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Force Measured Repeatedly by an Atomic Force Microscope
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Abstract: An atomic force microscope (AFM) was operated to repeatedly measure the adhesion
forces between a polystyrene colloid probe and a gold film, with and without lateral movement in
dry conditions. Experimental results show that the adhesion force shows a level behavior without
lateral movement and with a small scan distance: the data points are grouped into several levels,
and the adhesion force jumps between different levels frequently. This was attributed to the fact
that when the cantilever pulls off the sample, the contact area of the sample is not exactly the same
between successive contacts and jumps randomly from one to another. Both lateral velocity and
material wear have little influence on level behavior. However, with a medium scan distance, level
behavior is observed only for some measurements, and adhesion forces are randomly distributed for
the other measurements. With a large scan distance, adhesion forces are randomly distributed for
all measurements. This was attributed to the fact that the cantilever pulls off the sample in many
different contact areas on the scanning path for large distances. These results may help understand
the influence of lateral movement and imply the contribution of asperities to adhesion force.

Keywords: pull-off force; force-displacement curve; sliding velocity; level behavior; atomic
force microscope

1. Introduction

Adhesion between materials is becoming increasingly important. Since the adhesion
force is the dominant factor in the failure of micro-electromechanical systems (MEMS) on
the grounds of fabrication and use [1], it is increasingly significant with the rapid devel-
opment of MEMS. As a representative MEMS device, micro-switches have been used in
wide applications, from industrial instrumentation, smart antennas, phase shifters to cell
phones [2,3]. Failure of most micro-switches is generally caused by increasing adhesion
force during repeated make-and-break contacts [4,5]. Therefore, the adhesion behavior for
repeated contacts on a micro- and nanoscale is keenly demanded to develop a sophisticated
understanding. On the other hand, adhesion force may involve several different mecha-
nisms on a microscale, nanoscale and molecular scale. It is also important to understand
the evolution rule of adhesion force with time, to better control the adhesion force.

In recent years, atomic force microscope (AFM) has become a problem-solving in-
strument for long-range and short-range forces between two surfaces. It can measure the
adhesion force from microscale down to molecular level under different kinds of envi-
ronments by recording a force-displacement curve with high spatial resolution. Repeated
contact between an AFM tip and a substrate can be used to simulate the closing and open-
ing of the microcontacts of micro-switches [6,7]. Additionally, a colloid probe (formed by
attaching a microsphere to the end of a cantilever) is usually used to prevent severe wear
and tear of the material [8].
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During the measurement of adhesion forces in AFMs, deflection of a probe is detected
when it touches a sample and retracts back. During this process, the influence of lateral
movement can be investigated with linear or circular displacement [9]. The influence of
lateral movement in a nanometer-sized contact in air has been investigated in some studies.
Noël et al. [10] reported that van der Waals (vdW) force remains constant, and capillary
force decreases logarithmically with lateral velocity in a range between 5.652 µm/s and
565.2 µm/s. However, Sirghi [11] proposed that adhesion force first decreases steadily
and then remains unchanged with lateral velocity after 3 µm/s for a nanometer-sized
contact. The decrease is usually attributed to the disappearance of capillary force [12].
On a microscale, a decrease has also been reported and was attributed to the breakage of
adhesive junctions [13]. Recently, Lai et al. [14,15] found that with the increase of lateral
velocity, adhesion force decreases logarithmically at large velocities in air. This decrease
was attributed to the increase in size of water bridges with contact time formed in the
contact zone.

Some studies have focused on the behavior of adhesion forces at a single location by
repeated contact. However, in these studies, consecutive measurements were performed
with a relatively small measurement number of times to examine the reproducibility:
15 times [16], 20 times [17], 50 times [18], and 100 times [19]. In this research, the reported
data shows no characteristic trend. However, it was reported that an increasing trend
in measurement number of times can be observed, provided that plastic deformation of
asperities occurs [20]. Furthermore, in very dry conditions, trends can increase, decrease
or remain unchanged because of electric charging [21]. If the adhesion force is contact-
time dependent (increasing logarithmically), data with repeated contacts will show a
sharp increase at first, then a slow increase, and finally remain constant [22,23]. Recently,
Lai et al. [24] put forward that the measured data points in a very dry environment are
grouped into several levels, and frequent jumping behavior between different levels was
observed. This “level behavior” was attributed to different sets of asperities on a sample
surface because of non-linear factors. Intuitively, if the sample is forced to move laterally
with a very small scan distance, the level behavior will remain unchanged since the
asperities set is almost the same. However, one might wonder what will happen when the
scan distance is large. Then, several questions can be raised. (1) Will the level behavior
become unchanged at a large scan distance or not? (2) If the level behavior becomes unclear,
are the adhesion forces randomly distributed or not? (3) If the adhesion forces are randomly
distributed at a very large scan distance, does a critical scan distance exist or not? (4) With
lateral movement, will lateral velocity influence level behavior or not? Therefore, adhesion
behavior determined by repeated contact with and without lateral movement demands
clarification, and further study is needed.

