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Introduction
Despite the progress in modern techniques for detecting and 
treating esophageal cancer (EC), the overall prognosis for EC 
patients remains notably poor, marked by a high rate of recur-
rence.1 Managing this type of cancer presents a challenge due 
to its inherent heterogeneity, leading to variable responses to 
similar treatments among different patients. As a result, there is 
a critical need for reliable molecular markers in order to help 
clinicians make more educated judgments about appropriate 
treatment methods for individual EC patients. Such markers 

would enhance treatment effectiveness, improving patient out-
comes and survival rates.

Recent research underscores the significance of the tumor 
microenvironment (TME) in the development and progres-
sion of various cancers.2 The TME comprises tumor cells, 
tumor-associated normal epithelial cells, vascular cells stromal 
cells, extracellular matrix, and immune cells, playing crucial 
roles in the crosstalk between tumor and non-tumorous cells.3 
Studies have revealed that infiltrating immune cells in the 
TME play a substantial role in initiating and progressing 
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ABSTRACT

OBjECTIvES: Aim of this study was to explore the immune-related lncRNAs having prognostic role and establishing risk score model for 
better prognosis and immunotherapeutic coherence for esophageal cancer (EC) patients.

METhODS: To determine the role of immune-related lncRNAs in EC, we analyzed the RNA-seq expression data of 162 EC patients and 11 
non-cancerous individuals and their clinically relevant information from the cancer genome atlas (TCGA) database. Bioinformatic and sta-
tistical analysis such as Differential expression analysis, co-expression analysis, Kaplan Meier survival analysis, Cox proportional hazards 
model, ROC analysis of risk model was employed.

RESuLTS: Utilizing a cutoff criterion (log2FC > 1 + log2FC < −1 and FDR < 0.01), we identified 3737 RNAs were significantly differentially 
expressed in EC patients. Among these, 2222 genes were classified as significantly differentially expressed mRNAs (demRNAs), and 966 
were significantly differentially expressed lncRNAs (delncRNA). Through Pearson correlation analysis between differentially expressed lncR-
NAs and immune related-mRNAs, we identified 12 immune-related lncRNAs as prognostic signatures for EC. Notably, through Kaplan-Meier 
analysis on these lncRNAs, we found the low-risk group patients showed significantly improved survival compared to the high-risk group. 
Moreover, this prognostic signature has consistent performance across training, testing and entire validation cohort sets. Using ESTIMATE 
and CIBERSORT algorithm we further observed significant enriched infiltration of naive B cells, regulatory T cells resting CD4+ memory T 
cells, and, plasma cells in the low-risk group compared to high-risk EC patients group. On the contrary, tumor-associated M2 macrophages 
were highly enriched in high-risk patients. Additionally, we confirmed immune-related biological functions and pathways such as inflamma-
tory, cytokines, chemokines response and natural killer cell-mediated cytotoxicity, toll-like receptor signaling pathways, JAK-STAT signaling 
pathways, chemokine signaling pathways significantly associated with identified IRlncRNA signature and their co-expressed immune genes. 
Furthermore, we assessed the predictive potential of the lncRNA signature in immune checkpoint inhibitors; we found that programed cell 
death ligand 1 (PD-L1; P-value = .048), programed cell death ligand 2 (PD-L2; P-value = .002), and T cell immunoglobulin and mucin-domain 
containing-3 (TIM-3; P-value = .045) expression levels were significantly higher in low-risk patients compared to high-risk patients.

CONCLuSION: We believe this study will contribute to better prognosis prediction and targeted treatment of EC in the future.
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various malignancies, including esophageal cancer.4,5 For 
instance, tumor-associated macrophages promote metastasis 
and regulate the immune system in the TME,6 while dendritic 
cell infiltration is associated with a favorable clinical outcome.7 
On the contrary, the infiltration of regulatory T cells (Tregs) 
hinders the body’s natural immune response against tumors 
and is associated with an unfavorable prognosis.8 CD8-
positive T lymphocytes, on the other hand, are associated with 
a good prognosis in several cancers.9 These infiltrating 
immune cells have crucial functions in the onset and advance-
ment of cancer, exerting either positive or negative effects on 
the patient’s prognosis as a result of tumor heterogeneity and 
the presence of diverse populations of immune cells infiltrat-
ing the tumor.10 Given the crucial role of the immune system 
in tumor formation, progression, and treatment, immunother-
apy provides a unique opportunity to treat malignancies effec-
tively.11 Immunotherapy amplifies the tumor microenvironment 
of antitumor immunity in order to eradicate cancer cells 
through the activation of the body’s immune system.12 
Immune evasion is closely related to the interaction between 
the tumor microenvironment (TME) and tumor cells.5 Some 
studies suggest a positive correlation between the infiltration 
level of CD8-positive T-cells, B-cells, and macrophages with 
immune checkpoint inhibitors such as Programed cell death 1 
(PD-1), Lymphocyte activation gene 3 (LAG3), programed 
cell death ligand 1 (PD-L1), T cell immunoglobulin and 
mucin-domain containing-3 (TIM3), and cytotoxic 
T-lymphocyte associated protein 4 (CTLA-4) expression.13-17 
Immunotherapy, including immune checkpoint inhibitors 
(ICIs), tumor vaccines, chimeric antigen receptor T-cell 
(CAR-T) therapy, and NK-cell-based therapy, has provided 
new hope for EC patients.13 However, only a small percentage 
of patients benefit clinically from immunotherapy due to pri-
mary or acquired resistance. Therefore, a comprehensive 
understanding of the mechanisms by which EC cells evade 
antitumor immunotherapy is essential for a more effective 
multidisciplinary treatment strategy.

Recent research has shown that long non-coding RNAs 
(lncRNAs), longer than 200 nucleotides, are essential for several 
stages of cancer immunology, including antigen presentation, 
immunological activation, and immune cell infiltration.18 
Indeed, immune checkpoint inhibitor expression was negatively 
correlated with the lncRNA signature-based risk index, imply-
ing that the lncRNA signature may play a role in EC immuno-
therapy.19 Recent research by our group and others has also 
shown that lncRNAs such as SNHG12,20 LINC01133,21 
LINC00324,22 TINCR,23 CASC9,24 EWSAT125 have the 
potential to function as prognostic and therapeutic biomarkers 
for various cancers. They regulate various hallmarks of cancers, 
including chromatin modification, transcription, and post-tran-
scriptional processing.21,26 Pang et  al identified an immune-
related multi-lncRNA signature influencing esophageal cancer 
prognosis, utilizing transcriptome data from EC patients in 

both the TCGA and GEO databases.27 Furthermore, an inde-
pendent biomarker for the prognosis and the evaluation of 
ESCC’s response to immunotherapy using immune checkpoint 
inhibition was established by Zhu et al through the develop-
ment of an 8-lncRNA signature-based risk model.19 However, 
these studies lack the clinical implications of these lncRNA sig-
natures on larger cohorts. Thus, based on the complexity and 
heterogeneity of the tumor microenvironment and the signifi-
cance of lncRNAs, we analyzed RNA sequencing data from 
TCGA and immune-related mRNA from the ImmPort data-
base. Twelve immune-related prognostic lncRNA signatures, 
namely AC008687.2, AC134312.5, AL031587.3, AL353764.1, 
HAND2-AS1, LINC00261, LINC01503, LINC01614, 
LINC02561, MYOSLID, TM4SF19-AS1, U62317.3, were 
identified through Pearson correlation in EC. Using these 
lncRNAs, we developed a predictive prognostic risk model to 
distinguish between high-risk and low-risk EC patients. 
Furthermore, we designed an integrated analysis combining 
tumor microenvironment and lncRNAs, evaluating the predic-
tive potential of the lncRNA signature in immune cells and 
checkpoint inhibitors, intending to provide valuable insights 
into developing more effective personalized immunotherapeu-
tic strategies for EC patients.

