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Abstract

Re-evaluation of statistical analysis of the Randomised Badger Culling Trial (RBCT) by Torgerson et al. 

2024 was rebutted  by Mills et al. 2024 Parts I and II. The rebuttal defended the use of count rather than rate 

when considering bovine tuberculosis herd incidence. The defence makes biologically implausible use of 

Information Criterion for appraisal diagnostics;  overfits data; and has erroneous Bayesian analyses. It 

favours ‘goodness of fit’ over ‘predictive power’, for a small data set, when the study was to inform 

application. Importantly, for ‘total’ bTB breakdown: (‘confirmed’ (OTF-W) +‘unconfirmed’ (OTF-S)), where 

modern interpretation of the main diagnostic bTB test better indicates the incidence rate of herd breakdown, 

there is no effect in cull and neighbouring areas, across all statistical models. The RBCT was a  small, single 

experiment with unknown factors. With respect to the paradigm of reproducibility and the FAIR principles, 

the original RBCT analysis and recent efforts to support it are wholly unconvincing. The 2006 conclusion of 

the RBCT that “badger culling is unlikely to contribute positively to the control of cattle TB in Britain” is 

supported, but the route to such a position is revised in the light of modern veterinary understanding and 

statistical reappraisal.

1. Introduction

The Randomised Badger Culling Trial (RBCT) (1,2) was  an  experiment with ten intervention-

control comparison areas, designed to investigate if culling of  European badger Meles meles, by 

trapping and shooting across wide areas in England (Proactive culling)  could have an effect on the 

incidence of tuberculosis (bTB) in cattle herds. The RBCT proactive cull analyses were first 
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published in Nature in 2006 (2) [“the 2006 paper”] and indicated that such an effect existed. Two 

separate re-evaluations of data from the 2006 paper have produced one view of badger culling 

having no effect on bTB herd incidence (rates)(3) and two where an effect is said to be 

supported(4,5). 

Much of the debate surrounds the use of Bayesian information criterion (BIC) and small 

sample size Akaike information criterion (AICc) criteria. Mills et al. (4,5)  are reliant on the use 

BIC in frequentist model diagnostics stating ”We recall here that unlike AIC (and AICc) which 

measure predictive accuracy, BIC measures goodness-of-fit”. Consequently Mills et al. concluded 

that the BIC approach selected the model with the best "goodness of fit" and therefore the 2006 

paper findings (2) were “robust”. The optimal model proposed by Torgerson et al. (3) performed far 

better by AICc criteria (ie “predictive accuracy”).  There is, therefore, some agreement between the 

two analyses. Torgerson et al. (3) who published first, stated that the preferred model, first reported 

in 2006 (3), is now "useful in reference only to its initial data set, which would include the specific 

idiosyncrasies of the data within each triplet, but it would have little predictive power". Predicting 

the outcome of widespread badger culling was the aim of the RBCT and, therefore, model selection 

from the perspective of predictive power more closely aligns with the RBCT’s applied 

interpretation.

Concerns over the position of Mills et al. (4,5) include a failure to address the biological 

implausibility of the methods of analysing incidence rate and the importance of incorporating 

diagnostic error in the analysis consistent with sound epidemiological practice. When analysis is 

adjusted for diagnostic error: i.e. models that encompass total herd breakdowns, which included 

unconfirmed breakdowns (OTF-S), there is no evidence of an effect of badger culling on bovine 

tuberculosis. This finding is consistent across all statistical models utilized in the analysis of the 

RBCT data and all four analyses(2–5) agree that using all test reactors show no effect was present. 

This contrasts with the models that examine only confirmed breakdowns (OTF-W). Taking all these 

issues together, it is concluded that the RBCT failed to provide evidence that culling of badgers had 

any significant effect on the incidence of bovine tuberculosis in cattle herds. Further, the Bayesian 

approach as presented by Mills et al. (4,5)  has too many errors in the model code, and reported 

effect sizes, to be functional.

 Recent scrutiny of the 2006 paper data ‘confirmed’ breakdowns only data suggests that its 

findings are unsound (3). Mills et al. (4,5) who included two of the authors of the original RBCT 

study, present a detailed analysis of the RBCT data from both within cull areas and their 

neighbouring (surrounding) areas and conclude that the RBCT finding are “robust”. The two 

publications of Mills et al. (4,5)  draw almost entirely on the peer reviewed publication (3) which 

provided contrary evidence. The  detailed and extensive use of statistical appraisal and diagnostic 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 20, 2024. ; https://doi.org/10.1101/2024.09.18.613634doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.18.613634
http://creativecommons.org/licenses/by-nc-nd/4.0/


techniques used by Mills et al. (4,5) were examined in the present study  to assess the strength of 

their claims, using the same methods of model appraisal and diagnostics and to check initial, more 

obvious concerns  with the Bayesian analysis which might change or  invalidate their conclusions.