In this paper, adhesion force data have been collected repeatedly on an Au film surface
with and without lateral movement by using a microsphere probe in very dry conditions.
The AFM piezo with a sample can be driven to move laterally (in a to and fro motion),
with different scan distances and scan rates. For each set of parameters, 512 force curves
were collected to extract the adhesion forces. The evolution of the data with repeated
contacts was studied, and adhesion force behaviors under different parameters were
analyzed with mutual comparisons. The behaviors with and without lateral movement
were discussed. Different behaviors were attributed to different sets of asperities on the
substrate, which can be contacted by the probe. The aim is not only to demonstrate the
influence of lateral movement on level behavior but also to imply the contribution of
asperities to the magnitude of adhesion force.

2. Materials and Methods
2.1. Sample Preparations and Characterization

In the experiments, an Au film surface was used as the sample, manufactured by
magnetron sputtering physical vapor deposition (MSPVD). The substrate was an N-type
silicon wafer. The bottom layer of the film was Cr with a thickness of ~20 nm, and the upper
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layer was Au with a thickness of ~1200 nm. The Au film was used because of its chemical
inertness during contact measurements. The image of the sample topography is shown in
Figure 1. This image was obtained with the tapping mode of an AFM (MFP-3D Classic,
Asylum Research, Santa Barbara, CA, USA). Based on the image, the root-mean-square
roughness was 5.693 nm. Before the measurements, the sample was cleaned ultrasonically,
first in ethyl alcohol (10 min) and then in deionized water (10 min).
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Figure 1. Topographic image of the sample scanned on an AFM (scan size = 10 µm × 10 µm).

2.2. Measurement Methods for Adhesion Forces

An AFM (Being Nano-Instruments CSPM-4000, Guangzhou, China) was used to
collect adhesion force data. The AFM was placed in a glove box (Lab2000, Etelux Inert Gas,
Beijing, China) to adjust the atmosphere around it. The box was filled with nitrogen in
high purity, where the water content was below 0.5 ppm (temperature = 28 ± 1 ◦C).

The data were collected with a colloidal probe during the experiments. It was fabri-
cated by adding a polystyrene (PS) microsphere to a tipless cantilever (TL-CONT, Nanosen-
sors, Neuchatel, Switzerland) with glue. The microsphere (diameter = ~4.8 µm) was
purchased from Nano-Micro Tech, Suzhou, China. Images of the microsphere obtained in
a scanning electron microscope (SEM) and an AFM are shown in Figure 2. SEM images
were collected with a commercial SEM (Quanta 200 FEG, FEI Company, Eindhoven, The
Netherlands). Topographic AFM images were obtained by an inverse imaging method
with a grating (TGT01, NT-MDT, Moscow, Russia) with the MFP-3D AFM. The wear and
tear of the microsphere can be seen from the image after the measurements. During the
experiments, the probe was tilted by ~17◦ in the CSPM-4000 AFM. Therefore, the wear scar
(with diameter of ~0.55 µm) was not just the peak of the microsphere. The normal spring
constant of the probe (0.452 N/m) was measured using a thermal method on the MFP-3D
AFM [25].

