS in the establishment and

maintenance of chromatin compartments in vivo is still under

debate (McSwiggen et al, 2019), one notion is that the concentration

requirement for LLPS in vitro far exceeds the measured concentra-

tion in vivo. For instance, the measured HP1a concentration is

~3 µM in cells, far lower than the LLPS concentration requirement

in vitro (40 µM). Moreover, HP1 was found to promote heterochro-

matin compartmentalization through specific bridging interactions

without strong evidence of LLPS mechanism in live cells (Erdel

et al, 2020). A recent study also suggests that chromatin is solid or

hydrogel-like and acts as a mesh-like scaffold and that the liquid

chromatin condensate is promoted under specific buffer conditions

(i.e., reduced BSA and acetate anions; Strickfaden et al, 2020). It is

templating to speculate that the spatial clustering of chromatin

could favor hub formation with local high concentrations of homo-

and hetero-typical interactions involving nuclear proteins and RNA

components to drive chromatin compartmentalization (Fig 5A).

High-resolution microscopy and spectroscopy experiments could

▸Figure 5. Mechanism and function of genome organization.

(A) The putative structure–function relationships in genome organization. Loops and TADs are formed largely by Cohesin-mediated loop extrusion. The formation of
compartment is suppressed by Cohesin and likely involves abundant homo-/hetero-typical interactions from regulatory factors. Loops and domains could facilitate and
constrain functional chromatin interactions, respectively. Compartments could regulate chromatin state-specific interactions and regulatory factor dynamics (e.g., 3D
diffusion, target search, chromatin dwelling). (B) In Drosophila embryo, the eve gene reporter has the enhancer (E, by MS2 tag), promoter (P, by ParS), and gene activity
(by PP7) fluorescently labeled (upper panel). Representative E-P interactions and gene activity are shown (lower left panel). The E-P distance vs gene activity plot
suggests the formation of E-P loops couples with gene transcription (lower right panel). Panel adopted from Chen et al (2018a) with permission. (C) In mouse ESCs, the
Sox2 gene enhancer (tetO), promoter (CuO), and gene activity (MS2) are simultaneously monitored (upper left panel) with representative images (upper right panel). The
E-P distance does not show obvious correlation with gene activities (lower panel). Panel adopted from Alexander et al (2019) with permission. (D) A putative model
incorporating current evidence of chromatin topology and transcription regulation. Gene transcription is likely regulated by gene-level chromatin topology that brings
enhancers into close proximity (~300 nm) or contact (~50 nm, limited by imaging precision) with promoters. Several key regulatory steps are likely involved each with a
certain probability, leading to transcriptional bursting.
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provide more information on the mechanisms of genome compart-

mentalization in vivo.

Functional implications of genome structure and dynamics

The mammalian genome stores genetic information and also bears

non-genetic functions (e.g., nuclear assembly, cell migration,

nocturnal vision; Bustin & Misteli, 2016). Here, we briefly discuss

the structure–function relationship between genome organization

and transcription regulation.

Specifically, it is believed that chromatin loops and TADs could

facilitate or constrain chromatin interactions (e.g., enhancer-

promoter, multi-enhancer hubs), respectively (Schoenfelder &

Fraser, 2019). Compartments with distinct epigenetic states and

compaction level could modulate protein diffusion and target search

dynamics (Fig 5A; Liu et al, 2014; Knight et al, 2015; preprint: Xie

et al, 2019).

However, one perplexing finding is that Cohesin loss eliminates

most loops and TADs but only affects the expression of a small

number of genes (Rao et al, 2017). Conversely, transcriptional inhi-

bition does not appear to significantly impact trans-chromosomal or

long-range cis-chromosomal interactions (Palstra et al, 2008; Su

et al, 2020) or large chromatin architecture (e.g., TADs, compart-

ments) (Hsieh et al, 2020; Jiang et al, 2020). A recent study identi-

fied two Cohesin populations: One is structurally associated with

CTCF, while the other is dynamically associated with site-specific

TFs and transcriptional activation (Liu et al, 2021), suggesting

distinct roles of Cohesin in genome organization and transcriptional

regulation. These results suggest that large chromatin structures

(e.g., TADs, compartments) do not strictly couple with transcription

regulation.

Recently, nucleosome-resolution Micro-C detected gene-level

chromatin interactions. Transcription inhibition affected “stripes”

formation originating from active promoters or enhancers (Hsieh

et al, 2020) and increased the size of chromatin domains (Gu et al,

2020). It appears that, at the gene scale (kbp to tens of kbp), chro-

matin contacts do couple with transcription regulation, consistent

with observations that RNA Pol II could translocate Cohesin ring

along DNA and promote enhancer–promoter and promoter–
promoter interactions (Busslinger et al, 2017) or CTCF clustering

(Gu et al, 2020). These results suggest a complex interplay between

genome structure and transcription regulation.

