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IMPORTANCE: Altered heart rate variability has been associated with autonomic 
dysfunction in a number of disease profiles, in this work we elucidate differences in 
the biomarker among patients with all-cause sepsis and coronavirus disease 2019.

OBJECTIVES: To measure heart rate variability metrics in critically ill coronavirus 
disease 2019 patients with comparison to all-cause critically ill sepsis patients.

DESIGN, SETTING, AND PARTICIPANTS: Retrospective analysis of corona-
virus disease 2019 patients admitted to an ICU for at least 24 hours at any of 
Emory Healthcare ICUs between March 2020 and April 2020 up to 5 days of 
ICU stay. The comparison group was a cohort of all-cause sepsis patients prior to 
coronavirus disease 2019 pandemic.

MAIN OUTCOMES AND MEASURES: Continuous waveforms were captured from 
the patient monitor. The electrocardiogram was then analyzed for each patient over a 
300 seconds observational window that was shifted by 30 seconds in each iteration 
from admission till discharge. A total of 23 heart rate variability metrics were extracted 
in each iteration. We use the Kruskal-Wallis and Steel-Dwass tests (p < 0.05) for sta-
tistical analysis and interpretations of heart rate variability multiple measures.

RESULTS: A total of 141 critically ill coronavirus disease 2019 patients met in-
clusion criteria, who were compared with 208 patients with all-cause sepsis. 
Three nonlinear markers, including the ratio of standard deviation derived from the 
Poincaré plot, sample entropy, and approximate entropy and four linear features, in-
cluding mode of beat-to-beat interval, acceleration capacity, deceleration capacity, 
and the proportion of consecutive RR intervals that differ by more than 50 ms, were 
all statistically significant (p < 0.05) between the coronavirus disease 2019 and 
all-cause sepsis cohorts. The three nonlinear features and acceleration capacity, 
deceleration capacity, and beat-to-beat interval (mode) were statistically significant 
(p < 0.05) when comparing pairwise analysis among the combinations of survi-
vors and nonsurvivors between the coronavirus disease 2019 and sepsis cohorts. 
Temporal analysis of the main markers showed low variability across the 5 days of 
analysis compared with sepsis patients.

CONCLUSIONS AND RELEVANCE: In this descriptive statistical study, heart 
rate variability measures were found to be statistically different across critically ill 
patients infected with severe acute respiratory syndrome coronavirus 2 and dis-
tinct from bacterial sepsis.

KEY WORDS: coronavirus disease 2019; decompensation; heart rate variability; 
sepsis; severe acute respiratory syndrome coronavirus 2

The novel coronavirus (severe acute respiratory syndrome corona-
virus 2 [SARS-CoV-2]) has led to a large cascade of transmissions 
resulting in high numbers of individuals hospitalized for the corona-

virus disease 2019 (COVID-19), an impact still being accounted for across 
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the globe. A major target of the disease has been the 
respiratory components, resulting in acute respira-
tory insufficiency and failure. In patients who re-
quire mechanical ventilation, reported mortality 
rates exceed 50% (1, 2). However, COVID-19 is not 
only a respiratory disease. Cardiac, renal, hemody-
namic, hematological, and neurologic manifestations 
were noted in critically ill COVID-19 patients (3–5).  
The multisystem injury and high mortality rate require 
means to identify patients at high risk.

Heart rate variability (HRV) is a naturally occur-
ring phenomena, which takes different patterns 
in critical illness (6). HRV has long been associ-
ated to be a surrogate measure of cardiac autonomic 
tone (7–10). Analyzing complex dynamic fea-
tures from the electrocardiogram (ECG) has been 
shown to indicate early cardiorespiratory com-
plications (11, 12), autonomic dysfunction (13),  
sepsis (14), and death (15). These HRV measures, 
drawn from both temporal and frequency domain, 
have also been used in predictive models for early and 
rapid identification of deterioration and mortality in 
the ICU (16–20). However, the exploration of a com-
prehensive list of HRV metrics has not been investi-
gated among COVID-19 patients. Therefore, in this 
study, we explore the association and implications of 
these components in critically ill COVID-19 patients, 
identifying features that differentiate survivors and 
nonsurvivors. Separately, using a descriptive statistical 
methodology, we study the similarities of these charac-
teristics to non-COVID-19 all-cause sepsis patients in 
a multi-ICU, single healthcare system.