Materials and Methods
Data download and preprocessing

The RNA-Seq and clinical data of 162 EC patients and 11 
normal samples were downloaded using the “TCGAbiolinks” 
R package from the publicly available database, the cancer 
genome atlas (TCGA; https://portal.gdc.cancer.gov). Gene re-
annotation was performed using the “ensembldb” R package. 
Immune-related gene lists were acquired from the immunol-
ogy database and analysis portal (ImmPort), a publicly acces-
sible repository of subject-level human immunology databases 
designed for translational and clinical research purposes 
(https://www.immport.org/). The RNAseq expression in the 
form of transcripts per million reads (TPM) of each individual 
was integrated with respective clinicopathological information 
such as vital status, overall survival time, age, gender, pathologi-
cal stage, clinical stage, histological grade, smoking history, and 
alcohol consumption for preparing a matrix file using the 
“dplyr” package.

Differential expression analysis of total RNAs, 
lncRNAs, and miRNAs

To find both coding genes (mRNA) and non-coding (lncR-
NAs) transcripts differentially expressed in EC samples, first, 
we preprocessed the data, and later, we analyzed the data using 
the “DESeq2” package in RStudio software. The expression 
levels were normalized and transformed log2(x + 1) using raw 
count data and compared differentially expressed total RNAs, 
lncRNAs, and miRNAs between EC samples and normal 
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samples, with a log2FC > 1 + log2FC < −1 and false discovery 
rate (FDR) <0.01. Spliced transcripts alignment to a reference 
(STAR)-count files were exported and used for differential 
gene expression analysis.

Identif ications of immune-related mRNAs and 
lncRNAs

To identify differentially expressed immune-related mRNAs 
(deIRmRNA) in EC samples, as mentioned earlier, we down-
loaded the immune-related gene list from the ImmPort database 
(https://www.immport.org/). Then, to find out immune related 
mRNAs that are differentially expressed in EC patient samples, 
we overlapped the demRNAs obtained in previous analysis and 
checked for overlaps with ImmPort immune genes. Next, keep-
ing in mind that immune-related lncRNAs (deIRlncRNAs) co-
expressed with immune-related mRNAs,28 we performed 
Pearson correlation analysis between lncRNAs and immune-
related mRNAs that were differentially expressed in EC sam-
ples. Finally, the immune-related lncRNAs with significant 
correlation (P-value < .05) were considered for further study.

Identif ication of immune-related lncRNAs having 
significant prognostic value for EC

The Survival analysis of all immune-related lncRNAs using 
Kaplan-Meier survival analysis (KM curve) was performed to 
find the significant lncRNAs having a role in the prognosis of 
EC patients with P-value < .05. For plotting Kaplan-Meier 
curves, we used expression values of each lncRNA and divided 
the population into 2 groups that is less than the median and 
greater than the median. Finally, the lncRNAs whose expres-
sion level can significantly differentiate between the overall 
survival of the patients were considered as prognostic lncR-
NAs. We used the R-package “ggplot2” for plotting Kaplan–
Meier curves.

Construction of immune-related lncRNA 
signature-based risk model

A personalized risk assessment model was developed for each 
individual patient to forecast the prognosis of esophageal cancer 
patients. This model incorporated the expression levels of spe-
cific immune-related lncRNAs that were identified as optimal 
prognostic markers. The estimated regression coefficients, 
obtained through Cox proportional regression analysis, were 
then multiplied by the expression levels of these lncRNAs to 
calculate the immune lncRNA signature-based risk score. The 
risk score was determined using the formula: Risk score = (β1)
(X1) + (β2)(X2) + ... + (βn)(Xn), where β represents the 
regression coefficient and X represents the expression level of 
each prognostic immune-related lncRNA. Based on the median 
risk score, patients were categorized into low-risk and high-risk 
groups. To validate the effectiveness of this risk stratification, 

Kaplan-Meier survival analysis was conducted using the “sur-
vminer” package in R. This analysis aimed to determine if the 
high-risk and low-risk groups, established using the immune-
related lncRNA-based risk score, exhibited significant differ-
ences in overall survival.

Validation of the immune-related lncRNA 
signature

Patients were allocated based on their individual risk scores, 
along with their clinical data. The cases were divided into high-
risk and low-risk sets for further investigation using the median 
risk score. Subsequently, Kaplan-Meier survival curves were 
examined in both sets. To assess the predictive survival perfor-
mance of our risk score, time-dependent receiver operating 
characteristic (ROC) curves were plotted using the “survival-
ROC” package. These curves were generated for the test group, 
train group, and the entire dataset. The “ggplot2” package was 
utilized for plotting these ROC curves.

Gene set enrichment analysis

To gain fresh perspectives on the role of the 12-lncRNA signa-
ture, we conducted an in-silico functional analysis to uncover 
potential biological functions and pathways linked to this sig-
nature in EC. For this, we used GSEA (https://www.gsea-
msigdb.org/gsea/msigdb/human/annotate.jsp)29 analysis to 
predict the enriched GO biological processes, cellular compo-
nents, Molecular processes, and KEGG pathways. The top 10 
GO terms and KEGG pathways were plotted against the 
number of overlapping genes and −log10(FDR) values.

Evaluation of immune cell infiltration and 
immune microenvironment

Tumor-infiltrating immune cells were already estimated for 
TCGA data by number of databases using algorithms such 
as TIMER, XCELL, CIBERSORT, MCPCOUNTER, 
ESTIMATE, and EPIC. So, we used the ESTIMATE algo-
rithm to get the immune score, stromal score, and estimate 
score for individual EC patients. We downloaded the profile 
of infiltration estimation from the CIBERSORT database to 
explore the relationship of Immune-related lncRNA based 
risk score and infiltration of tumor-infiltrating immune cells 
in esophageal cancer.

Association of risk score and immune checkpoints

Previous studies suggest that immune checkpoint blockade 
therapy-related essential gene expression may be connected to 
immune checkpoint blockade treatment responsiveness.15 We 
utilized a set of 8 crucial genes associated with immune check-
point inhibitors therapy: programed death ligand 1 (PD-L1, 
also referred to as CD274), programed death 1 (PD-1, also 
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known as PDCD1), T-cell immunoglobulin domain and 
mucin domain-containing molecule-3 (TIM-3, also known as 
HAVCR2), cytotoxic T-lymphocyte antigen 4 (CTLA-4), 
programed death ligand 2 (PD-L2, also known as 
PDCD1LG2), Lymphocyte-activation gene 3 (LAG3), 
V-domain Ig suppressor of T cell activation (VISTA) also 
known as VSIR, and T cell immunoreceptor with Ig and ITIM 
domains (TIGIT). Our objective was to explore the underlying 
significance of our immune-related lncRNA signature-based 
risk score in the immune checkpoint blockade treatment of 
patients with EC by examining the correlation between our 
Risk score and the expression levels of these critical genes.