Further information on study justification and context is provided in the supplementary 

information 1.

2. Effect of proactive badger culling on incidence of bovine tuberculosis in cattle.

The original statistical model that analysed RBCT data was a log-linear Poisson regression, with 

number of incident cases as the dependent variable, and Treatment (culled or not culled), log of 

historical incident cases, Triplet (experimental pairs with a culled group and not culled group) and 

log of the number of herds as explanatory variables. Treatment effect was highly significant, 

concluding that culling badgers reduced the number of bTB herd incidents in cattle (2). Torgerson 

et al. (3) found that this conclusion was not reliable. However, Mills et al. (4,5) used several 

appraisal methods to imply the statistical model used to analyse RBCT data resulted in “robust” 

results. Table 1 presents finding and appraisal analytics for the  model used to analyse the RBCT 

data in (2) and three other models. Model 1 is used to defend the original conclusions first published 

in the 2006 paper. These four models are presented to clearly demonstrate the statistical issues at 

hand. Further details including statistical code are available in the supplementary information 2 & 3 

and data files 4.

Insert Table 1 here

2.1. Incidence rates and counts

The unit of comparison for the RBCT data between culled and control areas is fundamental to the 

interpretation and robustness of the results in Nature (2) and the restatement in Mills et al. (4,5). 

Rates are the number of herd breakdowns per unit herd per unit time. That is they can be used to 

assess any difference in herd incidence by correctly adjusting for sample size and time of exposure. 

Counts are the unadjusted number of herd breakdowns without any reference to numbers of herds or 

time of observation in the sample. Although rates are specified in the 2006 paper (2), it was counts 

that were statistically modelled. Mills et al. (4) claimed this model (Model 1) was nevertheless 

“robust” as it passed many (but not all) of the statistical appraisal methods and post hoc analyses. 

Model 1 used the number of herds as an explanatory variable rather than as a denominator. It can be 

simply converted to a rate by use of the variable as an offset, which as Mills et al. (4) correctly 

explain: “Another possible option for a Poisson regression model is the usage of an offset variable 
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which enables modelling the count variable (here confirmed herd breakdowns) as a rate, and the 

usage of an offset variable means that the corresponding regression coefficient is constrained to be 

1.” The algebraic derivation of this for Poisson regression models has long been known, but is 

restated in Torgerson et al. (3). However in Model 1, with the unconstrained variable of log(number 

of herds), the parameter value is 0.04 which is very close to, and not significantly different, from 

zero. The interpretation of this is that the number of herd breakdowns does not vary with the 

number of herds (that is the count remains the same regardless of sample size). This approach is 

biologically implausible. Mills et al. (4), states: “Alternatively, assuming an offset variable not be 

supported by evidence (i.e. the number of events may increase non-proportionally with the 

population at risk) one could use an unconstrained regression coefficient and hence, instead of 

assuming the slope for the variable is exactly 1, the slope parameter is estimated.” This is also 

discussed in detail in Torgerson et al. (3).  However, in the purported “robust” model there is no 

“non proportional increase in the counts with increase sample size”. Indeed there is no increase at 

all. Thus the model must be misspecified and misleading even if claimed statistical checks suggest 

otherwise. This exemplifies the tension between plain statistical approach and the experience of the 

epidemiologist. This substantial problem  can be managed  in two ways. Firstly by having an offset 

variable rather than an unconstrained variable. When this is done (Model 2) and corrected for 

overdispersion, the treatment effect of culling becomes non-significant. Secondly by removing the 9 

free parameters of Triplet. There is strong evidence of collinearity of the variable triplet and 

removal from the model leaves to a dramatic fall in the AICc. When triplet is removed, but the 

parameter coefficient is unrestrained, the value of new coefficient of the exposure variable becomes 

0.64. If corrected for overdispersion (i.e. the generalized Poisson model), the upper confidence 

interval is close to 1. This is at least  biologically plausible as there is an increase in counts with 

sample size. Removing the variable of Triplet also results in no significant effect of culling when 

the model is corrected for overdispersion. Similar issues can be identified in the analysis of post-

trial period  (See supplementary material 2 & 3).