Adhesion force is determined by obtaining a force curve. In the CSPM-4000 AFM, a
probe is fixed in an immobile probe holder, and a substrate can move in three directions.
In order to study the influence of lateral movement on the behavior of adhesion force,
a sample can be moved laterally in a direction perpendicular to the cantilever without
interruption during the collection of force curves. The experimental set-up and the scanning
process of a cycle are shown in Figure 3. Before scanning, the sample is in the middle of
a scanning distance. As shown in Figure 3b, for one cycle, the sample moves following
the program: to left first, then to right, and at last to the left again. The sample can be
moved with different scan distances (0 ~ 80 µm) and different scan rates (0.001~100 Hz).
The lateral velocity (Vlateral) can be calculated as

Vlateral = 2 fscand (1)

where fscan is the scan rate, d is the scan distance.
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Figure 2. (a) SEM image of the probe before the experiments. (b) Cross-sectional profiles before and after the experiments,
created by the straight lines shown in (c,d). (c,d) 3D AFM images of the microsphere before and after the measurements,
respectively. Scan size = 2.5 × 2.5 µm.
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Figure 3. (a) Schematic of the experimental set-up for collected force curves. Two simultaneous
motions (vertical and lateral) are shown. (b) The scanning cyclic process of the sample. Arrows and
numbers with circles are used to show a cycle.

A force curve is recorded by monitoring the cantilever deflection with the approach
and retraction of a substrate (moving up and down). The schematic diagram of the force
curve is shown in Figure 4. When the distance between the microsphere and the substrate
is large (A), the interaction between them vanishes. With the upward movement of the sub-
strate, the cantilever may bend downward due to attractive forces. If the distance between
the surfaces is small enough, the microsphere jumps into contact with the substrate (B,C).
The microsphere is pressed upward with the bend of the cantilever as the substrate goes
up. The substrate stops at one point with a maximum load (D). During the retraction, the
interaction between these surfaces decreases gradually. After some time, the cantilever
bends downward. However, they are still in touch due to the adhesion force. The deflection
of the cantilever becomes larger and larger, until it jumps back to its original point (E,F).
Forces were extracted from the force curves. During the measurements, the maximum
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force = ~50 nN, Z-piezo velocity = ~14.6 µm/s, and dwell time = 0 s. For each selected set
of parameters, 512 force curves were collected.
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3. Results

In dry nitrogen, a location (Location 1) on the substrate was randomly chosen to
collect data consecutively. At first, adhesion forces were measured 512 times at Location 1,
without lateral movement of the sample. This process was repeated once again to check the
reproducibility of the experiments. Then, the adhesion force was measured consecutively
with the lateral movement of the sample at different scan distances (Location 1 was the
middle position of a scan distance). The scan rate was set as 1 Hz, and the scan distance
was between 10 nm and 4 µm. For each scan distance, 512 force curves were recorded
consecutively. Figure 5 shows the obtained data points.

In Figure 5a–j, the measured points are grouped into different levels, and the adhesion
force jumps in a certain regularity between different levels. When measuring adhesion
forces consecutively at one location of a sample, if the real contact area is not exactly the
same among these successive contacts, the data points are usually grouped into several
levels. This phenomenon is referred as the “level behavior” of adhesion force [24]. In
Figure 5a, data points in the same level are connected by polylines. The adhesion force
decreases for the first three data points, and then increases sharply. Likewise, the adhesion
force increases largely for one level at first and then slightly with the measurement number
of times. In Figure 5b, it is seen that the adhesion force for one level increases slightly.
Nevertheless, the adhesion force for one level remains almost the same (Figure 5c–j).
The adhesion force fluctuates modestly for one level when the scan distance is between
0 and 640 nm. The fluctuations become larger when the scan distance is 1 µm. Here, the
fluctuations are evaluated by the difference of two sequential points. When the scan
distance is between 10 nm and 1 µm, the differences in the magnitude of force between
two adjacent levels are basically the same for one scan distance. However, when the
scan distances are 2 and 4 µm, most data points are randomly distributed, although level
behavior can also be observed for some data points, as shown in Figure 5k,l. The adhesion
forces are all lower than 160 nN.

Figure 6 shows several typical force curves of retraction segments, which correspond
to some of the data points shown in Figure 5e. These force curves are selected from
different levels and used to demonstrate the level behavior more clearly. For comparison, a
segment of 100 data points for each scan distance is selected (marked by two vertical lines
in Figure 5). These segments are replotted in Figure 7. The level behavior of adhesion force
at different scan distances can be clearly seen.
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segments (100 data points) are marked by vertical lines, which are selected to be replotted in the same figure. The inset in (a)
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In (a), straight lines are displayed between data points to indicate jumping behavior between different levels. In (b–l), there
are no lines between data points for the sake of clarity.
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comparison, a segment of 100 data points for each scan distance is selected to be replotted here from a figure of 512 data
points with the same measurement parameters (from Figure 5).

