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Abstract: Dipeptidyl peptidase IV (DPPIV) is a widely expressed multifunctional serine 

peptidase that exists as a membrane-anchored cell surface protein or in a soluble form  

in the plasma and other body fluids. Numerous substrates are cleaved at the penultimate 

amino acid by DPPIV, including glucagon-like peptide-1 (GLP-1), brain natriuretic peptide 

(BNP) and stromal cell-derived factor-1 (SDF-α), all of which play important roles in the 

cardiovascular system. In this regard, recent reports have documented that circulating 

DPPIV activity correlates with poorer cardiovascular outcomes in human and experimental 

heart failure (HF). Moreover, emerging evidence indicates that DPPIV inhibitors exert 

cardioprotective and renoprotective actions in a variety of experimental models of cardiac 

dysfunction. On the other hand, conflicting results have been found when translating these 

promising findings from preclinical animal models to clinical therapy. In this review,  

we discuss how DPPIV might be involved in the cardio-renal axis in HF. In addition, the 

potential role for DPPIV inhibitors in ameliorating heart disease is revised, focusing on the 

effects of the main DPPIV substrates on cardiac remodeling and renal handling of salt  

and water. 
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1. Introduction 

Heart failure (HF) is a complex syndrome characterized by the inability of the heart to pump 

sufficient amounts of blood to the circulation, or it can only do so by elevating ventricular filling 

pressures. The current pathophysiological concept of this syndrome is complex and involves  

a progressive disorder consisting of ventricular remodeling and inflammatory and neurohormonal 

responses, resulting from single or multiple causal events, which culminate in fatigue, dyspnea, 

exercise intolerance and fluid retention [1–3]. Although the etiologic keystones of HF can be diverse, 

diseases such as hypertension, myocardial infarction and diabetes are important risk factors. Taking 

into account that cardiac diseases are the leading cause of mortality in the modern world and that the 

prevalence of HF increases considerably with age, it is expected that HF will continue to be an important 

health and economic burden [4]. Such aspects justify the effort to obtain a better understanding of  

the HF syndrome, particularly with regard to enabling the development of novel therapeutic and 

preventive approaches. 

Dipeptidyl peptidase IV (DPPIV), also known as CD26, is a widely expressed serine peptidase that 

exists on the surface of various cell types; however, its expression level differs greatly among cells. 

High levels of DPPIV-mRNA and abundant protein levels are found in the kidneys, small intestine and 

lung; moderate levels exist in the pancreas, liver and spleen; low levels are found in the stomach and 

heart, and no detectable expression exists in the brain and skeletal muscles [5]. The kidney is the main 

source of DPPIV, where it is one of the major brush border membrane proteins [6]. Within the 

kidneys, DPPIV is also present in the glomerular podocytes and capillaries [7]. In the systemic 

vasculature, DPPIV is expressed in the endothelial cells of venules and particularly in the capillaries. 

In fact, in different organs and tissues such as the lung, muscle and heart, almost all tissue DPPIV 

activity is due to its presence in the microvasculature [7,8]. DPPIV is also found in cells of the 

hematopoietic system, especially those involved in the immune response such as T, B and NK cells [7].  

In the immune system, DPPIV is associated with T cell signal transduction as a co-stimulatory 

molecule. Surprisingly, the co-stimulatory activity of DPPIV requires its peptidase activity [9], and 

only soluble DPPIV with peptidase activity can enhance the proliferative response of peripheral blood 

lymphocytes [10,11]. Interestingly, DPPIV knockout mice display reduced plasma levels of interleukin-2, 

interleukin-4, IgG, IgG1, IgG2a and IgE after pokeweed mitogen (PWM) immunization [12]. 

Notably, a soluble form of DPPIV (sDPPIV) can be found in plasma and other body fluids [7,13]. 