2.2. Model appraisal and diagnostics

Mills et al. (4,5) make extensive use of model diagnostics to suggest that the 2006 (2)  results were 

“robust”. In particular they use small sample size Akaike information criterion (AICc), Bayesian 

information criterion (BIC), leave-one-out cross validation (LOOCV) and posterior predictive 

checks (PPC). In all cases the AICc of the optimal model published in Torgerson et al. (3) has 

substantially lower AICc than Model 1 defended by Mills et al. (4) as “robust”.  In addition the 

LOOCV values are better (Table 1). This is accepted, however Mills et al. dismissed the use of 

AICc (a standard diagnostic for statistical performance, especially when there is a small sample 
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size) as being useful only as a “predictive diagnostic” but would rather use the BIC as it gives 

“better performance for goodness of fit.” Leaving aside the point that a predictive model would be 

a better outcome for a trial of the type conducted, which is used to inform wild animal culling 

policy, the BIC of the model reported in the 2006 paper (155.24) (Table 1, Model 1) is only 

marginally better than the optimal model reported by Torgerson et al. (3) (155.52) (Table 1, Model 

8). The difference is so small that it can be dismissed as useful for model selection.  As can be seen 

in Table 1, Model 8 in terms of AICc is far superior compared to Model 1. This suggests, by Mills et 

al.(4)  own arguments, that it has far better predictive powers. The LOOCV values also perform 

better with the Model 8 (8.81), compared to Model 1 (9.97). Mills et al. (5)  state that LOOCV 

approximates to “model generalizability”. LOOCV also indicates that out of sample best predictive 

model does not contain the culling effect. Consequently any such “effect” is likely to be specific to 

the areas used, not the population the experiment was supposed to represent.  Similar issues can be 

identified in the models from to the time to follow up models (detailed in supplementary material). 

In addition, for cross validation, LOOCV methods are preferable as bias is negligible (6).

Mills et al. (4) claim that a visual PPC indicates that posterior predictive distribution of the 

model originally reported in Donnelly et al. (2)  (Model 1, Table 1)  resembles the observed data. In 

contrast, they claim for the model with the lowest AICc (Model 8, Table 1) the PPC check implies 

potential model misfit due to systematic discrepancies between model-predicted data and confirmed 

incidence. The crucial issue with PPC is that it uses the data twice (7). The data are first used for 

estimating the model and then, for checking if the model fits the data. Essentially PPC checks how 

close the observations are to the model predictions, but the model parameters are dependent on the 

observations. LOOCV, in which model 8 performs better avoids this issue. Also Mills et al. relied 

on a visual PPC. However, this can appear markedly different between simulations. Further details 

are given in the the supplementary material (supplementary material 2). 

2.3. Overfitting

Mills et al. have neglected the overfitting issue. This explains why, generally, Model 1 has poorer 

diagnostics (i.e. AICc, LOOCV) than the optimal Model 8. Model 1 has 13 free parameters with 

only 20 data points; while Model 8 has just 3 free parameters (2 predictors and 1 to model 

overdispersion), with generally better model diagnostics. There has been much debate in the 

statistical literature surrounding the number of predictors compared to the number of data points.  

Depending on the type of study and statistical model this has been suggested to be as little as 5 (8). 

The preferred model of Mills et al.(4) has 13 predictors for 20 data points. Although it satisfies the 

p<n rule (p is the number of predictors and n the number of data points) so avoids saturation 

(although not by much), there are clear issues of the potential for overfitting. It is also notable that 
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Model 1 has a higher AICc than the null model or intercept only (generalised Poisson) model with 

no predictors. One suggested  solution to the problem of overfitting is to combine dichotomous 

variables into a continuous variable (8). Model 8 effectively does this my combining all the 10 

dichotomous variables of Triplet into a single continuous one of years at risk (further details in the 

supplementary material).

2.4. Quasipoisson model

Mills et al. make an issue of the quasipoisson model, highlighting that model comparisons cannot 

be made due to no likelihood structure. But the use of a generalized Poisson model deals with this 

issue for model comparison (3) and avoids this unnecessary distraction.

2.5. Modern interpretation of SICCT test reactors

In epidemiological studies, diagnostic tests are frequently used to categorize animals or groups of 

animals into diseased categories and non-diseased categories. This is almost always undertaken 

with the use of diagnostic test(s). Diagnostic tests rarely, if ever, have a diagnostic accuracy of 

100%: that is both the sensitivity and specificity of the test is 100%. Modern epidemiological theory 

demands that analyses should, as much as possible, include the diagnostic error of the test in the 

analysis (9). Such adjustments are increasingly used, such as modelling the covid-19 pandemic (10). 

bTB should be no exception. The comparative intradermal skin test (SICCT) is the primary 

screening test for this purpose and was used in the RBCT trial. Recent work has shown that the 

specificity of the SICCT was close to 100% at standard interpretation (11), but with a low 

sensitivity. Mills et al. (4)  have avoided detailed mention the key analytical issue of whether  