With the increase of the contact number, the microsphere wears gradually. One may
suspect that the randomly distributed data points obtained when the scan distance was 2 or
4 µm are due to the microsphere’s wear and tear. In order to rule out such a possibility and
check the reproducibility of the experiments, two more sets of experiments were carried out
with almost the same experiment parameters. The adhesion forces obtained are given in
Supplementary Figures S1 and S2. Also, a segment of 100 data points for each scan distance
is selected, and these segments are replotted in Figure 8. Once again, level behavior can be
observed clearly for small scan distances but not for large scan distances (>1 µm). However,
different trends (increasing, decreasing and unchanged) were observed for one level. Even
more, the adhesion force for one level sometimes jumps slightly higher or lower with
discontinuity. The maximum adhesion force of these two sets of experiments is as large as
~280 nN, which is much larger than that of the previous set of experiments (<160 nN). The
wear and tear of the materials may contribute to the small jump and larger magnitudes.

To study the effect of lateral velocity on level behavior, the adhesion force was then
measured consecutively with a scan distance of 640 nm or 6.4 µm at different scan rates.
For d = 640 nm, by setting different scan rates, the lateral velocity was between 128 nm/s
and 128 µm/s. Meanwhile, the lateral velocity was between 12.8 nm/s and 1280 µm/s for
d = 6.4 µm. For each scan rate, 512 force-displacement curves were recorded consecutively.
The obtained adhesion forces are shown in Supplementary Figures S3 and S4. Also, a
segment of 100 data points for each scan distance is selected, and these segments are
replotted in Figure 9. The outcome shows that level behavior can be observed using
d = 640 nm at different scan rates but not d = 6.4 µm. It seems that lateral velocity has little
effect on level behavior.

To eliminate the lateral velocity effect, the lateral velocity was kept constant in the
next set of experiments (1.28 µm/s). This time, the adhesion force was measured consecu-
tively, first without lateral movement and then with the same lateral velocity (by adjust-
ing different scan distances and different scan rates). The adhesion forces are shown in
Supplementary Figure S5, and selected segments of 100 data points are shown in Figure 10.
Level behavior can be observed clearly when the scan distance is less than 1 µm but not
when the scan distance is larger than 1 µm. With the increase in scan distance, there are
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three stages with different distribution behavior: (1) almost all of the data points are in
some levels (0~640 nm for this set of experiments); (2) some data points are in some levels,
while the others are not (640 nm~1.92 µm); (3) almost all of the data points are randomly
distributed (1.92 µm~12.8 µm). The maximum adhesion force of this set of experiments is
as large as ~460 nN (see Supplementary Figure S5h), which may be the result of material
wear and tear.

Materials 2021, 14, 370 10 of 19 
 

 

 

Figure 8. Adhesion force as a function of measurement number with a scan rate 1 Hz and different 

scan distances. For comparison, a segment of 100 data points for each scan distance is selected to be 

replotted here from a figure of 512 data points with the same measurement parameters: (a) from 

Supplementary Figure S1 and (b) from Supplementary Figure S2. 
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be replotted here from a figure of 512 data points with the same measurement parameters: (a) from
Supplementary Figure S1 and (b) from Supplementary Figure S2.
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Figure 9. Adhesion force as a function of measurement number at different scan rates: (a) with a scan
distance 640 nm, from Supplementary Figure S3; (b) with a scan distance 6.4 µm, from Supplementary
Figure S4. For comparison, a segment of 100 data points for each scan distance is selected to be
replotted here from a figure of 512 data points with the same measurement parameters.
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Figure 10. Adhesion force as a function of measurement number with different scan distances and
rates (the lateral velocity is 1.28 µm/s except for the first segment): (a) scan distance <1 µm and
(b) scan distance >1 µm. For comparison, a segment of 100 data points for each scan distance is
selected to be replotted here from a figure of 512 data points with the same measurement parameters
(from Supplementary Figure S5).