METHODS

The study was approved by the Emory 
University Institutional Review Board (Number 
STUDY00000302). All medical, surgical, neu-
rocritical, transplant, and cardiac ICU admissions 
with COVID-19 between March 1, 2020, and April 
31, 2020, within Emory Healthcare system were 
screened. Patients were selected to be included in 
the analysis if they were in the ICU for greater than 
24 hours. Controls were identified as all-cause sepsis 
patients meeting Sepsis-3 criteria (21), between 2015 
and 2017, a previously published patient series (20).  
Patients with less than 24 hours of ICU admission were 
excluded due to the presence of confounding workflow 

factors from higher acuity. Continuous bedside moni-
toring data were extracted during the patient’s ICU 
stay, and HRV measures were generated using a slid-
ing window. The data were exported from the archival 
system, de-identified and analyzed using open source 
and proprietary statistical programs.

DATA ABSTRACTION

Continuous waveforms were captured from the 
General Electric bedside monitors across Emory af-
filiated hospitals, using the BedMaster system (Excel 
Medical Electronics, Jupiter, FL). The data archival in-
frastructure is available in 152 beds spanning medical, 
surgical, transplant, and cardiac ICUs across the health 
system. For this study, continuous ECG were captured 
from the bedside, each sampled at a sampling fre-
quency of 240 Hertz. The ECG was then analyzed for 
each patient over a 300 seconds observational window 
that was shifted by 30 seconds in each iteration from 
admission till discharge. A total of 23 HRV metrics 
were extracted in each iteration using the “PhysioNet 
Cardiovascular Signal Toolbox” (22). The list of meas-
ures used in this study is numbered in Supplemental 
Table 1 (http://links.lww.com/CCX/A835). Where any 
300 seconds observational window had more than 
20% of poor data quality, the segment was discarded 
from the analysis (23). We applied a series of signal 
processing-based methods, including band-pass fil-
tering to preprocessing the waveform and to identify 
segments with poor data quality. We then applied a 
sensor-fusion approach that combines multiple ECG 
leads to identify optimal R-R peaks in the ECG that 
were then used to compute HRV (24).

STATISTICAL ANALYSIS

MATLAB  (MathWorks, Natick, MA) was used 
to analyze the continuous ECG and extract rele-
vant HRV features. The statistical analysis of this 
data was analyzed using Python Scikit-learn (25)  
and JMP (SAS Institute, Cary, NC) software. 
Differences among demographics were evaluated for 
statistical significance (p < 0.05) using the chi-square 
method for categorical and standard Student t test or 
one-way analysis of variance for continuous variables. 
We use the Kruskal-Wallis and Steel-Dwass tests (p < 
0.05) for statistical analysis and interpretations of HRV 
multiple measures.

http://links.lww.com/CCX/A835
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PATIENT LEVEL ANALYSIS

Due to the use of a 300 seconds sliding window, the av-
erage number of observations sampled per patients was 
in excess of 10,500. In order to estimate encounter level 
variability (pertaining to a single ICU stay), we derived 
the average value for each HRV measure. Since the goal of 
the study is to detect early markers of mortality, we limit 
the period of analysis to the first 5 days (120 hr) from ICU 
admission. Histograms were generated using Scikit-learn 
for each measure and separated by the class label.

TRAJECTORIES OF DISEASE

Temporal trajectories of each patient were generated to in-
vestigate differences in acuity and deterioration magnitude 
among COVID-19 survivors and nonsurvivors. Aggregate 
features of HRV (mean, minimum, maximum, etc.) were 
generated by uniformly sampling data across each 8-hour 
segment from admission until the fifth day. Inhospital 
mortality outcome was retrieved from the clinical record.

CONFOUNDING INFLUENCE  
OF WORKFLOW AND ICU STAY

In order to evaluate whether these characteristics mani-
fest as a function of specific clinical workflow or varying 

length of ICU stay, we performed a sensitivity analysis 
by selecting only the first 8 hours of monitoring, and 
differences were computed for statistical significance 
using above mentioned methods. Statistical tests were 
performed on the aggregate mean value across each fea-
ture in order to reduce bias due to high dimensionality.