Statistical analysis

The statistical analyses in this study were conducted using R 
version 4.0.2 and the relevant packages. For the Kaplan-Meier 
survival analysis, the “survminer” package was utilized, and the 
resulting graphs were generated using the “ggsurvplot” func-
tion from the “ggplot2” R-package. To assess the prognostic 
accuracy of the immune lncRNA signature, a time-dependent 
receiver operating characteristic (ROC) analysis was performed 
using the “survivalROC” package. Student’s t-test was 
employed for analyzing continuous variables, while ANOVA 
was used to examine the association between immune lncRNA 
expression and clinicopathological characteristics. Pearson cor-
relation analysis was conducted to determine the correlation 
between variables. Additionally, multivariate regression analy-
sis was carried out using the Cox proportional hazards model. 
Variables with P-values < .05 in univariate analyses were 
included in subsequent multivariate analyses. Graphs were 
plotted using both the “ggplot2” R-package and graph pad 
prism 8.0.1.

Results
Coding mRNAs and long non-coding RNAs are 
differentially expressed in EC

To identify differentially expressed total RNAs, encompassing 
both coding and non-coding genes, in 162 esophageal cancer 
(EC) tissue samples compared to 11 normal control tissue sam-
ples, we analyzed RNAseq data from the TCGA database, as 
outlined in the Materials and methods section and illustrated 
though Flowchart in Figure 1. A total of 45 361 differentially 
expressed RNAs were identified in EC tissue samples compared 
to normal controls, which were re-annotated to Ensemble gene 
IDs using the “ensembldb” R package and categorized into vari-
ous RNA types, including protein-coding genes (mRNAs), 
long non-coding RNAs (lncRNAs), miRNAs, pseudogenes, 
etc. Subsequently, applying a cutoff (log2FC > 1 + log2FC < 
−1 and FDR < 0.01), we extracted 3737 significantly differen-
tially expressed RNAs, as shown in a volcano plot in Figure 2A. 
A total of 2222 genes were identified as significantly differen-
tially expressed mRNAs (demRNAs), depicted in Figure 2B, 

with a corresponding heatmap of top-upregulated and top-
downregulated demRNA panels shown on the left side of 
Figure 2B. Moreover, we obtained 966 significantly differen-
tially expressed lncRNAs (delncRNAs), shown in the volcano 
plot in Figure 2C, with corresponding heatmaps of top-upreg-
ulated and top-downregulated delncRNAs panels shown on the 
left side of Figure 2C as heatmaps. The differently expressed 
mRNAs and lncRNA were sorted out using cut-off 
(log2FC > 1 + log2FC < −1 and FDR < 0.01). The overall 
above data suggest that good numbers of coding, as well as non-
coding RNAs, are differently expressed in EC samples com-
pared to healthy control samples. These candidate genes give us 
a lead to find the prognostic and immune-related lncRNAs in 
EC samples. Our study includes 81 patients with esophageal 
squamous cell carcinoma (ESCC) and 81 patients with esopha-
geal adenocarcinoma (EAC) histological subtypes. We analyzed 
the data for EC subtype specificity but found no significant dif-
ference in the expression of lncRNAs. Hence, the data repre-
sents the whole 162 patient cohort.

Establishment of immune-related mRNAs 
(IRmRNAs) and immune-related lncRNAs 
(IRlncRNAs) in EC

To discover differentially expressed immune-related long non-
coding RNA in EC, we used the ImmPort database (https://
www.immport.org/). Through the ImmPort database, we have 
found a total of 1793 immune-related genes that are associated 
with immune responses and immune system processes. Next, 
we overlapped these immune-related genes with 2222 differ-
entially expressed mRNA identified from the previous. We 
found a total of 205 differentially expressed immune-related 
mRNA (deIRmRNA) in the EC patient’s sample, as illustrated 
through the Venn diagram in Figure 3A. Afterward, we per-
formed Pearson correlation analysis using expression values of 
205 deIRmRNA and 966 significant delncRNAs to find coex-
pressed immune-related lncRNAs in EC patients. As an out-
put, we came up with 213 significantly correlated (P-value < .05) 
immune-related lncRNAs differentially expressed as illustrated 
through heatmap in Figure 3B using their respective correla-
tion coefficients. Thus, we established a panel of 213 immune-
related lncRNAs having a role in the immune response of EC 
patients.

Twelve immune-related lncRNA signature predict 
prognosis of EC patients

We performed a Kaplan-Meier survival analysis on all 213 dis-
covered immune-related lncRNAs to see which one has a 
stronger predictive prognostic value for EC. The EC patients 
were stratified into low and high-expression groups based on 
the median cut-off value for each IRlncRNA’s expression level. 
Kaplan-Meier and log-rank analyses were employed to evalu-
ate the overall survival of these 2 expression groups. We used 

https://www.immport.org/
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the R-package “ggplot2” for plotting Kaplan-Meier curves. 
Our analysis identified 12 IRlncRNAs with P-values less than 
.05 as significant prognostic lncRNAs. The identified 12 

IRlncRNAs, namely are AC008687.2, AC134312.5, 
AL031587.3, AL353764.1, Heart and neural crest derivatives 
expressed transcript 2 antisense RNA 1 (HAND2-AS1), long 

Figure 1. Workflow of this study.



6 Cancer Informatics 

intergenic non-protein coding RNA 261 (LINC00261), long 
intergenic non-protein coding RNA 1503 (LINC01503), long 
intergenic non-protein coding RNA 1614 (LINC01614), long 

intergenic non-protein coding RNA 2561 (LINC02561), 
myocardin-induced smooth muscle lncRNA Inducer of differ-
entiation (MYOSLID), transmembrane 4L 6 family member 

Figure 2. Identification of significant differentially expressed RNAs in Esophageal cancer. (A) Volcano plot showing differentially expressed total RNAs. 

(B) Volcano plot showing differentially expressed mRNAs and heatmap showing significantly upregulated and downregulated mRNAs. (C) Volcano plot 

showing differentially expressed lncRNAs and heat showing significantly upregulated and downregulated lncRNAs.
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19 antisense RNA 1 (TM4SF19-AS1) and U62317.3 illus-
trated by Kaplan-Meier curves in Figure 4. Among these 
IRlncRNAs, AC134312.5 and HAND2-AS1 stands out as the 

most effective, with a P-value of .0034). These results under-
score the potential of these identified 12 IRlncRNAs as prom-
ising prognostic markers in EC.

Figure 3. Identification of Immune-related lncRNAs. (A) Venn diagram showing the overlapping between differentially expressed mRNAs (demRNAs) and 

immune genes from ImmPort database to find differentially expressed immune-related mRNA (deImRNA) in esophageal cancer. (B) Heatmap showing 

immune-related lncRNAs (IRlncRNAs) obtained from the correlation between delncRNAs and deIRmRNAs.



8 Cancer Informatics 

The expression of 12 prognostic IRlncRNAs has been 
found to have a notable and autonomous correlation with over-
all survival. In order to forecast the outcome of patients, these 
IRlncRNAs were amalgamated to create a signature. To deter-
mine a patient’s prognosis based on IRlncRNA expression, a 
risk score model was established using the coefficients derived 
from the Cox regression model along with the corresponding 
expression values of the IRlncRNAs. This model is depicted in 
the forest plot shown in Figure 5A. The formula for risk score 
calculation is ∑(regression coefficient × expression of lncRNA). 