4. Discussion

Generally, adhesion force has different contributions: capillary force, vdW force, and
electrostatic force [26]. In dry conditions, the capillary force vanishes, and the latter two
are dominant. Furthermore, the electrostatic force may be much larger than the vdW force
if contact electrification (CE) occurs. In the CE theory, when two surfaces in contact are
separated, one has a positive net charge and the other has a negative net charge [27,28].
In a “triboelectric series”, different materials are arranged to predict surface polarity after
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CE [29–31]. When a PS microsphere comes into contact with Au film, it has been reported
that the PS microsphere will be negatively charged and the Au film will be positively
charged [31].

Figure 11a–c schematically show the process of CE in the interface between the
microsphere and Au film. Initially, there is no net charge on both surfaces without contact,
as shown in Figure 11a. When the microsphere is pressed on the sample surface, the transfer
of charges occurs across the interface, until it is saturated. In this way, an electrical double
layer is formed in the contact zone (Figure 11b). After separation, the PS microsphere
will be negatively net charged and the Au film will be positively net charged (Figure 11c).
It should be noted that, there are positively and negatively charged regions on a small
scale on each surface. Terris et al. [32] reported that this phenomenon can happen on a
microscale. Furthermore, Baytekin et al. [33] suggested that non-uniformity can also be
found on a nanoscale.
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Figure 11. Schematics of the interfacial situations with charge distributions between the microsphere
and Au film. (a) At the beginning, there is no net charge on either surface (neutral). (b) At first
contact, an electrical double layer is formed across the interface. (c) After separation, the microsphere
surface has negative net charges, and Au film has positive net charges. (d) Charges on both surfaces
are accumulated through repeated contact. That is, the charge density increases gradually. (e) There
is an upper limit to the amount of charge contained on one surface, leading to a nearly unchanged
charge density. (f) The charges can be dissipated during repeated contact, resulting in decreasing
density. (g) Net charge density decreases, since torn-off patches of material on the microsphere
surface are transferred to the opposite surface (material transfer).

After separation, an electric field is built up, resulting in an electrostatic force. It is
assumed that contact between the microsphere and Au film can be viewed as a parallel plate
capacitor, and the charge densities on both surfaces are the same. Then, the electrostatic
interaction can be expressed as [34–36]

Fel =
Aσ2

2ε0
(2)

where A is the actual contact area, σ is the charge density, and ε0 is the permittivity of
the vacuum.

Based on the theory of CE, surface charge density tends to increase gradually after
consecutive contact in one location (Figure 11d). There are some reasons for the accumula-
tion of charges. Firstly, the material of the microsphere is insulated. Therefore, trapped
surface charges on the microsphere surface cannot leak effectively. Secondly, the transfer
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of charges into the microsphere body is also difficult [37,38], although charge on Au film
may dissipate gradually. Lastly, charge dissipation to gas is difficult in dry conditions
(water content < 0.5 ppm). Therefore, charge density increases gradually with repeated
contact. From Equation (2), Fel will increase gradually due to an increased charge density,
provided that the contact area is constant. With the increase in charge density, the electric
field strength between two surfaces increases. It should be noted that the electric field
between these surfaces must repel for the charge to transfer [39]. Thus, charge transfer in
one direction becomes increasingly difficult with time. At some point, the accumulation
of charges stops, leading to a nearly unchanged charge density. That is to say, there is
an upper limit to the amount of charge (Figure 11e). According to the above reasons, the
evolution of adhesion force can be described as follows: increasing sharply, then increasing
slowly, then becoming stable or changing slightly.

As well as an increasing trend, a decreasing trend in adhesion force for one level
can be observed. The decreasing trend was attributed to the decrease in charge density.
Firstly, neutralization of charges can occur to some extent with repeated contact. Secondly,
charge leakage is inevitable on both the conductive Au film and the insulated microsphere
surface, although the effect may be small on the insulated surface. Therefore, charges on
the surfaces will dissipate to some extent (Figure 11f). Finally, the density of net charge
decreases, provided that torn-off patches of material (due to wear) on the microsphere
surface are transferred to the opposite surface (Figure 11g). Baytekin et al. [40] reported
that the effect of material transfer can be large, and the charge polarity of one surface can
even be reversed. The effect of material transfer cannot be neglected because of the worn
microsphere after the experiments (Figure 2).