RESULTS

A total of 778 hospitalized patients were identified in a 
clinical chart review for positive SARS-CoV-2 tests by use 
of quantitative reverse transcription polymerase chain 
reaction. From this cohort, 413 encounters were mapped 
to bedside monitors that were actively archiving data 
during the time of their hospitalization. We excluded 272 
patients due to insufficient data or poor quality (> 20% 
missing data) data from the first 5 days of ICU admis-
sion, leaving a total of 141 patients who were analyzed. 
We identified 557 encounters, pre-COVID-19, who met 
sepsis-3 criteria during their ICU stay and had high-
frequency bedside monitoring captured. Two-hundred 
eight of those encounters had sufficient data quality in 
the first 5 days of ICU stay and were eligible for the study. 
Table 1 presents a description of the clinical and dem-
ographic characteristics of the cohort. Notably, among 
African Americans, the differences in mortality were 

TABLE 1. 
List of Patient Characteristics

Characteristics

Coronavirus Disease 2019 Sepsis (All Cause)

Survivor Nonsurvivor All Survivor Nonsurvivor All

n 91 50 141 117 91 208

Age, mean ± sd 59 ± 15 71 ± 14a 63 ± 16 59 ± 16 69 ± 16a 63 ± 16

Females, n (%) 43 (47) 24 (48) 67 (48) 56 (48) 37 (41) 93 (45)

Mechanical ventilation, n (%) 68 (74) 44 (88)a 112 (79) 24 (17) 28 (31) 52 (25)

ICU length of stay (d), mean ± sd 29 ± 19 19 ± 18 26 ± 19 25 ± 18 17 ± 18 22 ± 19

Acute Physiology and Chronic Health  
 Evaluation-II, mean ± sd

12 ± 18 14 ± 16 13 ± 17 9 ± 8 14 ± 13 10 ± 8

Race, n (%)

 African American 73 (80)b 35 (70)b 108 (76)b 36 (30)b 32 (35)b 68 (33)b

 Asian 0 3 (6) 3 (2) 0 2 (1) 2 (1)

 Caucasian 14 (15) 6 (12) 20 (14) 70 (60) 45 (49) 115 (55)

 Multiple 0 0 0 1 (1) 0 1

 Unknown 4 (4) 6 (12) 10 (7) 10 (9) 12 (13) 22 (11)

aStatistical significance (p < 0.001) by nonparametric Mann-Whitney U test between survivors and nonsurvivors in each group.
bStatistical significance (p < 0.001) by χ2 test.
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statistically significant by chi-square test within both 
the COVID-19 and all-cause sepsis cohorts (p < 0.05). 
Within both groups, the nonsurvivors were older on av-
erage compared with the survivors. More patients in the 
COVID cohort underwent mechanical ventilation than 
in the sepsis cohort (79% vs 25%; p < 0.05), with mod-
erate effect size (Cohen’s d > 0.5).

A basic description of the different HRV indices of 
the COVID-19 and sepsis group is detailed as a distribu-
tion histogram plot in Supplemental Figure 1 (http://
links.lww.com/CCX/A836). While the total number 
of encounters in the sepsis group is greater, there was 
significantly more data available per encounter in the 
COVID-19 group. Supplemental Figure 2 (http://
links.lww.com/CCX/A837) illustrates the data miss-
ingness as a function of monitoring time from admis-
sion till day 5 for sepsis and COVID-19 groups. Prior 
to inclusion criteria being applied, there were approx-
imately 680,799 seconds (~8 d) of data points on av-
erage per encounter in the COVID-19 group, while 
206,288 seconds (2.4 d) in the sepsis group.