“unconfirmed” breakdowns should be included. However it is clear that the analysis was undertaken 

as it is documented in their supplementary material. ‘Unconfirmed’ breakdowns, as defined in the 

ISG report (1) and elsewhere are when one or more cattle in the herd test positive for the SICCT 

test but cannot be confirmed by finding lesions and/or a positive culture of Mycobacterium bovis at 

necropsy. Because the test specificity of the SICCT test is 100%, these animals would almost 

certainly have had bTB, and the inability to confirm it at post mortem was likely due to the poor 

sensitivity of necropsy. The later has an estimated sensitivity of 46% by routine meat inspection and 

76% by detailed necropsy in the laboratory (11) 

RBCT cattle that were SICCT positive, but had no visible lesions, at post mortem were  

likely in the earlier stages of infection. Therefore, in hindsight, they are essential in the analysis of 

an experiment that was designed to monitor any effect of an intervention on the rate of new 

infections in cattle herds. There was no evidence of an effect of badger culling on total number of 

herd breakdowns (confirmed and unconfirmed together) either in the 2006 (2) analysis or in the 
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more extensive recent analysis (3). Mills et al. (4)  neglect to mention that the model from 2006 

fails to give any indication of a cull effect on total breakdowns, but rather preferred to be critical of 

the Torgerson et al. (3)  re-evaluation analysis. For example, it is worth noting that the critiqued 

quasipoisson approach (supplement Mills et al.(4)) has 2 data points classified has highly 

influential. The same analysis of the model from 2006 indicates 4 influential data points, which is, 

surprisingly, not mentioned. However, arguments surrounding the model fitting for the total 

breakdowns can be put aside. All models give the same result implying that badger culling has no 

effect on total breakdowns regardless of modelling approach.  This supports the approach to be the 

most  robust consistent and strongest result and further implies that conclusion

In 2006 (2), Donnelly et al. stated “Our finding that widespread culling of badgers has 

simultaneous positive and negative effects on the incidence of TB in cattle has important 

implications for the development of sustainable control policies. We would expect the overall 

reduction in cattle TB to be greatest for very large culling areas (with consequently lower 

perimeter:area ratios), although in absolute terms the costs, as well as the benefits, will be greatest 

for large areas. Detailed consideration is needed to determine whether culling on any particular 

scale would be economically and environmentally sustainable.” Further in 2015, Donnelly and 

Woodroffe who are co-authors on the Mills et al. manuscripts, based on evidence from the RBCT 

also predicted that, “better prospects for the control of cattle TB are offered by badger populations 

that are either reduced by more than 70% or left undisturbed — and potentially vaccinated”(12). In 

other words they were using their results in a highly predictive manner to argue how a reduction in 

bTB would be achieved in practice. However, in 2024, Mills et al. (4) set aside their own analysis 

as inferior in “predictive accuracy.”  The models with better predictive accuracy would suggest no 

overall reduction in bTB even over large culling areas. 

3. Bayesian Analysis

Mills et al. (4,5) purportedly support their conclusions with a series of Bayesian models. They 

compare their models with similar Bayesian models proposed by Torgerson et al. (3). The 

equivalent models to those in Torgerson et al are defined in the supplementary material of Mills et 

al. (4,5).  There are important issues that invalidate all of the Bayesian modelling presented by 

Mills et al. Firstly, there was a false claim that several models are a direct comparison to those of 

Torgerson et al. When examining the code and the effect size of culling it becomes apparent that the 

models are not the same. Other models claim to use an offset but due to coding errors the offset is 

omitted and the results of the analysis are without the offset. The issues of the Mills et al. Bayesian 

models are summarized in Table 2. 
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From the Bayesian paradigm it is important to note the use of model selection techniques, 

such as Bayes factors, which account for the complexity of the model (compare  model rs2B with rs 

in Torgerson et al. (3), for example). Here, it can clearly be shown that the models without Triplet 

and Treatment as covariates are better supported by many orders of magnitude compared to those 

including these explanatory variables. Thus, the conclusion is that evidence points to no effect of 

culling on bTB herd incidence rates. Leaving aside the errors documented in Table 2, Mills et al 

made no comparisons or efforts at model selection.  Mills et al.  simply concluded that there was a 

greater probability of culling having an effect, with no comparison to suitable null models. An 

advantage of the use of Bayes factors is that it automatically penalizes the inclusion of too much 

model structure guarding against over fitting. As we have seen with the frequentist models, the 

modelling of 13 explanatory variables with just 20 data points is at high risk of over-fitting. 