In terms of lateral movements of the sample during force curve collection, the pull-off
areas (when the microsphere jumps off Au film, also referred to as “contact areas”) on the
sample surface are undecided due to the random nature of a pull-off process. That is, the
contact area can be any area on the scanning path, and the contact area for a certain force
curve is special. The contact scenario between the microsphere and Au film is shown in
Figure 12a. There are lots of asperities with different sizes on the sample surface. There
may be many asperities in a contact area. However, only higher asperities are under a
certain load when the microsphere is in contact with the sample. When the scan distance
is small (d1), the contact areas overlap with each other to some degree. When the scan
distance is large (d2), the contact areas may be very far from each other. Even without
lateral movement of the sample, the real contact area may be slightly different between
successive contacts. This was attributed to the fact that the vertical movement of the sample
(drove by the Z-piezo) cannot be entirely linear [24]. Thus, the asperities on Au film may
be different for consecutive contacts, even without lateral movement of the sample.

In Figure 12b, Circles B and C represent actual contact areas. Circle A is the maximum
area that can be touched by the microsphere without lateral movement of the Au film. Since
the charges are distributed around asperities, the electrostatic force will suddenly increase
or decrease if the contact area jumps from one to another, depending on the number of
asperities and the charge distribution in both areas. In Figure 12b, Circles B and C have
three asperities in common. When the contact area is Circle B, the adhesion force (FB) is
the summation of the contribution of Asperity 1 (F1) and Asperities 2–4 (F2–4). When the
contact area is Circle C, the adhesion force (FC) is the summation of the contribution of
Asperities 5–6 (F5–6) and Asperities 2–4 (F2–4). Here, the contributions of lower asperities
are neglected for the sake of statement convenience. If, at first, the contact area is Circle B
and then it jumps to Circle C, the adhesion force will increase from FB to FC (increasing by
∆F = F5–6 − F1). If the contact area jumps back to Circle B, the adhesion force also jumps
from FC back to FB, provided that all the conditions remain the same (for example, all the
charges around the asperities remain unchanged, and no asperity wears or is damaged).
In a similar way, if, at first, the contact area is Circle C and then it jumps to Circle D, the
adhesion force will also jump to another level. The adhesion force difference between the
two levels is the difference between the contribution of Asperities 7–9 and Asperities 2



Materials 2021, 14, 370 14 of 18

and 3. In this way, the measured data points are grouped into different levels, both without
lateral movement and when the scan distance is small.
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Figure 12. (a) Schematic of force curve measurement with two scan distances and contact zones
shown on the sample surface. There are lots of asperities on the sample surface. (b) Contact areas on
Au film for the microsphere-sample contact pair. Without lateral movement, Circle A is the maximum
area that can be touched by the microsphere, and Circles B–C are the actual areas for a single contact.
Circle D is an actual contact area with lateral movement. Numbers 1–9 with circles are the asperities
on Au film. These asperities are under a certain load when the microsphere is in contact with the
sample. (c) Contact areas in a scanning area with scan size 4 µm × 1 µm, which was randomly chosen
on the Au film surface. Circles E–J are the actual areas for a single contact. The diameters of these
circles are the same (~500 nm). Numbers 1–9 are used to mark 9 different asperities, which can be
touched by the microsphere when the contact areas are Circles G and H.

From the discussion above, a level is corresponding to some higher asperities on
Au film, which come into contact with the microsphere under a normal load. When the
scan distance is small, the number of asperities on the scan path is limited. This is the
reason why level behavior still exists when lateral movement of small distances is applied.
For example, in Figure 12c, the diameters of the contact areas (circles) are assumed to
be ~500 nm. The distance between Circles G and H is ~200 nm. If the scan distance is
~200 nm and Circles G and H are two extreme positions, there are only 9 asperities in the
scanning path that can be touched by the microsphere. Therefore, there are only several
sets of asperities on the sample surface that can be touched by the microsphere, ultimately
resulting in several levels. Usually, the number of levels is small without lateral movement
and increases when lateral movement is applied, since there are more asperities that can
be touched by the microsphere. Moreover, the number of levels may increase with the
increase of the scan distance for the same reason.