Descriptive statistics of the HRV measures are de-
tailed in Table 2. A list of statistically significant fea-
tures derived from those HRV measures are included 
in Supplemental Table 2 (http://links.lww.com/
CCX/A838), along with their effect size (Cohen’s d). 
Notably, both Kruskal-Wallis and Steel-Dwass tests 
for multiple comparisons show statistically signif-
icant separations between the COVID-19 and all-
cause sepsis groups. Specifically, on seven specific 
markers, which consists of three nonlinear markers, 
including the ratio of standard deviation derived 
from the Poincaré plot (SD1:SD2), sample entropy 
(SampEn), and approximate entropy (ApEn) and 
four linear features, including mode of beat-to-beat 
interval (NN), acceleration capacity (AC), decel-
eration capacity (DC), and the proportion of con-
secutive RR intervals that differ by more than 50 
ms (pNN50), were statistically significant between 
more than one binary combinations of the subgroups 
(comparing survivors and nonsurvivors in both 
the COVID-19 and sepsis cohorts). The three non-
linear features and AC, DC, and NN (mode) were 
statistically significant across all four combinations.  
A number of NN metrics show significant QRS com-
plex elongation between COVID-19 and sepsis, with 
the NN (mean) appearing on average, greater among 
both COVID-19 subgroups than in sepsis survivors 

and nonsurvivors. However, we note that the effect 
size comparison of COVID-19 and all-cause sepsis 
by Cohen’s d (Supplemental Table 2, http://links.lww.
com/CCX/A838) suggests that NN features (skewness, 
kurtosis, mean, median, sd, interquartile range [IQR], 
and mode) had a large effect size (Cohen’s d > 0.8).  
ApEn, SampEn, frequency domain features (power 

TABLE 2. 
Heart Rate Variability Measures Between 
Coronavirus Disease 2019 and All-Cause 
Sepsis

Heart Rate 
Variability Metric

Coronavirus 
Disease 2019 Sepsis

Mean se Mean se

NNmean 606.12 2.05 590.13 5.15

NNmedian 605.60 2.07 589.41 5.23

NNmode 595.60 2.03 578.32 5.26

NNvariance 149.83 11.08 282.82a 60.50

NNskewness 0.09 0.01 0.10 0.03

NNkurtosis 12.12 0.18 12.27 0.50

NNinterquartile 
range

22.38 0.33 28.83a 1.17

SDNN 20.84 0.28 25.17a 0.88

RMSSD 20.87 0.36 23.11 0.97

pnn50 0.06 0.00 0.08 0.01

ulf 147.44 6.32 205.95 19.18

vlf 321.02 9.50 542.36a 44.32

lf 170.31 7.93 281.33a 27.38

hf 234.70 9.02 336.94a 31.92

lfhf 1.76 0.04 1.77 0.08

ttlpwr 873.48 26.30 1,366.59a 102.34

Acceleration 
capacity 

–3.42 0.05 –4.59a 0.18

Deceleration 
capacity

3.25 0.05 4.44a 0.17

SD1 14.77 0.25 16.36 0.68

SD2 24.28 0.32 30.21a 1.08

SD1:SD2 0.67 0.01 0.63a 0.01

Sample entropy 1.25 0.01 1.29a 0.02

Approximate 
entropy

0.98 0.00 0.98a 0.01

NN = beat-to-beat interval.
ap < 0.01 by both Kruskal-Wallis and Steel-Dwass multiple 
comparisons tests between coronavirus disease 2019 and sepsis 
cohorts.

http://links.lww.com/CCX/A836
http://links.lww.com/CCX/A836
http://links.lww.com/CCX/A837
http://links.lww.com/CCX/A837
http://links.lww.com/CCX/A838
http://links.lww.com/CCX/A838
http://links.lww.com/CCX/A838
http://links.lww.com/CCX/A838
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Figure 1. Selected illustration of key altered heart rate variability (HRV) measures between the coronavirus disease 2019 (COVID-19) 
and all-cause sepsis cohorts. A, Box plots with violin subcomponents characterizing the distribution within each group categorized by 
mortality. B, A box plot illustrating the differences among the same HRV measures when compared between COVID-19 and sepsis 
cohorts. AC = acceleration capacity, ApEn = approximate entropy, DC = deceleration capacity, NN = beat-to-beat interval, pNN50 = 
the proportion of consecutive RR intervals that differ by more than 50 ms, SampEn = sample entropy, SD1:SD2 = the ratio of standard 
deviation derived from the Poincaré plot.
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in the low-frequency range [LF]:power in the high-
frequency range [HF], power in very low frequency 
range [VLF], power in the ultra-low frequency range, 
LF, and HF) along with root mean square of succes-
sive differences (RMSSD), SD1:SD2 had moderate 
effect size (Cohen’s d > 0.5).