Simultaneous imaging of chromatin folding and mRNA showed

that the enhancer–promoter contact is only weakly predictive of

gene activation (Mateo et al, 2019). To rule out the possibility of

temporal uncoupling, several recent studies probed the link between

chromatin dynamics and transcription in living cells. In one study,

transcriptional bursting kinetics (Nanog or Oct4) was analyzed by

the MS2 system, while gene positioning was monitored by dCas9

targeting to the MS2 array. Interestingly, the Nanog locus is more

mobile in the “OFF” state than in the “ON” state, whereas no such

relationship is observed for Oct4 (Ochiai et al, 2015). Similarly,

transcription-induced gene confinement was also observed in the

cyclin D1 transgene (Germier et al, 2017). In addition, in a system

using the MS2, ParS, and PP7 cassettes to detect the eve enhancer

(~10 kbp apart), the promoter (~20 kbp away), and transcription

activity, it was found that the proximity of enhancer to promoter

(~300 nm) is required for transcriptional activation, which in-turn

promotes chromatin compaction and stabilizes the enhancer–
promoter interaction (Chen et al, 2018a; Fig 5B). These results

suggest that topological confinement is a critical step toward gene

activation. Interestingly however, another study showed that the

Sox2 enhancer–promoter spatial proximity (~112-kbp genomic sepa-

ration) marked by tetO and CuO repeats is not predictive of Sox2

gene activity in live ESCs (Alexander et al, 2019) (Fig 5C), in line

with the report on the Shh locus (Benabdallah et al, 2019). More-

over, the Fgf5 enhancer even displayed elevated chromatin mobility

upon gene activation (Gu et al, 2018). Furthermore, it was found

that a single enhancer can simultaneously drive synchronized burst-

ing of two reporter genes, arguing against stable enhancer–promoter

interactions by chromatin looping (Fukaya et al, 2016).

It is sagacious to bear in mind that the labeling (DNA (e.g., tetO,

CuO, ParS) or RNA (e.g., MS2, PP7) probes) in these experiments is

often ~2–8 kbp long and ~5–15 kbp away from respective enhancer

or promoter. To what extent the signals represent true enhancer and

promoter position awaits future studies. Ideal DNA probes should

be short in length, sufficiently close to genomic features, and mini-

mally perturbative to regulatory activities. Taken these results

together, we here propose a model in which the enhancer-based

gene activation likely involves several regulatory steps each with a

certain probability in a context-dependent manner. First, site-

specific TFs dynamically engage with cis-regulatory elements,

recruiting cofactors to establish an active enhancer. Subsequently,

the enhancer dynamically roams around the microenvironment and

communicates with the promoter likely in the form of dynamic

multivalent interactions. Finally, the preinitiation complex (e.g.,

general transcription factors, RNA Pol II) starts to assemble and

initiates the transcription cycle (Fig 5D).

Perspective

Using a combination of imaging and genomic strategies, significant

progress has been made toward understanding the driving forces

and principles underlying genome organization. However, several

long-standing challenges remain. For example, to dissect the link

between chromatin dynamics, genome organization, functional

output (e.g., transcription, replication), it is necessary to implement

simultaneous multicolor imaging experiments in live cells. Thus, it

is critical to expand the fluorescent dye palette and develop orthogo-

nal tags (HaloTag, SNAPTag, etc.) (Grimm et al, 2020) with high

specificity and low background. Moreover, current multicolor imag-

ing modalities mainly rely on sequential scanning, limiting the

temporal resolution. It is essential to develop simultaneous multi-

channel imaging platforms by exciting dyes at different wavelengths

or using dyes with large stokes shifts. As single-molecule observa-

tion in live cells is limited by the photostability of fluorescent

proteins and dyes, continued effort is required to develop new dye

attachment scaffolds (e.g., FluoroCubes) with higher photostability

(Niekamp et al, 2020).

Another challenge is to understand the relationship between

genome organization and emerging structures (i.e., TF hubs) in

diverse biological contexts. While CLEM is the ideal tool to address

this question as demonstrated recently (Hoffman et al, 2020),

automation is required to streamline this labor-intensive approach.
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Another possible technical advance is to combine Cryo-SR with

CryoEM tomography to probe protein and genome structures in the

native environment.