According to this model, the 12 IRlncRNA prognostic risk 
score were computed for each EC patient. Figure 5B depicts 
the survival status of EC patients over the full cohort using a 
dot plot. All patients were classified into a high-risk group 
(n = 82) and a low-risk group (n = 80) according to the median 
risk score, as shown in Figure 5C. Subsequently, Kaplan-Meier 
survival analysis between low-risk and high-risk patients was 
performed. The result indicates that the low-risk patient’s sur-
vival rate was significantly higher compared to the high-risk 
group (P-value = .0049), as illustrated in Figure 5D. The 3-year 

Figure 4. Kaplan-Meier curves to identify Immune-related lncRNAs having a significant role in esophageal cancer prognosis. (A) LINC01503, (B) 

LINC00261, (C) AL353764.1, (D) AL031587.3, (E) AC134312.5, (F) AC008687.2, (G) U62317.3, (H) TM4SF19-AS1, ()) MYOSLID, (J) LINC02561, (K) 

LINC01614, (L) LINC01503.
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Figure 5. Immune-related lncRNA signature-based risk score and its role in esophageal cancer prognosis. (A) Forest Plot showing results of Cox 

regression analysis on Immune-related lncRNA signature. (B) Dot plots showing the Survival status. (C) Risk score distribution of the entire EC cohort. (D) 

Kaplan-Meier curve showing the significant role of Immune-related lncRNA signature-based risk score in EC prognosis. (E) Heatmap showing the 

distribution of high and low risk patients with various clinicopathologic features such as clinical stage, histologic grade, T-stage, N-stage, and M stage, 

etc. Note: star sign show significant association.
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survival rates in the high-risk and low-risk groups were 20.0% 
and 30.8%, respectively. The survival rate of the high-risk 
group was zero at 5-years, and that of the low-risk group was 
10%. Thus, the Kaplan-Meier survival curve confirms that 12 
IRlncRNA-based risk scores can significantly predict the over-
all survival between high-risk and low-risk groups. Moreover, 
we checked for association of risk score with various clinico-
pathologic features such as clinical stage, histologic grade, 
T-stage, N-stage and M stage, etc as shown in Figure 5E as 
heatmap. Results revealed significant association of risk score 
with histologic grade of EC patients (Supplemental Table S1).

Validation of the 12 immune-related lncRNA 
prognostic risk model

To assess the robustness and usability of the 12-identified 
immune-related long non-coding RNA (IRlncRNA) signature 
for EC prognosis, we performed additional validation by divid-
ing the entire TCGA EC patients cohort into training (n = 81) 
and test groups (n = 81). As outlined in the Materials and 
methods section, the prognostic risk score for each patient was 
calculated based on the expression values of the 12 identified 
lncRNAs. In order to compare the sensitivity and specificity of 
risk score on the prognosis of EC patients, time-dependent 
receiver operating characteristics (ROC) analysis was per-
formed on training, test, and whole cohorts. The area under the 
ROC curve (AUC) of the risk score in the training cohort is 
0.67 (CI = 0.428 to 0.863), with a P-value of .002, as illustrated 
in Figure 6A. Meanwhile, the AUC of the risk score in the 
testing cohort is 0.812 (CI = 0.575 to 1.00) with a P-value of 
.007, as illustrated in Figure 6B. Moreover, the AUC of the risk 
score in the whole cohort is 0.712 (CI = 0.515 to 0.923) with a 
P-value of 0, as illustrated in Figure 6C. Thus, these AUC data 
indicate that 12 immune-related lncRNA prognostic signature 
is highly sensitive and specific to EC patient’s prognosis. 
Hence, these 12 immune-related lncRNA signatures can be 
explored as prognostic molecules for EC patients in the future.

Functionally enriched biological role and pathways 
of 12 IRlncRNA

To confirm the downstream biological role of 12 IRlncRNAs 
in Immune functions, we performed GSEA for GO cellular 
components, molecular functions, biological processes, and 
KEGG pathways associated with 12 IRlncRNA signature. As 
a result, we obtained the top 10 enriched GO biological pro-
cesses, which include many immune-related processes such as 
inflammatory response, response to cytokines, cytokines-medi-
ated signaling pathway, and defense response, as shown in 
Figure 7A. Moreover, the top 10 significant GO molecular 
functions also involve some immune functions, such as 
chemokine activity, chemokine receptor binding, cytokine 
activity, and cytokine receptor binding as shown in Figure 7B. 
Furthermore, the top 10 GO cellular components involve 

Figure 6. Validation of Immune-related lncRNA signature-based 

prognostic model. (A) The ROC curve for the training set with an AUC 

value of 0.67 shows a good prognostic value of the 12 Immune-related 

lncRNA-based prognostic signature. (B) The ROC curve for the test set 

with an AUC value of 0.81 shows a good prognostic value of the 12 

Immune-related lncRNA-based prognostic signature. (C) The ROC curve 

for the entire set with an AUC value of 0.712 shows a good prognostic 

value of the 12 Immune-related lncRNA-based prognostic signature.
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vesicle lumen, secretory vesicles, secretory granules, external 
encapsulating structures, etc., which are well-known compo-
nents of the cellular immune defense, as visualized in Figure 
7C. Additionally, the top 10 KEGG pathways comprise natu-
ral killer cell-mediated cytotoxicity, toll-like receptor signaling 
pathways, cytokine-cytokine receptor interaction, JAK-STAT 
signaling pathways, chemokine signaling pathways, and, as 
illustrated in Figure 7D. These results indicate that our 
immune-related lncRNA signature has a significant role in 
many Immune-related processes and pathways.

Effect of IRlncRNA signature and immune 
checkpoint blockade therapy

Previous investigation indicates that responsiveness to immune 
checkpoint blockade (ICB) treatment in individual patients 
may be correlated with expression of genes associated with 
immune checkpoint blockade therapy.15 Thus, to investigate 
the potential involvement of IRlncRNA-based risk score in 
ICB immunotherapy in EC, we examined the difference in 
expression of ICB therapeutic targets (PD-1\PDCD1, PD-L1\

CD274, TIM-3\HAVCR2, CTLA-4, PD-L2\PDCD1LG2, 
LAG3, TIGIT and VISTA\VSIR) in high and low-risk 
patients. The results showed that expression levels only PD-L1 
(P-value = .048), PD-L2 (P-value = .002), and TIM-3 
(P-value = .045) were significantly higher in low-risk patients 
compared to high-risk patients, as shown in Figure 8 via violin 
plot. This indicates that low-risk patients may have higher 
immunotherapeutic responses. Hence, our IRlncRNA-based 
risk score may play an important role in the intervention of 
ICB immunotherapy for patients with EC.

Correlation between prognostic IRlncRNA 
signature based risk score and immune cells

To investigate the relationship between the immune-related 
lncRNA signature and antitumor immunity in patients with EC, 
we utilized the ESTIMATE algorithm to derive immune, stro-
mal, and estimate scores for each individual. This approach ena-
bled us to evaluate the tumor microenvironment (TME) in both 
high and low-risk groups. By comparing the stromal score 
(which reflects the presence of substrate cells in the tumor 

Figure 7. Gene Set Enrichment Analysis for Gene Ontology (GO) and KEGG Pathways related to the IRlncRNA signature and its coexpressed genes. (A) 

The top 10 biological processes that have been greatly enriched. (B) The top 10 molecular processes that are significantly enriched. (C) The top 10 

significantly impacted cellular activities. (D) The top 10 KEGG pathways that are significantly enriched. The length of the horizontal lines represents the 

gene numbers and FDR values in the index, which are represented by the colors in the index.