Figure 1A illustrates a box plot of the six highly 
differentiating measures, with their respective distri-
butions rendered by a violin plot, illustrating kernel 
density in the background. Figure 1B compares the 
same HRV markers without categorization by mor-
tality. The COVID-19 cohort had generally lower 
pNN50, SampEn, ApEn, AC, beat-to-beat (mode), and 
SD1:SD2 than the sepsis cohort.

Figure 2A illustrates correlation matrix of each HRV 
measure value, correlations were observed among met-
rics relating to vagal tone (RMSSD, pNN50, HF, SD1).  
Nonlinear components consisting of SD1:SD2, 
SampEn, and ApEn were the most distinguishing 
factor between each subgroup and demonstrate a bi-
modal distribution within the COVID-19 survivors 
and nonsurvivors, which was not observed among the 
all-cause sepsis cohort.

AC and DC components were significantly different 
among the two broad groups, with COVID-19 groups 
having a lower DC but a greater AC median value com-
pared with the sepsis groups. pNN50 in COVID 19 
groups were on average lower in comparison to sepsis 
groups, where sepsis nonsurvivors had the largest 
pNN50 median. The correlation plot (Fig. 2A) further 
shows high correlations among the beat-to-beat (NN*) 
derived features and HRV components attributed to 
parasympathetic activity. AC shows negative correla-
tion with many of the time-frequency and nonlinear 
features; however, no collinearity was found in ratios 
thought to represent sympathovagal balance (SD1:SD2, 
LF:HF, SampEn, ApEn). LF:HF ratio was found to have 
elevated median values between COVID-19 and all-
cause sepsis; however, this is not distinguished when 
considering readings in nonsurvivors.

Figure 2B illustrates a chord diagram of the interac-
tions among the HRV measures with statistical signif-
icance across COVID-19 and all-cause sepsis cohorts 
using the Kruskal-Wallis and Steel-Dwass tests (p < 0.01).  
The three nonlinear measures, along with AC, DC, and 
NN (mode), had the greatest number of interactions 
(width of the link) among each of the four groups with 
a p value of less than 0.001. pNN50 had fewer strongly 

significant interactions and could not differentiate 
COVID-19 nonsurvivors from survivors. SD1:SD2 
had stronger statistical significance among sepsis sur-
vivors and COVID-19 nonsurvivors.

Temporal trajectories of values were accumulated 
over each 8-hour segment of data and projected from 
admission until day 5. Figure 2C illustrates the nor-
malized temporal trajectories for the six most statisti-
cally significant HRV measures between the cohorts, 
the 95% CI is marked by the shaded region around 
each line. The mode of NN, pNN50, ApEn, and 
SampEn starts lower in the COVID-19 cohort and after 
5 days remains lower than the sepsis cohort. While 
DC and SD1:SD2 begin higher in the COVID-19  
cohort and end lower during the same timeframe. 
AC, DC, pNN50, NN (mode), the 95% CI is much 
tightly bound in COVID-19 patients. While among 
the nonlinear metrics, the 95% CI bound is much 
broader. Within all seven HRV measures, the sepsis 
cohort demonstrates dynamic fluctuations over their 
ICU stay that are not observed within the COVID-19 
patients.

We further evaluated whether the differences 
observed within the HRV measures among COVID-19  
patients and those with sepsis may be due to dif-
ferences in clinical workflows or due to varying 
ICU length of stay. When analyzing data from only 
the first 8 hours of ICU stay, statistical significance  
(p < 0.05) was observed for differences across many of 
the same HRV measures (Fig. 3). The mode and IQR of 
the beat-to-beat variability were the most statistically 
significant (p < 0.001), followed by frequency domain 
features such as VLF, LF (p < 0.01). Entropy measures 
did not appear among the statistically significant, and 
pNN50 that was previously among the most statisti-
cally significant also did not appear in this evaluation. 
Standard deviation of successive RR intervals, AC, and 
DC measures were both included (p < 0.05).