It is also imperative to establish high-throughput methods to

connect imaging and genomic data. Recent exciting progress in

combining barcoding and automatic fluidics has overcome the scala-

bility and throughput limitation of DNA FISH and enabled massive

chromatin tracing at the scale of TADs, compartments or even

whole genome in thousands of cells (Bintu et al, 2018; Nir et al,

2018; Mateo et al, 2019; Su et al, 2020; Takei et al, 2021). Moreover,

multiplexed imaging also permits multimodal observations with

transcriptional output and nuclear landmark proteins, opening up

exciting opportunities to probe genome function. However, current

DNA hybridization protocol still suffers from limited resolution (typ-

ically ~5–10 kbp) and harsh genome denaturation. It is crucial to

develop DNA labeling techniques with high-resolution (at sub-kbp)

to probe chromatin folding at non-denaturing conditions to mini-

mize genome architecture deteriorations (Solovei et al, 2002; Brown

et al, 2018). 3D ATAC-PALM could be potentially coupled with

in situ single-cell sequencing to gain both position and sequence

information of the accessible genome in cell culture, tissue sections,

and clinical specimens (Payne et al, 2021).

We envision that, with the techniques discussed here become

standardized and routinely used, we will considerably advance our

understanding of the form and function of the 3D genome in devel-

opment and disease states.
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Vian L, Pękowska A, Rao SSP, Kieffer-Kwon K-R, Jung S, Baranello L, Huang S-

C, El Khattabi L, Dose M, Pruett N et al (2018) The energetics and

physiological impact of cohesin extrusion. Cell 173: 1165–1178
Vicidomini G, Bianchini P, Diaspro A (2018) STED super-resolved microscopy.

Nat Methods 15: 173–182
Wang H, Nakamura M, Abbott TR, Zhao D, Luo K, Yu C, Nguyen CM, Lo A,

Daley TP, La Russa M et al (2019) CRISPR-mediated live imaging of

genome editing and transcription. Science 365: 1301–1305
Wang S, Su JH, Beliveau BJ, Bintu B, Moffitt JR, Wu CT, Zhuang X (2016)

Spatial organization of chromatin domains and compartments in single

chromosomes. Science 353: 598–602
Williamson I, Berlivet S, Eskeland R, Boyle S, Illingworth RS, Paquette D,

Dostie J, Bickmore WA (2014) Spatial genome organization: contrasting

views from chromosome conformation capture and fluorescence in situ

hybridization. Genes Dev 28: 2778–2791
de Wit E, de Laat W (2012) A decade of 3C technologies: insights into nuclear

organization. Genes Dev 26: 11–24
Wu Y, Shroff H (2018) Faster, sharper, and deeper: structured illumination

microscopy for biological imaging. Nat Methods 15: 1011–1019
Wutz G, V�arnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W,

Schoenfelder S, Jessberger G, Muhar M, Hossain MJ et al (2017)

Topologically associating domains and chromatin loops depend on

cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J 36:

3573–3599
Xie L, Dong P, Qi Y, De Marzio M, Chen X, Banala S, Legant WR, English BP,

Hansen AS, Schulmann A et al (2019) Super-resolution imaging reveals 3D

structure and organizing mechanism of accessible chromatin. bioRxiv

https://doi.org/10.1101/678649 [PREPRINT]

Xie L, Dong P, Chen X, Hsieh T-H, Banala S, De Marzio M, English BP, Qi Y,

Jung SK, Kieffer-Kwon K-R et al (2020) 3D ATAC-PALM: super-resolution

imaging of the accessible genome. Nat Methods 17: 430–436

ª 2021 The Authors Molecular Systems Biology 17: e9653 | 2021 19 of 20

Liangqi Xie & Zhe Liu Molecular Systems Biology

https://doi.org/10.1101/678649


Xie L, Torigoe SE, Xiao J, Mai DH, Li L, Davis FP, Dong P, Marie-Nelly H,

Grimm J, Lavis L et al (2017) A dynamic interplay of enhancer elements

regulates Klf4 expression in naïve pluripotency. Genes Dev 31:

1795–1808
Xu CS, Hayworth KJ, Lu Z, Grob P, Hassan AM, Garc�ıa-Cerd�an JG, Niyogi KK,

Nogales E, Weinberg RJ, Hess HF (2017) Enhanced FIB-SEM systems for

large-volume 3D imaging. Elife 6: e25916

Yu M, Ren B (2017) The three-dimensional organization of mammalian

genomes. Annu Rev Cell Dev Biol 33: 265–289

Zheng M, Tian SZ, Capurso D, Kim M, Maurya R, Lee B, Piecuch E, Gong L,

Zhu JJ, Li Z et al (2019) Multiplex chromatin interactions with single-

molecule precision. Nature 566: 558–562

License: This is an open access article under the

terms of the Creative Commons Attribution License,

which permits use, distribution and reproduction in

any medium, provided the original work is properly

cited.

20 of 20 Molecular Systems Biology 17: e9653 | 2021 ª 2021 The Authors

Molecular Systems Biology Liangqi Xie & Zhe Liu