4. Statistical audit

One of the peer reviewers (13) of Mills et al. (4) requested further details of the statistical audit , 

which we now provide. Throughout the text Mills et al. repeatedly state that the statistical analyses 

of the RBCT were “pre-defined and also independently audited by a statistical auditor” as a further 

justification to defend the results of the RBCT. This is considered further in our supplementary 

material (supplementary file 1). Our analysis focussed mainly on Poisson regression models (and 

their over dispersed analogues). It is also interesting that, in the first report of the statistical auditor, 

it was stated that, “to some extent, the number of triplets and the years of observation are 

interchangeable”(14). This interchange is implemented when herd years at risk is used as an 

explanatory or offset variable and such an implementation fails to demonstrate an effect of culling 

(see models 6 and 4d in Table 1). Further details are in the supplementary file 1. Thus, in the RBCT 

this alternative analysis implied by the statistical auditor, if done, was not reported. In addition, the 

statistical auditor recommended that the primary analysis should consist of “log number of 

breakdowns per trial area in the form: Treatments; Triplets; Treatment x Triplets; Poisson error”. 

Including an interactive term of Treatment x Triplet leads to a saturated model (at least 20 predictors 

for 20 data points) and, hence, is invalid. This is also evidence that the “independent audit” was 

inadequate. The only method by which such an interaction can be analysed is by replacing Triplet 

with herd years at risk and, therefore, having sufficient degrees of freedom to avoid saturation. Such 

an analysis demonstrates no evidence for a culling effect (see supplementary information 2).

5. Neighbouring area study, Mills et al 2024b

5.1. Frequentist approach
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The statistical concerns relating to the study of neighbouring areas beyond the boundary of badger 

cull areas, are similar to those issues found in Mills et al. 2024a (4) We summarize them in Table 3. 

Further details can be found in the  supplementary information (supplementary files 1&2). Mills et 

al. 2024b (5) also did not report any effect on total breakdowns, which were analysed in Torgerson 

et al. (3)

Insert table 3

5.2. Bayesian approach

The issues in the Bayesian approach in Mills et al. 2024b (5) are similar to those in Mills et al. 

2023A (4) and are summarized in Table 4. It is worth noting that model d.2, (one model that was 

correctly coded) by their own analysis, “ does not contain the implausibly large synthetic model-

based predictions; furthermore, the estimated out-of-sample predictive accuracy (measured by LOO  

ELPD) and, hence, the generalizability of the model are improved”. Nevertheless, Mills et al. 

dismiss it because it “does not account for any effect of culling”. Here the key point is that the 

modelled incidence is independent of culling (i.e. culling has no effect). Furthermore, this model is 

supported substantially by Bayes factors compared to the original model used in the RBCT (model 

e, without offset). Here model d.2. is favoured over model e by a Bayes factor of 183. Such a value 

is decisive (15)  thus completely discounting any effect of culling.

Insert table 4.

6. Scientific Reproducibility

The present study together with those of Mills et al. (4,5), Torgerson et al. (3) and Donnelly et al. 

(2) makes an important case study with respect to the paradigm of reproducibility and compromises 

of the FAIR principles(16), as demonstrated by this comment. Also a recent manuscript which 

implies a reduction in bTB is due to badger culling implemented from 2013 onwards and was 

“roughly consistent with previously reported effects of interventions including RBCT” (17). 

However, this interpretation can be dismissed. Badger culling was implemented concurrently with 

improved cattle measures, such as enhanced testing. The analysis only looked at changes in areas 

where cattle measures and culling were introduced concomitantly. There was no reference to a 

comparator where only cattle measures were undertaken throughout the study period. Thus any 

change in bTB incidence can equally well be attributed to cattle measures rather than badger 

culling.
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7. Conclusions

In the frequentist approach to the examination of the 2006 RBCT data (2) both within and beyond 

badger cull areas, there are 3 main issues: i.) the use of counts rather than rates as the response 

variable, ii.) over fitting by using too many parameters for the number of data points and iii.) 

modelling of ‘confirmed’ breakdowns only rather than total (OTFW+OTFS) breakdowns. Mills et 

al. (4,5) fail to address all three issues adequately and use BIC above all other appraisal techniques 

to “confirm” that the original analysis in Nature was ‘robust’. This is justified on the basis that BIC 

is optimal for ‘goodness of fit’. In contrast, Torgerson et al. (3) addresses these issues and 

concludes, through the use of AICc and, amongst other evidence, that models with best predictive 

powers do not show an effect of culling. All models, regardless of method of statistical inference 

and modelling approach confirm that proactive culling of badgers had no influence on total herd 

breakdowns. 

The Bayesian analysis of Mills et al. (4,5) has too many errors to be able to provide a full 

critique. But referring back to the analysis of Torgerson et al. (3) models that show that incidence 

(rates) are independent of culling are far better supported statistically, such as by Bayes factors, than 

models which suggest an effect of culling.