DISCUSSION

By comparing retrospective cohorts of COVID-19 
and non-COVID-19 all-cause sepsis patients, this 
study demonstrates a distinctively expressed sub-
sets of nonlinear and time domain HRV measures.  
The results show statistical separation between sepsis 
and COVID-19 patients and also separates between 
survivors and nonsurvivors.
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Figure 2. A, A correlation plot of all heart rate variability (HRV) measures, suggesting strong interactions between SDNN, pNN50, LF, 
VLF, and SD1, previously linked to parasympathetic components. B, A chord diagram illustrating interactions among HRV measures 
and the four unique classes of coronavirus disease 2019 (COVID-19) and sepsis survivors and nonsurvivors. The upper portion of the 
chord diagram lists the four subgroups, survivors and nonsurvivors of COVID-19 and sepsis. The lower portion illustrates the six HRV 
measures that demonstrated statistically significant separation between the groups. The size of the edge in the lower portion represents 
more statistically significant interactions across each group, along with the magnitude of the statistical significance, (Continued)
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When comparing the differences of the cohorts 
from a demographic standpoint, there was statistical 
significance (p < 0.05) observed in race, with signif-
icantly more African Americans in the COVID-19 
dataset, which is consistent with recent reports (26). 
There was no meaningful difference between mor-
tality among ethnicities. No distinctive differences by 
sex were observed in outcomes, with about an equal 
number of male nonsurvivors (52%).

Out of the battery of HRV indices analyzed, only 
some were able to separate the groups (COVID-19 and 
sepsis) and subgroups (survivors and nonsurvivors) in 

a statistically significant manner. The most statistically 
significant measure of HRV across multiple groups 
was ApEn, SampEn, and SD1:SD2. ApEn derived from 
methods of information theory is a measure of the 
degree of nonstationarity, and higher values indicate 
poor irregularity and thus suggest a poor parasym-
pathetic tone. SampEn, is a similar measure of signal 
complexity as ApEn, however, a more robust one, when 
considering shorter observational time. Both SampEn 
and ApEn were lower in the COVID-19 cohort than in 
all-cause sepsis, indicating a reduced dynamic in heart 
rate modulation.

Figure 3. A box plot of select heart rate variability measures compared between coronavirus disease 2019 (COVID-19) and sepsis 
cohorts using data from the first 8 hr of ICU stay. These measures indicate similar overlap in statistical significance (p < 0.05) for 
beat-to-beat measures like beat-to-beat interval (NN) mode and interquartile range; however, the absence of entropy and pNN50, 
which appears to be more important later in the ICU stay. AC = acceleration capacity, DC = deceleration capacity, LF = power in the 
low-frequency range, min = minimum, pNN50 = the proportion of consecutive RR intervals that differ by more than 50 ms, SDNN = 
standard deviation of successive RR intervals, VLF = power in very low frequency range.

Figure 2. (Continued) i.e., p < 0.001 are weighted higher. C, Temporal trajectories among highly significant features distinguishing 
COVID-19 and sepsis cohorts. The 95% CI is illustrated as shades bounding each line. Unlike in the sepsis cohort, where a dynamic 
change is observed in these HRV measures, the COVID-19 group has more monotonic characterization. AC = acceleration capacity, 
ApEn = approximate entropy, DC = deceleration capacity, HF = power in the high-frequency range, LF = power in the low-frequency 
range, NN = beat-to-beat interval, pNN50 = the proportion of consecutive RR intervals that differ by more than 50 ms, RMSSD = root 
mean square of successive differences, SampEn = sample entropy, SD1:SD2 = the ratio of standard deviation derived from the Poincaré 
plot, ULF = power in the ultra-low frequency range, SDNN = standard deviation of successive RR intervals, VLF = power in very low 
frequency range.
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Of the significant time domain HRV indices we 
measured (Supplemental Table 2, http://links.lww.com/
CCX/A838), pNN50, AC, DC, and NN (mode) strongly 
distinguished COVID-19 patients from all-cause sepsis. 
Cardiovascular complications within COVID-19 have 
been documented in many recent works (27–29).  
In our results, we see on average a greater NN value 
(lower heart rates) within COVID-19 patients when 
compared with all-cause sepsis. Apart from NN 
(mode), most beat-to-beat metrics show a higher base-
line distance among COVID-19 patients. IQR of NN 
shows that COVID-19 profiles among survivors and 
nonsurvivors are closer to all-cause sepsis nonsurvi-
vors indicating a potential increase in risk for mortality.