Without lateral movement, the level behavior of adhesion force can be observed
since the contact area jumps unpredictably from one to another due to the non-linearity
mentioned above. With lateral movement and a small scan distance, the situation is almost
the same due to the random nature of the pull-off process. Therefore, the level behaviors
with and without lateral movement are almost the same.

For some of the experimental results reported above, the force differences between two
adjacent levels are nearly equal in magnitude. The charge around all the higher asperities
may reach saturation through repeated contact or several back-and-forth scans. Therefore,
the amount of charge for higher asperities may also be nearly equal. In this way, the
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number of asperities inside a specific contact area is related to a certain level. If the number
of asperities increases by one more, the force tends to jump to an adjacent upper level
and vice versa. As shown in Figure 12b, if the contact area shifts from Circle B to C, the
adhesion force will increase by a force difference.

For the experimental outcomes, level behavior is observed with small scan distances
for all lateral velocities. That is, lateral velocity has little influence on level behavior. It
seems that the behavior of the adhesion force is only dependent on the set of asperities
on Au film when the microsphere jumps off. However, the magnitude of the adhesion
force is influenced by lateral velocity, and the adhesion force decreases with lateral velocity
(Figure 9b). This should be attributed to the breakage of adhesive asperity junctions
between two surfaces with lateral movement [13].

In the above discussion, the contributions of lower asperities are neglected for conve-
nience of statement. However, lower asperities may make some contributions to adhesion
force. For one thing, lower asperities may be very close to the surface of the microsphere
due to the deformation of higher asperities. For another, there may be some charges on the
lower asperities due to attached charged wear debris by material wear and the electrical
conductivity of the Au surface on the Au film sample. After taking the contributions of
lower asperities into account, the above discussion still remains reasonable.

When the scan distance is large, level behavior is not observed, and adhesion forces
are randomly distributed. When the scan distance is large, there are lots of asperities on
the scanning path. The random nature of a pull-off process means there may be many
contact areas on the sample. The number of higher asperities in one contact area may
be very different to that of another. For example, in Figure 12c, the numbers of higher
asperities in Circles E–J are different. Therefore, the adhesion force can be many values, and
eventually the level behavior cannot be observed. It should be noted that the data points
measured in a large scanning area of a substrate using the force-volume mode of an AFM
are usually randomly distributed (mostly Gaussian distribution) [20,41]. This should be
attributed to the fact that the tip can touch many different sets of asperities on the substrate.
Measurement using the force-volume mode is very similar to the measurement with long
scan distances discussed here.

In the above discussion, the deformation of both the PS microsphere and Au film is
neglected. To further deepen understanding of the contact condition, the Johnson-Kendall-
Roberts (JKR) model [42] is used to calculate the contact radius between an Au asperity
and PS surface. For simplicity, the Au asperity is assumed to be a sphere with a radius of
RT =100 nm, and the PS surface is flat. Furthermore, the flat PS surface is assumed to be in
contact with three asperities, which have the same shape and are under the same normal
load. In the model of JKR, the contact radius (rJKR) for a single asperity is expressed as [42]:

rJKR =

{
3RT

4E∗

[
Fload + 3πRTW12 +

√
6πRTW12Fload + (3πRTW12)

2
]}1/3

(3)

where Fload is the maximum load for a single asperity (~50/3 nN), W12 is the work of
adhesion, and E∗ is the equivalent elastic modulus. From Fadh = 3πRTW12/2, the work of
adhesion can be obtained. For a single asperity, the maximum adhesion force is assumed
to be 120 nN (the maximum measured force is Fadh = 360 nN). The equivalent elastic
modulus is:

E∗ =
[(

1 − µ2
1

)
/E1 +

(
1 − µ2

2

)
/E2

]−1
(4)

where E1,2 are Young’s moduli and µ1,2 are Poisson ratios of PS and Au materials, respec-
tively. E1 = 5 GPa [43], E2 = 69.1 GPa [44], µ1= 0.33 [45], and µ2= 0.42 [46]. After calculation,
rJKR ≈ 19.4 nm. The contact radius is large for a sphere of 100 nm in radius, which may
reinforce the effect of contact electrification. It should be noted that the deformation of Au
asperity is much larger than that of the PS surface due to a small Young’s modulus (5 GPa).
In a word, the above discussion still remains reasonable when the deformation is taken
into consideration.
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5. Conclusions