12 Cancer Informatics 

Figure 8. Association of Risk score and Immune checkpoints. (A) A violin plot shows a significant association between immune checkpoint PDL1 and risk 

score. (B) A violin plot shows a significant association between immune checkpoint PDL2 and risk score. (C) A violin plot shows a significant association 

between immune checkpoint TIM-1 and risk score.
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tissue), immune score (which indicates the infiltration of immune 
cells in the tumor tissue), and estimate score (a combined value 
of stromal and immune scores for each case), we were able to 
identify variations in infiltrating cells between the high-risk and 
low-risk groups. Notably, only the stromal scores were signifi-
cantly elevated in the high-risk group (P-value < .00476), as 
depicted in Figure 9A. Additionally, we employed the 
CIBERSORT algorithm to analyze the immune cell infiltration 
landscape of individual EC patients. We examined the propor-
tions of 22 different types of immune cells in both high and low-
risk EC patients. Upon comparing the proportions of each 
immune cell between the 2 groups, we observed that plasma 
cells, resting CD4+ memory T cells, naive B cells, and regula-
tory T cells were significantly activated in the low-risk group 
compared to the high-risk group. Conversely, the fraction of M2 
macrophages was notably higher in the high-risk group, as illus-
trated in the volcano plots presented in Figure 9B.

Discussion
In recent times, various targeted immunotherapeutic approaches 
have been implemented for the treatment of cancer. These 
include immune checkpoint inhibitors such as PD-1, PD-L1/
L2, and TIM-3, as well as adoptive tumor-infiltrating lympho-
cytes (TILs), cancer vaccines, and CAR T-cell treatments.11 
However, the prognosis and response to therapy can differ sig-
nificantly among patients with EC.30 One possible explanation 
for this variation is the heterogeneous nature of the disease, 
where each patient may elicit a unique immune response against 
cancer antigens.31 Crucially, lncRNAs play a vital role in con-
trolling the expression of genes associated with immune 

responses and activation. This leads to a diverse tumor immune 
microenvironment as it promotes the infiltration of various 
immune cells.32 The significance of immune-related long non-
coding RNA (IRlncRNA) signatures as prognostic markers has 
been established in multiple tumor types, including head and 
neck cancer,33 Melanoma,34 breast cancer,35 and Glioblastoma.36 
Various studies have shed light on the potential role of lncR-
NAs in understanding and improving the treatment outcomes 
for EC patients.32,37 For example, lncRNAs such as MEG338 
and LINC02096 (RIME)39 show an immunosuppressive role 
in EC. Likewise, many significant lncRNA signatures were 
established in the recent past for predicting the immune land-
scape and prognosis for EC patients.40,41 However, few con-
vincing prognostic markers exist to assist in identifying “high 
and low-risk” EC patients who may benefit from immunother-
apy. In order to address this knowledge gap, we looked into the 
relationship between an immune-related long non-coding 
RNA signature that influences prognosis and its benefits for 
immunotherapy in patients with cancer. Given the widespread 
use of high-throughput technology and the ongoing develop-
ment of data-sharing networks, the era of “big data” in tumor 
research has arrived. Exceptionally large amounts of multiple 
tumor data have been assembled in an internationally accessible 
database.42 Previously, many researchers discovered chemokines-
related,40 stemness-related,43 hypoxia-related,44 Cuproptosis-
related,41 and ferroptosis-related45 lncRNA signature having a 
role in EC prognosis using online databases. Similarly, Pang 
et al established the immune-related multi-lncRNA signature 
having a role in esophageal cancer prognosis using EC patient’s 
transcriptomic data from both TCGA and GEO databases.27 

Figure 9. Immune status in high- and low-risk groups. (A) Comparison of immunological and stromal scores, as well as ESTIMATE scores in low- and 

high-risk groups. (B) Variation in the fraction of tumor-infiltrating immune cells between the 2 risk groups as per CIBERSORT algorithm.
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Chen et al also added 5 key genes based ceRNA network having 
a role in the prognosis of TCGA EC patients.46 However, in 
our study, we used an entirely different methodology, as shown 
in Figure 1, to identify and validate the 12 immune-associated 
lncRNA prognostic signature using transcriptome sequencing 
data of EC patients collected from only the TCGA database. 
Thus, in search for the best immune-related prognostic bio-
markers for EC patients, we discovered 45 361 differentially 
expressed RNAs (deRNAs) in 162 esophageal cancer (EC) tis-
sue samples compared to 11 normal control tissue samples. 
These RNAs were re-annotated to classify them as protein-
coding genes (mRNAs) and long non-coding RNAs (lncR-
NAs), as illustrated and demonstrated in Figure 2, respectively. 
Top Upregulated mRNAs include ATP4B, ATP4A, AQP4, 
PGA5, GKN1-2, and ETNPPL. Among these gastric H+/
K+ ATPase proton pump (ATP4A/ATP4B) and pepsinogen 
(PGA5) are known to play role in carcinogenesis of Barrett’s 
esophagus (BE) associated EAC.47 Gastrokines (GKN1-2) 
plays role in gastric cancer progression. Moreover, Ethanolamine-
phosphate phospho-lyase (ETNPPL) contributes to the diag-
nosis, prognosis, and therapy of hepatocellular carcinoma.48 Top 
downregulated mRNAs include MAGEA1-6-11, PAGE2B, 
GPR50, PAEP, KRTAP4-1, KRT81, ACTL8, CSAG2. 
Among these MAGEA family proteins have been established 
as prognostic as well as diagnostic marker for ESCC and EAC 
both with immunotherapeutic efficacy.49-51 Whereas, P Antigen 
Family, Member 2B (PAGE2B) was established as one of the 
13 immune related genes having role in prognosis of clear cell 
renal cell carcinoma.52 Next, G Protein-Coupled Receptor 50 
(GPR50) has been found differentially expressed in various 
cancer such as breast cancer,53 hepatocellular carcinoma,54 kid-
ney renal papillary cell carcinoma,55 and glioma.56 Progestagen 
associated endometrial protein (PAEP) is known for its role as 
immune system modulator in reproduction but recently its role 
in various cancer has been reported such as NSCLC,57 mela-
noma,58 endometrial cancer,59 etc. Keratin 81 (KRT81) and 
keratin associated proteins 4-1 (KRTAP4-1) role as epithelial 
cell marker is well established and role in cancer targeted drug 
delivery is underway.60 Actin-Like Protein 8 (ACTL8) is also 
studied for its potential as prognostic biomarker for various 
cancer such as colorectal cancer,61 lung cancer,62 glioma,63 head 
and neck cancer,64 TNBC65 etc. Likewise, chondrosarcoma-
associated gene 2 (CSAG2) has also been thoroughly studied 
for its role as biomarker for various cancer such as ovarian can-
cer,66 osteosarcoma,67 and chondrosarcoma.68

Furthermore, to find the immune genes having a significant 
role in immune response and function, we used the immune 
genes dataset from the ImmPort database as a reference and 
obtained 205 differentially expressed immune-related mRNA 
(deIRmRNA) in EC samples. Since lncRNAs coexpressed 
with Immune genes share similar biological functions,69 we 
employed Pearson correlation analysis and obtained 213 
immune-related lncRNAs (IRlncRNAs) that were highly 
coexpressed with 205 deIRmRNA, as shown in Figure 3. 