pNN50 has long been a predictor of poor car-
diac physiology (30). In our analysis, we see that 
after day 2 (seventh block, pNN50, Fig. 2), the mean 
pNN50 distinguishes from earlier periods and has 
a distinct difference progressively during the ICU 
stay. COVID-19 seems to be significantly asso-
ciated with decreased DC, while AC was higher 
(Fig.  1). Increased AC and decreased DC have spe-
cifically been shown to be predictive of mortality in 
myocardial infarction (31) and heart failure (32),  
and both AC and DC components were impli-
cated in inflammatory mediation (33) and indi-
cate significant vagal activation (34). In particular, 
decreased DC has been shown to be linked with 
impaired peripheral nervous system activity (35).  
Interestingly, evaluating temporal trajectories also em-
phasize distinct characteristics between the groups, 
while the trajectory of values among the COVID-19 
group did not change significantly over time, in con-
trast, a greater degree of temporal dynamics was 
observed in the sepsis cohort (Fig. 2).

The ratio of SD1:SD2 derived from the Poincaré 
plot, a visual geometric measure of self-similarity 
in periodic functions. SD1 has been correlated with 
the baroreflex sensitivity and measures short-term 
changes modulated by respiratory sinus arrhythmia 
(RSA) associated with parasympathetic activity (36). 
The SD1:SD2 ratio is a measure of autonomic balance, 
whereby decreased SD1:SD2 ratio indicates an elevated 
sympathetic tone and suppressed parasympathetic ac-
tivity (37). It was interesting to note that in our dataset, 
the COVID-19 group had a marginally higher SD1:SD2 
ratio than all-cause sepsis, in contrast to findings from 
DC, pNN50, SampEn, and ApEn that indicate a lower 

parasympathetic tone. An elevated SD1:SD2 may indi-
cate a broad and complex dynamics between the sym-
pathetic and parasympathetic arms and/or medication 
influence being reflected in COVID-19.

There are several pathophysiological explanations 
for the differences shown between COVID-19 and 
sepsis patients. One option relates to a direct cardiac 
injury. Indeed, cardiac manifestations in COVID-19 
patients are common (5). A direct injury could theo-
retically damage the cardiac pacer or the conduction 
system, resulting in changes of HRV. A second option 
to be considered is an injury to the autonomic system. 
Many of the parameters found to differentiate the 
groups in this cohort were previously correlated with 
changes in the sympathovagal tone (12, 13). The level 
of neurotropism of SARS-CoV-2 remains unclear, and 
specifically whether or not it could invade parasympa-
thetic fibers via the gastrointestinal tract or the lungs.

A third option could be related to the binding 
of SARS-CoV-2 to angiotensin-converting enzyme 
(ACE) 2, resulting in the loss of the protective pathway 
against a dysregulated autonomic system (38). The loss 
of ACE2 function has been associated with binding to 
the SARS-CoV-2 virus driven by endocytosis and initi-
ation of the proteolytic cleavage and processing. ACE2 
regulates the renin-angiotensin system (RAS) system by 
converting angiotensin I and angiotensin II into angi-
otensin 1–9 and angiotensin 1–7, respectively (39, 40).  
Loss of function of the ACE2 receptor, and thus an un-
regulated angiotensin II has been associated with hyper-
tension and cardiovascular autonomic dysfunction (41).  
In a cohort of 12 COVID-19 patients, circulating angi-
otensin II was found to be significantly elevated when 
compared with controls and showed linear relation-
ship with viral load (42). Angiotensin II exerts sev-
eral actions on the sympathetic arm of the autonomic 
nervous system, facilitating increased sympathetic out-
flow and neurotransmission. It also acts on the barore-
flex mechanism to modulate blood pressure (43, 44),  
and therefore by surrogate influence the cardiac non-
stationarity. Finally, the targeting of the respiratory 
system by the SARS-CoV-2 virus impacts breathing 
rate, and thus the RSA, which in turn modulates high-
frequency activities of the cardiac system.