The adhesion forces were measured consecutively by repeated contact with and
without the lateral movement of a sample, using a microsphere in a very dry environment.
Without the lateral movement and with a small scan distance, the adhesion forces are
grouped into several levels, and the adhesion force jumps frequently between different
levels, which is referred to as “level behavior”. The level behavior was ascribed to the small
number of asperity sets on the sample surface that can be touched by the microsphere.
A level corresponds to a contact area (a set of asperities inside), and the contact area
changes from one to another during consecutive measurements. The number of levels
sometimes increases with the scan distance. For each level, varied trends were observed:
increasing, decreasing and unchanged, which may be connected with the charge density
on the surfaces. The lateral velocity has little influence on level behavior, but the force will
decrease with lateral velocity. Also, the wear and tear of the microsphere does not appear
to influence level behavior but may lead to an increase in force magnitude and result in a
small jump with discontinuity and larger fluctuations of the adhesion force on one level.
However, with a large scan distance, level behavior is not observed, and adhesion forces are
randomly distributed. This was attributed to the fact that there are large sets of asperities
on the scanning path with larger scan distance. With a medium scan distance, the level
behavior is observed for some data points, and the other are randomly distributed.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996
-1944/14/2/370/s1. Supplemental data for this article includes Figure S1: Adhesion force ver-
sus sequential measurement number of times, measured on Au film using Probe 2# with a scan
rate of 1 Hz and different scan distances: (a) 10 nm, (b) 20 nm, (c) 40 nm, (d) 80 nm, (e) 160 nm,
(f) 320 nm, (g) 640 nm, (h) 1 µm, and (i) 2 µm. Two vertical lines are used to mark the segments
(100 data points) that are selected to be replotted in the same figure, Figure S2: Adhesion force
versus sequential measurement number of times, measured on Au film using Probe 2# with a scan
rate of 1 Hz and different scan distances: (a) 10 nm, (b) 20 nm, (c) 40 nm, (d) 80 nm, (e) 160 nm,
(f) 320 nm, (g) 640 nm, (h) 1 µm, (i) 2 µm, and (j) 4 µm. Two vertical lines are used to mark the
segments (100 data points) that are selected to be replotted in the same figure, Figure S3: Adhesion
force versus sequential measurement number of times, measured on Au film with a scan distance
of 640 nm and different scan rates: (a) 0.1 Hz, (b) 1 Hz, (c) 2 Hz, (d) 4 Hz, (e) 8 Hz, (f) 16 Hz,
(g) 32 µm, (j) 64 Hz, and (i) 100 Hz. Two vertical lines are used to mark the segments (100 data points)
that are selected to be replotted in the same figure, Figure S4: Adhesion force versus sequential
measurement number of times, measured on Au film with a scan distance of 6.4 µm and different
scan rates: (a) 0.001 Hz, (b) 0.01 Hz, (c) 0.1 Hz, (d) 1 Hz, (e) 10 Hz, and (f) 100 Hz. Two vertical
lines are used to mark the segments (100 data points) that are selected to be replotted in the same
figure, Figure S5: Adhesion force versus sequential measurement number of times, measured on
Au film with different scan distances and different scan rates: (a) d = 0; (b) d = 10 nm, f scan = 64 Hz;
(c) d = 20 nm, f scan = 32 Hz; (d) d = 40 nm, f scan = 16 Hz; (e) d = 80 nm, f scan = 8 Hz; (f) d = 160 nm,
f scan = 4 Hz; (g) d = 320 nm, f scan = 2 Hz; (h) d = 640 nm, f scan = 1 Hz; (i) d = 1.28 µm, f scan = 0.5 Hz;
(j) d = 1.92 µm, f scan = 0.333 Hz; (k) d = 2.56 µm, f scan = 0.25 Hz; (l) d = 3.2 µm, f scan = 0.2 Hz;
(m) d = 3.84 µm, f scan = 0.167 Hz; (n) d = 4.48 µm, f scan = 0.143 Hz; (o) d = 5.12 µm, f scan = 0.125 Hz;
and (p) d = 12.8 µm, f scan = 0.05 Hz. For (b-p). The lateral velocities are the same (1.28 µm/s). Two
vertical lines are used to mark the segments (100 data points) that are selected to be replotted in the
same figure.
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