Finally, to find the lncRNAs that can independently predict 
the prognosis of EC patients, Kaplan-Meier survival analysis 
was employed resulting in 12 IRlncRNAs named AC008687.2, 
AC134312.5, AL031587.3, AL353764.1, HAND2-AS1, 
LINC00261, LINC01503, LINC01614, LINC02561, 
MYOSLID, TM4SF19-AS1, and U62317.3 as displayed in 
Figure 4. Surprisingly, we also obtained LINC01614 as a com-
mon lncRNA with the previous signature.27 The reason for the 
difference in previous signature could be due to distinct meth-
odology or genetic heterogeneity in individual patients. Till 
now, the expression of only LINC00261,70 LINC01614,71 
LINC01503,72 and HAND2-AS173 was validated and found 
upregulated in esophageal cancer tissues and cells. Thus, to 
improve the predictive accuracy of 12 IRlncRNAs, we com-
bined them and developed 12 IRlncRNA-based risk scores 
using the formula mentioned in section 2.5. Further, the 
Kaplan-Meier survival curve in Figure 5 confirmed that 12 
IRlncRNA-based risk scores can significantly predict overall 
survival between high-risk and low-risk patients.

Interestingly, we also validated the robustness and utility of 
the 12-IRlncRNA signature for EC prognosis using time-
dependent receiver operating characteristics (ROC) analysis 
on training, testing, and entire cohorts as a part of internal vali-
dation, as shown in Figure 6. The AUC data show that the 12 
IRlncRNA prognostic signature is highly sensitive and specific 
to EC patient prognosis, implying that the 12 IRlncRNA sig-
nature can be studied as a prognostic model for EC patients in 
the future. In order to confirm the biological role of 12 
IRlncRNAs in immune functions, GSEA was performed for 
GO biological processes, molecular functions, cellular compo-
nents, and KEGG pathways associated with their coexpressed 
genes, as illustrated in Figure 7. The results confirmed the 
active role of 12 IRlncRNA in immune-related processes like 
inflammatory, cytokine, and defense responses, along with 
other cytokine and chemokine activities. Also, some enriched 
biological functions such as cell motility, locomotion, taxis, and 
response to lipids also show role in cancer aggressiveness and 
metastasis.74 Moreover, KEGG pathways associated with 12 
IRlncRNA signature include many pathways associated with 
cancer like TGF beta signaling and JAK/STAT signaling path-
way also having role in activation of interleukins, cytokines, 
and growth factors.75 Moreover, immune specific signaling 
such as toll-like receptor signaling pathways and natural killer 
cell-mediated cytotoxicity chemokine signaling pathways are 
also highly enriched having important roles in tumor microen-
vironment. Furthermore, using the ESTIMATE algorithm, we 
compared immune, stromal, and estimate scores to evaluate the 
tumor microenvironment and found that stromal scores were 
significantly higher in the high-risk group (Figure 9). The per-
centage of stromal cells in TME indicates the stromal score, 
and stromal cells are one of the most important components of 
TME.76 Tumor stroma, particularly cell components, plays an 
important role in the development of EC. Thus, explaining the 
higher percentage of stromal cells in the high-risk group. 
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Additionally, the CIBERSORT algorithm revealed that 
plasma cells, naive B cells, resting CD4+ memory T cells, and 
regulatory T cells were activated in the low-risk group. The 
results were in harmony with previous studies that confirmed 
that high-risk cancer patients have suppressed immune 
response compared to low-risk cancer patients.77 In contrary, 
tumor infiltrating M2 macrophages were found significantly 
higher in the high-risk group.

We also explored the role of the IRlncRNA-based risk score 
in immune checkpoint blockade (ICB) immunotherapy in EC 
patients. It was found that PD-L1 (P-value = .048), PD-L2 
(P-value = .002), and TIM-3 (P-value = .045) expression levels 
were significantly higher in low-risk patients compared to high-
risk patients (Figure 8). Suggesting that low-risk patients may 
have higher immunotherapeutic responses and giving crucial 
insights for ICB immunotherapy intervention. Although these 
findings confirm the role of 12 IRlncRNAs signature in prog-
nosis and immunotherapeutic response in EC patients using a 
bioinformatics approach. However, the validation and func-
tional characterization of these IRlncRNAs should be done 
using in-vitro cell-based molecular biology experiments such as 
qRT-PCR.

Conclusion
In this study, we have successfully identified and validated a set 
of 12 IRlncRNAs signature that hold promising potential for 
assessing the risk and prognosis of patients with EC. Through 
the analysis of survival data and the utilization of ROC curves, 
we have unequivocally demonstrated the strong predictive 
capabilities of our signature in determining the survival out-
comes of EC patients. The findings of our study not only hold 
immense significance in prognostic prediction but also offer 
valuable insights for guiding future immunotherapy approaches 
in individuals diagnosed with esophageal cancer.

Acknowledgements
The Central University of Punjab, Department of Zoology, 
supported the research by providing adequate research facilities 
and funds to Prof. Aklank Jain. University Grants Commission 
(U.G.C.), New Delhi, supported in the form of Junior Research 
Fellowship ( J.R.F.; U.G.C. ref. no.; 191620043900) under the 
NFSC scheme to Vivek Uttam.

Author Contributions
A.J. conceived the original idea; V.U. and H.S.K. planned the 
framework and performed the data analysis; V.U. and R.Y. wrote 
the manuscript, V.U. prepared the figures, and formatted the 
final manuscript according to journal guidelines; V.U., M.K.R., 
H.P., M.J., H.S.T., and A.J. contributed to the final editing of the 
manuscript; A.J. supervised and supported the research.

Availability of Data and Materials
The analyzed raw data is publicly available at The Cancer 
Genome Atlas (TCGA) database of the United States National 
Cancer Institute.

Ethics Approval and Consent to Participate
As the data is publicly available at The Cancer Genome Atlas 
(TCGA) database Ethical approval and consent of participa-
tion are not applicable.

ORCID iDs
Hardeep Singh Tuli  https://orcid.org/0000-0003-1155- 
0094
Aklank Jain  https://orcid.org/0000-0001-5539-3225

Supplemental Material
Supplemental material for this article is available online.

REfEREnCES
 1. Lou F, Sima CS, Adusumilli PS, et al. Esophageal cancer recurrence patterns 

and implications for surveillance. J Thorac Oncol. 2013;8:1558-1562.
 2. Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates 

cancer progression. Cancer Res. 2019;79:4557-4566.
 3. Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Phar-

macol Ther. 2021;221:107753.
 4. Zhang Y, Ren H, Wang L, et al. Clinical impact of tumor-infiltrating inflammatory 

cells in primary small cell esophageal carcinoma. Int J Mol Sci. 2014;15:9718-9734.
 5. Diao FY. Novel mechanism of immune evasion mediated by tumor-associated 

macrophages in esophageal squamous cell carcinoma. Thorac Cancer. 
2020;11:2383-2384.

 6. Fu LQ , Du WL, Cai MH, et al. The roles of tumor-associated macrophages in 
tumor angiogenesis and metastasis. Cell Immunol. 2020;353:104119.

 7. Tang M, Diao J, Cattral MS. Molecular mechanisms involved in dendritic cell 
dysfunction in cancer. Cell Mol Life Sci. 2017;74:761-776.

 8. Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 
2017;27:109-118.

 9. Maimela NR, Liu S, Zhang Y. Fates of CD8+ T cells in tumor microenviron-
ment. Comput Struct Biotechnol J. 2019;17:1-13.

 10. Talmadge JE, Donkor M, Scholar E. Inflammatory cell infiltration of tumors: 
Jekyll or Hyde. Cancer Metastasis Rev. 2007;26:373-400.