Although it is plausible that the COVID-19 disease 
process would drive the HRV differences by one of the 
aforementioned means, there are other parameters that 
need to be further addressed. Notably, the COVID-19 
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cohort in this report had a higher Acute Physiology and 
Chronic Health Evaluation-II score, a higher rate of me-
chanically ventilated, and a higher rate of vasopressor 
use. These variables add complexity to this multifac-
torial analysis. The use of vasoactive agents, and espe-
cially catecholamine agents, are bound to have an effect 
on HRV to some extent due their direct sympathetic 
action (6). Degree of acuity and mechanical ventilation 
are likely to have an impact on HRV, via various mecha-
nisms (e.g., inflammatory signaling related to acuity of 
illness and changes in intrathoracic pressure as a result 
of mechanical ventilation, respiratory variability), yet 
a direct impact was not clearly demonstrated yet (45).  
In order to further study the specific effect of these 
parameters, future studies will be required to better 
identify the impact of such variables on HRV in the 
general critically ill population and further in specific 
groups such as patients with sepsis and COVID-19.

The combination of the seven nonlinear and tem-
poral HRV measures indicates potential sympathovagal 
imbalance within this pilot study, with various degrees 
of interaction between the sympathetic and parasym-
pathetic arms. Among COVID-19 patients, there was 
more pathologic regularity observed both overall and 
temporally. This indicates potential suppressed para-
sympathetic activity that may be driven by interference 
with the RAS system. Parallel influences from respira-
tory components affecting the RSA further contribute 
to a dysfunctional autonomic regulation of the cardiac 
system. These cues, as shown within this analysis, can 
be distinctive between the cohorts, including between 
survivors and nonsurvivors, and therefore potentially 
predictive of mortality.

When we performed a sensitivity analysis consisting 
of only the first 8 hours of monitoring data, we found 
that the differences of 18 HRV markers were statisti-
cally significant (Fig.  3). Notably, some of the more 
pathologic measures of HRV, such as SampEn and 
pNN50, did not emerge as statistically different dur-
ing the first 8 hours, while it was among the most sig-
nificant features over the 5-day analysis period. This 
may be due to the worsening clinical status of the pa-
tient that may be observed for patients during more 
lengthier ICU stays, while patients who would have 
been discharged prior to the ICU stay may have had 
less pathologic ranges. Further evaluation is needed to 
fully understand the dynamics of these HRV measures 
as a function of ICU stay and various workflows.

There are a number of limitations of this study, in-
cluding the fact that only 141 COVID-19 patients were 
eligible for inclusion. Furthermore, the analysis was 
performed on a cohort from multiple hospitals and 
units, yet still from a single health system in a single 
metropolitan. COVID-19–related mortality in our 
health system was lower than prior reports that could 
affect generalizability. This study was an observational 
cohort study performed retrospectively, and therefore 
causality analysis is limited. Specifically, this study 
did not examine the correlation between the HRV 
metrics and interventions used to treat the patients. 
Specifically, future focus should be on the influence 
of mechanical ventilation, sedation, and vasopressor. 
Additional work needs to be done to evaluate the per-
formance of these measures prospectively. Developing 
methods to automatically capture these data and gen-
erate point-of-care biomarkers is an active area of on-
going work (46, 47).

CONCLUSIONS

HRV is broadly implicated across patients infected 
with SARS-CoV-2 and admitted to the ICU for crit-
ical illness. These biomarkers may suggest a degree 
of autonomic dysfunction that can be longitudinally 
expressed. Key subsets of measures were identi-
fied across time, frequency, and nonlinear domains.  
The results highlight potential biomarkers that could 
separate COVID-19 patients from all-cause sepsis 
patients. More importantly, these results prove prelim-
inary data to allow early separation of survivors and 
nonsurvivors. Temporal trajectories of these markers 
further suggest significant decoupling as the disease 
progresses, with salient decoupling noticeable as early 
as at ICU admission. While the results of this study 
are early, we establish the premise that these higher di-
mensional features of heart rate can be associated with 
poor outcomes among COVID-19 patients.
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