Mills et al. (4,5)  state “Our extension to a wide array of statistical techniques and study 

periods allows us to make robust conclusions regarding the effects of proactive badger culling 

which are informed by consistent scientific evidence from trial data, irrespective of which approach  

to statistical inference is taken.” This statement is demonstrably untrue because the analysis of 

“confirmed breakdowns” show that the effects of culling are not consistent and are highly 

dependent on the approach to statistical inference, as demonstrated in the present study, in 

Torgerson et al. (3)  and indeed in Mills et al. (4,5). However, the finding of an absence of any 

effect on badger culling on the incidence of bTB, when total breakdowns (i.e. “confirmed” and 

“unconfirmed” OTF-W +OTF-S) are considered, is a robust conclusion irrespective of which 

approach to statistical inference is taken.

Donnelly, the senior author of the Mills et al. papers, in a commentary in the journal 

Biostatistics stated “ the suggestion of requiring independent replication of specific statistical 

analyses as a general check before publication seems not merely unnecessary but a misuse of 

relatively scarce expertise”(18). In view of the numerous anomalies in the Bayesian analysis, 

divergent conclusions dependent on statistical inference and model, and other misconceptions 

presented in Mills et al. (4,5) this idea needs revisiting.  In addition, the reviewers of manuscripts 

under consideration for publication should consider more rigorous checks of statistical analyses.
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The RBCT was a relatively small, single study with several destabilising factors that may 

not have been clear at the time and that interfered with the experiment. With respect to the paradigm 

of reproducibility and the FAIR principles, the original  RBCT analysis and recent efforts to support 

it are wholly unconvincing.  The 2006 conclusion of the RBCT that “badger culling is unlikely to 

contribute positively to the control of cattle TB in Britain” is supported (1). However, the route to 

such a position is revised in the light of modern veterinary understanding and statistical reappraisal.
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Table 1. A selection of the frequentist models analysed in Mills et al 2024(4) and Torgerson et al.2024(3). This compares the original model from(2) (and 
its equivalent in generalized Poisson form). Mills et al. 2024a claim to be a robust interpretation of the RBCT results and “strongly” supports an effect of 
proactive badger culling upon bTB herd incidence. The present study compares this to those models with the lowest AICc values which provide no 
support for an effect of culling.
Models 
from 
Mills et 
al.

Equivalent 
in 
Torgerson 
et al.

Structure Estimated 
effect of 
culling (95% 
CI)

BIC AICc LOOCV 
RMSE

Number of 
estimated 
parameters

Parameter for 
exposure 
(95% CI)

Comments

1 1 original 
Poisson GLM

−18.7% 
(−29.5%, 
−6.2%)

155.2 203.0 9.97 13 0.05 (-0.44, 
0.53

Very high AICc indicates poor predictive 
powers. Exposure parameter not 
significantly different from zero indicating 
implausibility.

3 3 original GLM 
in generalized 
Poisson form

−18.7% 
(−24.6%, 
−12.3%)

147.1 217.2 9.95 13+1* 0.04 (-0.21, 
0.30)

Very high AICc indicates poor predictive 
powers. Exposure parameter not 
significantly different from zero indicating 
implausibility.

4 3a generalized 
Poisson 
(without any 
culling effect)

None 161.7 160.4 10.93 3+1* 0.66 (0.33, 
0.98)

Low AICc, plausible parameter for 
exposure parameter

8 4d generalized 
Poisson with 
herd-years-at-
risk covariate 
without any 
culling effect

None 155.5 154.2 8.81 3+1* 0.51 (0.32, 
0.70)

Lowest AICc of all the Poisson family 
models, indicating the best predictive 
power. Lowest LOOCV RSME indicating 
generalizability. Exposure parameter is 
significantly higher than zero, indicating 
plausibility, although as it is somewhat less 
than 1 it might indicate the offset model 
would be more appropriate. 

Null Generalised 
Poisson model 
with no 
predictors

NA 178.1 176.8 17.29 1+1* NA Null intercept only model (when correcting 
for overdispersion) has lower AICc than 
model 1 and 3.

*Additional parameter in generalized Poisson models to model overdispersion
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Table 2: A selection of Bayesian models for confirmed bTB herd breakdowns from initial cull until 4 September 2005 within proactive culling/control 
areas of the RBCT experiment. The original, frequentist Poisson GLM used in Donnelly et al. in 2006(2) was re-specified in the Bayesian paradigm in the 
initial preprint, subsequently published paper by Torgerson et al.(3).  However the Model rs was not specified by a negative binomial likelihood, although 
Mills et al. 2024a(4) reported it as Model a1 in error. Other error and inconsistencies between those reported in Mills et al. 2024a(4) and Torgerson et al.
(3) initial preprint and paper (see supplementary files 1 & 2 ) for the Bayesian analysis paradigm (tables 2a and 2b in Mills et al. 2024(4)  are summarized 
here). In total of the 8 models specified in tables 2a and 2b of Mills et al. 2024a, 5 had errors. Hence the analysis cannot be relied upon for any of the 
Bayesian analyses in Mills et al. 2024a(4).