 11. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: under-
standing the characteristics of tumor-infiltrating immune cells and their thera-
peutic implications. Cell Mol Immunol. 2020;17:807-821.

 12. Wu Z, Li S, Zhu X. The mechanism of stimulating and mobilizing the immune 
system enhancing the anti-tumor immunity. Front Immunol. 2021;12:682435.

 13. Li R, Huang B, Tian H, Sun Z. Immune evasion in esophageal squamous cell 
cancer: from the perspective of tumor microenvironment. Front Oncol. 
2022;12:1096717.

 14. Osaki T, Saito H, Fukumoto Y, et al. Inverse correlation between NKG2D 
expression on CD8+ T cells and the frequency of CD4+CD25+ regulatory T 
cells in patients with esophageal cancer. Dis Esophagus. 2009;22:49-54.

 15. Saadi W, Fatmi A, Pallardó FV, García-Giménez JL, Mena-Molla S. Long non-
coding RNAs as epigenetic regulators of immune checkpoints in cancer immu-
nity. Cancers. 2022;15(1):184. doi: 10.3390/cancers15010184

 16. Wang W, Chen D, Zhao Y, et al. Characterization of LAG-3, CTLA-4, and 
CD8(+) TIL density and their joint influence on the prognosis of patients with 
esophageal squamous cell carcinoma. Ann Transl Med. 2019;7:776.

 17. Mahmoudian RA, Mozhgani S, Abbaszadegan MR, et al. Correlation between 
the immune checkpoints and EMT genes proposes potential prognostic and 
therapeutic targets in ESCC. J Mol Histol. 2021;52:597-609.

 18. Denaro N, Merlano MC, Lo Nigro C. Long noncoding RNAs as regulators of 
cancer immunity. Mol Oncol. 2019;13:61-73.

 19. Zhu T, Ma Z, Wang H, et al. Immune-related long non-coding RNA signature 
and clinical nomogram to evaluate survival of patients suffering esophageal squa-
mous cell carcinoma. Front Cell Dev Biol. 2021;9:641960.

 20. Tamang S, Acharya V, Roy D, et al. SNHG12: an LncRNA as a potential thera-
peutic target and biomarker for human cancer. Front Oncol. 2019;9:901.

 21. Sharma U, Barwal TS, Murmu M, et al. Clinical potential of long non-coding 
RNA LINC01133 as a promising biomarker and therapeutic target in cancers. 
Biomark Med. 2022;16:349-369.

 22. Sharma U, Kaur Rana M, Singh K, Jain A. LINC00324 promotes cell prolifera-
tion and metastasis of esophageal squamous cell carcinoma through sponging 
miR-493-5p via MAPK signaling pathway. Biochem Pharmacol. 2023;207:115372.

 23. Sharma U, Barwal TS, Malhotra A, et al. Long non-coding RNA TINCR as 
potential biomarker and therapeutic target for cancer. Life Sci. 2020;257:118035.

 24. Sharma U, Barwal TS, Acharya V, et al. Cancer Susceptibility candidate 9 

https://orcid.org/0000-0003-1155-0094
https://orcid.org/0000-0003-1155-0094
https://orcid.org/0000-0001-5539-3225


16 Cancer Informatics 

(CASC9): A Novel targetable long noncoding RNA in cancer treatment. Transl 
Oncol. 2020;13:100774.

 25. Uttam V, Rana MK, Sharma U, Singh K, Jain A. Circulating long non-coding 
RNA EWSAT1 acts as a liquid biopsy marker for esophageal squamous cell car-
cinoma: a pilot study. Noncoding RNA Res. 2024;9:1-11.

 26. Gao N, Li Y, Li J, et al. Long non-coding RNAs: the regulatory mechanisms, 
research strategies, and future directions in cancers. Front Oncol. 2020;10:598817.

 27. Pang J, Pan H, Yang C, et al. Prognostic value of immune-related multi-IncRNA 
signatures associated with tumor microenvironment in esophageal cancer. Front 
Genet. 2021;12:722601.

 28. Liao Q , Liu C, Yuan X, et al. Large-scale prediction of long non-coding RNA 
functions in a coding–non-coding gene co-expression network. Nucleic Acids Res. 
2011;39:3864-3878.

 29. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a 
knowledge-based approach for interpreting genome-wide expression profiles. 
Proc Natl Acad Sci USA. 2005;102:15545-15550.

 30. Fang P, Zhou J, Liang Z, et al. Immunotherapy resistance in esophageal cancer: 
possible mechanisms and clinical implications. Front Immunol. 2022;13:975986.

 31. Dinh HQ , Pan F, Wang G, et al. Integrated single-cell transcriptome analysis 
reveals heterogeneity of esophageal squamous cell carcinoma microenvironment. 
Nat Commun. 2021;12:7335.

 32. Park EG, Pyo SJ, Cui Y, Yoon SH, Nam JW. Tumor immune microenvironment 
lncRNAs. Brief Bioinform. 2022;23:1-25. doi: 10.1093/bib/bbab504

 33. Chen Y, Luo TQ , Xu SS, et al. An immune-related seven-lncRNA signature for 
head and neck squamous cell carcinoma. Cancer Med. 2021;10:2268-2285.

 34. Xiao B, Liu L, Li A, et al. Identification and validation of immune-related lncRNA 
prognostic signatures for melanoma. Immun Inflamm Dis. 2021;9:1044-1054.

 35. Shen Y, Peng X, Shen C. Identification and validation of immune-related 
lncRNA prognostic signature for breast cancer. Genomics. 2020;112:2640-2646.

 36. Yu W, Ma Y, Hou W, et al. Identification of immune-related lncRNA prog-
nostic signature and molecular subtypes for glioblastoma. Front Immunol. 
2021;12:706936.

 37. Ye Y, Xu Y, Lai Y, et al. Long non-coding RNA cox-2 prevents immune evasion 
and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage 
polarization. J Cell Biochem. 2018;119:2951-2963.

 38. Xu QR, Tang J, Liao HY, et al. Long non-coding RNA MEG3 mediates the 
miR-149-3p/FOXP3 axis by reducing p53 ubiquitination to exert a suppressive 
effect on regulatory T cell differentiation and immune escape in esophageal can-
cer. J Transl Med. 2021;19:264.

 39. Liu J, Zhou WY, Luo XJ, et al. Long noncoding RNA regulating ImMune escape 
regulates mixed lineage leukaemia protein-1-H3K4me3-mediated immune escape 
in oesophageal squamous cell carcinoma. Clin Transl Med. 2023;13:e1410.

 40. Zhang Z, Wang J, Han W, Zhao L. Novel chemokine related LncRNA signa-
ture correlates with the prognosis, immune landscape, and therapeutic sensitivity 
of esophageal squamous cell cancer. BMC Gastroenterol. 2023;23:132.

 41. Zhang X, Feng N, Wu B, et al. Prognostic value and immune landscapes of 
cuproptosis-related lncRNAs in esophageal squamous cell carcinoma. Aging. 
2023;15:10473-10500.

 42. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): 
an immeasurable source of knowledge. Contemp Oncol. 2015;19:A68-A77.

 43. Zhu S, Zhang G, You Q , et al. Stemness-related gene signature for predicting 
therapeutic response in patients with esophageal cancer. Transl Cancer Res. 
2022;11:2359-2373.

 44. He Z, Liu H, Guan H, et al. Construction of a prognostic model for hypoxia-
related LncRNAs and prediction of the immune landscape in the digestive sys-
tem pan-cancer. Front Oncol. 2022;12:812786.