Model from 
Mills et al. 
2024a

Model from 
Torgerson et al.  
2024.

Issue of concern Notes Conclusions

a.1. rs1 a.1 is not a correct representation of model rs. 
a.1.Uses negative binomial family model with a 
strongly informative exponential prior distribution for 
the reciprocal dispersion parameter

rs model was the Bayesian version 
of the model used in Nature. As a 
Poisson it has no dispersion 
parameter

All comparisons between 
a.1. and rs are invalid

a.2. Uses a negative binomial family with less tightly 
constrain prior for auxiliary parameter

Now gives similar results to rs as 
converges to Poisson due to high 
reciprocal dispersion parameter.

b.1. rs1B1 Effect size and LOO values align 
with code given

b.2. Effect size and LOO values align 
with code given

c.1. rs1aB1 No offset2 used due to coding error Effect size and goodness of fit are 
not reported correctly in table 2a

All comparisons between 
models c.1. and rs1aB are 
invalid. All subsequent 
analysis and conclusions 
based on model c.1. are 
invalid

c.2. No offset2 used due to coding error Effect size and goodness of fit are All subsequent analysis and 
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not reported correctly in table 2a conclusions based on model 
c.2. are invalid

d.1. rs2B Aligns with model rs2B

e Statistical code given not consistent with results 
reported

Reported effect size does not align 
with results from code given.

All subsequent analysis and 
conclusions based on model 
e are invalid, including 
figure 1 in the text

1In the supplementary material of Mills et al 2024a(4) the 3 models rs, rs1B and rs1aB and rs2B from Torgerson et al. 2024 (3) were reported to be the 
same models as a.1., b.1., c.1.  and d.1. respectively.
2 Offset was reported in Table 2b for models c.1 and c.2, but due to a coding error, the offset was not used. The effect sizes and LOO ELPG values 
reported are consistent with no offset being used.
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Table 3. A selection of the frequentist models analysed in Mills et al. 2024b(5) and Torgerson et al. 2024(3). This compares the original model from the 
2006 study(2) (and its equivalent in generalized Poisson form). This is the model that Mills et al. 2024b(5) claim to be a robust interpretation of the 
RBCT results and that  “strongly” supports a culling effect. We compare this to those models with the lowest AICc values, which provide no support for 
an effect of culling.
Models 
from 
Mills et 
al.

Equivalent 
in 
Torgerson 
et al

Structure Estimated 
effect of 
culling (95% 
CI)

BIC AICc LOOCV 
RMSE

Number of 
estimated 
parameters#

Parameter for 
exposure (95% 
CI)

Comments

1 6 original 
Poisson GLM

28.8% (5.7%, 
57.2%)

148.3 196.0 8.07 13* 0.10 (-0.34,0.55) Very high AICc indicates poor predictive 
powers. Exposure parameter not 
significantly different from zero indicating 
implausibility.

3 original GLM 
in generalized 
Poisson form

28.5% 
(14.2%, 
44.7%)

143.7 213.8§ 8.05 13+1* 0.11 (-0.16, 0.38) Very high AICc indicates poor predictive 
powers. Exposure parameter not 
significantly different from zero indicating 
implausibility.

4 generalized 
Poisson 
(without any 
culling effect)

None 154.5 153.2 8.26 3+1* 0.73 (0.33, 1.14) Low AICc, plausible parameter for exposure 
parameter

5 6a generalized 
Poisson with 
herd-years-at-
risk offset

10% (-9.1%, 
33.0%)

163.0 210.7 12.07 12+1* 1 High AICc and BIC, high LOOCV RSME

6 generalized 
Poisson with 
herd-years-at-
risk offset and 
without a 
culling effect

None 151.9 150.4 8.00 2+1* 1 Low AICc and BIC, Low LOOCV RSME 
indicating generalizability. Offset fixes 
exposure parameter to 1.

8 generalized 
Poisson with 
herd-years-at-

None 145.8 144.5 6.86 3+1* 0.61 (0.39, 0.84) Lowest AICc of all the Poisson family 
models, indicating the best predictive 
power. Lowest LOOCV RSME indicating 
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risk covariate 
without a 
culling effect 

generalizability. BIC indicates better 
“goodness of fit”, then model 1. Exposure 
parameter credible, although less than 1.

11 6b Generalised 
Poisson model 
with no 
predictors and 
with herd-
years-at-risk 
offset

NA 151.2 149.9 8.15 1+1* 1 Null model with exposure parameter fixed 
(when correcting for overdispersion) has 
lower AICc than model 1 and 3. No outliers 
(see supplementary material). Posterior 
predictive check does not always give 
systematic discrepancies between the 
model-based predictions and the confirmed 
incidence (see supplementary material).

*Additional parameters are the intercept and in generalized Poisson models a parameter for overdispersion
#Includes intercept
§ This was mistakenly reported as 217.2 in Mills et al. 2024b(5)
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Table 4: A range of Bayesian models for confirmed bTB herd breakdowns from initial RBCT cull until 4 September 2005, within proactive culling areas. 
The original, frequentist Poisson GLM used in Donnelly et al. 2006(2) was re-specified in the Bayesian paradigm in the initial preprint subsequently  
published  by Torgerson et al. (2024)(3). However, the Model rs in Torgerson et al. (3) was not specified by a negative binomial likelihood although Mills 
et al. 2024b(5) reported it as Model a.1. in error. Other errors and inconsistencies between those reported in Mills et al. 2024b(5) and Torgerson et al. (3)  
for the Bayesian analysis paradigm (tables 2a and 2b in Mills et al 2024b) are summarized here. In total of the 8 models specified in tables 2a and 2b of 
Mills et al. 2024b, 5 had errors. Hence the analysis cannot be relied upon for any of the Bayesian analysis in Mills et al. 2024b.

Model from Mills et al. 
2024b

estimated 
effect of 
culling (95% 
CrI)

LOO 
EPLD

Issue of concern Notes Conclusions

a.1 (varying intercepts for 
triplets and covariates of 
culling effect, historical 3-
year incidence and baseline 
herds at risk). Claimed to 
be model rs1 from 
Torgerson et al.

31.3% 
(−29.4%, 
160.9%)

a.1 is not a correct 
representation of model rs1. 
a.1.Uses negative binomial 
family model with a strongly 
informative exponential prior 
distribution for the reciprocal 
dispersion parameter

rs1 model was the Bayesian 
version of the model used in 
Nature. As a Poisson it has no 
dispersion parameter

Any comparisons between 
a.1. and rs1 are invalid. 

a.2 (a.1 improved) 24.5% (−3.6%, 
69.9%)

-74.0 Uses a negative binomial family 
with less tightly constrain prior 
for auxiliary parameter

Now gives similar results to rs1 as 
converges to Poisson due to high 
reciprocal dispersion parameter.

b.1 (no varying intercepts 
for triplets) 

25.6% 
(−19.4%, 
97.8%)

-74.9 Outputs align with code.

b.2.(b.1 improved) 24.6% 
(-10.4%, 
77.4%)

Outputs align with code.

c.1 (using herd-years-at-
risk as an offset and no 
varying intercepts for 
triplets)1

25.8% 
(−19.5%, 
97.2%)

No offset2 used due to coding 
error

Effect size and LOO values align 
with a non offset model

All conclusions arising from 
c.1. model assuming the 
offset are invalid
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c.2 (c.1 improved) No offset2 used due to coding 
error

Effect size align with a non offset 
model

All conclusions arising from 
c.2. model assuming the 
offset are invalid

d.1(no culling effect)1 None Exposure variable 
0.59(0.20,1.00)

d.2 (d.1 improved) None Exposure variable 
0.58(0.31,0.83)

While the improved model 
structure does not enable direct, 
probabilistic inferences about the 
size of the effect of proactive 
culling, the lack of any 
discernible model diagnostic 
flaws is indicative of the 
appropriateness of the model 
(which does not account for any 
effect of culling)

Model diagnostics suggest 
this model has the most 
support

e (Poisson with baseline 
herds at risk as an offset) 

26.6% (4.3%, 
52.8%)

−70.0 No offset2 used due to coding 
error

Effect size and LOO values align 
with a non offset model. This is 
effectively the Nature model in 
Bayesian form

All conclusions arising from 
e model assuming the offset 
are invalid

e.1. (offset correctly coded) 9.7% 
(8.2%,30.3%)

-85.5 Model e with offset correctly 
coded

Now substantial portion of 
probability density lies below 
zero.

1In the supplementary material of Mills et al. 2024b(5) the models a.1., c.1. and d.1. were reported to be the same models as rs, rs1aB and rs2B 
respectively from Torgerson et al. 2024(3) 
2 Offset was reported in Table 2b for models c.1 and c.2 and e, but due to a coding error, the offset was not used. The effect sizes and LOO ELPG values 
reported are consistent with no offset being used.
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