 45. Niu R, Zhao F, Dong Z, Li Z, Li S. A stratification system of ferroptosis and 
iron-metabolism related LncRNAs guides the prediction of the survival of 
patients with esophageal squamous cell carcinoma. Front Oncol. 2022;12: 
1010074.

 46. Chen Y, Zhou H, Wang Z, et al. Integrated analysis of ceRNA network and tumor-
infiltrating immune cells in esophageal cancer. Biosci Rep. 2021;41:BSR20203804. 
doi:10.1042/BSR20203804

 47. Stabenau KA, Samuels TL, Lam TK, et al. Pepsinogen/proton pump Co-
expression in Barrett's esophageal cells induces cancer-associated changes. 
Laryngoscope. 2023;133:59-69.

 48. Zhang Y, Shen L, Wang B, Wu X. Ethanolamine-phosphate phospho-lyase 
(ETNPPL) contributes to the diagnosis, prognosis, and therapy of hepatocellu-
lar carcinoma. PeerJ. 2023;11:e15834.

 49. Lin J, Lin L, Thomas DG, et al. Melanoma-associated antigens in esophageal 
adenocarcinoma: identification of novel MAGE-A10 splice variants. Clin Cancer 
Res. 2004;10:5708-5716.

 50. Sun G, Chen H, Xia J, et al. Diagnostic performance of anti-MAGEA family 
protein autoantibodies in esophageal squamous cell carcinoma. Int Immunophar-
macol. 2023;125:111041.

 51. Zambon A, Mandruzzato S, Parenti A, et al. MAGE, BAGE, and GAGE gene 
expression in patients with esophageal squamous cell carcinoma and adenocarci-
noma of the gastric cardia. Cancer. 2001;91:1882-1888.

 52. Wang M, Song Q , Song Z, Xie Y. Development of an immune prognostic model 
for clear cell renal cell carcinoma based on tumor microenvironment. Horm 
Metab Res. 2023;55:402-412.

 53. Ahmad R, Wojciech S, Jockers R. GPR50 in TGFβ signaling and breast cancer. 
Oncoscience. 2018;5:157-158.

 54. Zhao W, Xi L, Yu G, Wang G, Chang C. High expression of GPR50 promotes 
the proliferation, migration and autophagy of hepatocellular carcinoma cells in 
vitro. J Cell Commun Signal. 2023;17:1435-1447.

 55. Liu Y, Yao Y, Zhang Y, et al. Identification of prognostic stemness-related 
genes in kidney renal papillary cell carcinoma. BMC Med Genomics. 2024; 
17:121.

 56. Du Z, Jiang Y, Yang Y, et al. A multi-omics analysis-based model to predict the 
prognosis of low-grade gliomas. Sci Rep. 2024;14:9427.

 57. Weber R, Meister M, Muley T, et al. Pathways regulating the expression of the 
immunomodulatory protein glycodelin in non-small cell lung cancer. Int J Oncol. 
2019;54:515-526.

 58. Ren S, Chai L, Wang C, et al. Human malignant melanoma-derived progesta-
gen-associated endometrial protein immunosuppresses T lymphocytes in vitro. 
PLoS One. 2015;10:e0119038.

 59. Seppälä M, Koistinen H, Koistinen R, et al. Glycodelin in reproductive endocri-
nology and hormone-related cancer. Eur J Endocrinol. 2009;160:121-133.

 60. Ogunnigbagbe O, Bunick CG, Kaur K. Keratin 1 as a cell-surface receptor in 
cancer. Biochim Biophys Acta Rev Cancer. 2022;1877:188664.

 61. Han Q , Sun ML, Liu WS, et al. Upregulated expression of ACTL8 contributes 
to invasion and metastasis and indicates poor prognosis in colorectal cancer. Onco 
Targets Ther. 2019;12:1749-1763.

 62. Yang P, Qiao Y, Meng M, Zhou Q. Cancer/testis antigens as biomarker and tar-
get for the diagnosis, prognosis, and therapy of lung cancer. Front Oncol. 
2022;12:864159.

 63. Li X, Ning L, Zhang Q , et al. Expression profile of ACTL8, CTCFL, OIP5 
and XAGE3 in glioma and their prognostic significance: a retrospective clinical 
study. Am J Transl Res. 2020;12:7782-7796.

 64. Li B, Zhu J, Meng L. High expression of ACTL8 is poor prognosis and acceler-
ates cell progression in head and neck squamous cell carcinoma. Mol Med Rep. 
2019;19:877-884.

 65. Fan S, Yan S, Yang Y, Shang J, Hao M. Actin-like protein 8 promotes the pro-
gression of triple-negative breast cancer via activating PI3K/AKT/mTOR path-
way. Onco Targets Ther. 2021;14:2463-2473.

 66. Zhang Y, Gan H, Zhao F, et al. CPEB4-promoted paclitaxel resistance in ovar-
ian cancer in vitro relies on translational regulation of CSAG2. Front Pharmacol. 
2020;11:600994.

 67. Zou C, Shen J, Tang Q , et al. Cancer-testis antigens expressed in osteosarcoma 
identified by gene microarray correlate with a poor patient prognosis. Cancer. 
2012;118:1845-1855.

 68. Lin C, Mak S, Meitner PA, et al. Cancer/testis antigen CSAGE is concurrently 
expressed with MAGE in chondrosarcoma. Gene. 2002;285:269-278.

 69. van Dam S, Võsa U, van der Graaf A, Franke L, de Magalhães JP. Gene co-
expression analysis for functional classification and gene-disease predictions. 
Brief Bioinform. 2018;19:575-592.

 70. Wang L, Wang X, Yan P, Liu Y, Jiang X. LINC00261 suppresses cisplatin resis-
tance of esophageal squamous cell carcinoma through miR-545-3p/MT1M 
Axis. Front Cell Dev Biol. 2021;9:687788.

 71. Yan S, Xu J, Liu B, et al. Integrative bioinformatics analysis identifies 
LINC01614 as a potential prognostic signature in esophageal cancer. Transl Can-
cer Res. 2021;10:1804-1812.

 72. Xie JJ, Jiang YY, Jiang Y, et al. Super-enhancer-driven long Non-Coding RNA 
LINC01503, regulated by TP63, is over-expressed and oncogenic in squamous 
cell carcinoma. Gastroenterology. 2018;154:2137-2151.e1.

 73. Yan Y, Li S, Wang S, et al. Long noncoding RNA HAND2-AS1 inhibits cancer 
cell proliferation, migration, and invasion in esophagus squamous cell carcinoma 
by regulating microRNA-21. J Cell Biochem. 2019;120:9564-9571.

 74. Roussos ET, Condeelis JS, Patsialou A. Chemotaxis in cancer. Nat Rev Cancer. 
2011;11:573-587.

 75. You Z, Xu D, Ji J, et al. JAK/STAT signal pathway activation promotes progres-
sion and survival of human oesophageal squamous cell carcinoma. Clin Transl 
Oncol. 2012;14:143-149.

 76. Mao M, Yu Q , Huang R, et al. Stromal score as a prognostic factor in primary 
gastric cancer and close association with tumor immune microenvironment. 
Cancer Med. 2020;9:4980-4990.

 77. Zhang E, Ding C, Li S, et al. Roles and mechanisms of tumour-inf iltrating 
B cells in human cancer: a new force in immunotherapy. Biomark Res. 
2023;11:28.