There are very few studies available in the literature concerning the origin of sDPPIV. Some studies 

support the notion that sDPPIV is generated from cleavage of the DPPIV expressed at the membrane 

of peripheral lymphocytes, especially T lymphocytes, through the catalytic action of a yet unidentified 

“sheddase” (i.e., an enzyme that cleaves the extracellular portion of transmembrane proteins, releasing 

them into the extracellular medium) [7,14]. Accordingly, some reports have shown that expression of 

DPPIV in lymphocytes is decreased in pathological states in which the activity and serum DPPIV 

abundance is high [15,16]. Circulating DPPIV activity is increased in obese patients, and indeed, 

adipose tissue has also been recognized as a source of sDPPIV [17,18]. In this regard, Röhrborn and 

colleagues [19] reported that the interplay among different metalloproteases is involved in constitutive 

DPPIV shedding from adipocytes and that the enzymes that mediate this posttranslational modification 

of DPPIV may act in a cell type-specific manner. 
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Transmembrane and soluble forms of DPPIV preferentially cleave dipeptides from the amino 

terminus of polypeptides with a proline or alanine at the second position [20]. DPPIV catalyzes the 

release of dipeptides from numerous substrates with known biological effects, including hormones, 

chemokines, neuropeptides and growth factors [7]. The most widely studied DPPIV substrate is incretin 

hormone glucagon like peptide-1 (GLP-1), which plays a pivotal role in the maintenance of systemic 

glucose homeostasis. In 2000, a seminal study by Marguet and colleagues [21] showed that the 

circulating intact insulinotropic form of GLP-1 [22] is preserved in DPPIV knockout mice and that 

specific genetic deletion or pharmacological inhibition of DPPIV improves insulin secretion and 

glucose tolerance. Not long after that, the first DPPIV inhibitor, sitagliptin, was approved by the FDA 

for managing glucose homeostasis in type II diabetic patients. Currently, seven DPPIV inhibitors, 

known as gliptins, have been approved for use as anti-diabetic drugs worldwide.  

In addition to its exopeptidase activity, DPPIV also functions as a binding protein. In the renal 

proximal tubule, DPPIV interacts with the Na+/H+ exchanger isoform 3 protein (NHE3) [23]. NHE3 

plays a critical role in sodium reabsorption, extracellular volume homeostasis and blood pressure 

control [24]. DPPIV inhibition reduces NHE3 activity in vitro and in vivo [25,26], underscoring the 

possible role of DPPIV in fluid retention. Moreover, DPPIV directly binds to collagen [27,28], and 

fibronectin [29,30]. In fact, together with seprase, DPPIV forms a protease complex that contributes to 

cell migration and repair of connective tissue [31]. Interestingly, DPPIV inhibition has been shown to 

attenuate cardiac fibrosis in HF rats [32–34] as well as in other models of cardiac disease [35–38].  

It is therefore tempting to speculate that an association of DPPIV with collagen and/or fibronectin may 

be involved in cardiac tissue remodeling, but this assumption requires further investigation. 

HF is characterized by cardiac dysfunction, increased renal vascular resistance and sodium 

retention. The findings that DPPIV catalytic activity, as well as its binding properties, are associated 

with increased sodium reabsorption [26,39,40], inflammation [41–43] and cardiac fibrosis [32,33,36–38] 

are consistent with the hypothesis that increased DPPIV activity plays a role in the pathophysiology of 

HF. In this review, we discuss how DPPIV might be involved in the cardio-renal axis of HF. 

Furthermore, the potential role for gliptins in ameliorating heart disease is revised, focusing on the 

effects of the main DPPIV substrates on cardiac remodeling and renal handling of salt and water. 

2. Dipeptidyl Peptidase IV (DPPIV) and Cardiac Dysfunction 

Emerging evidence from both preclinical and clinical studies raises the possibility that DPPIV 

might be involved in the pathophysiology of HF. After a six-month follow-up period, patients with 

episodes of acute HF that were discharged with the highest circulating DPPIV levels (highest quartile) 

displayed a BNP-independent three-fold higher risk of death due to HF within six months [44]. In line 

with these findings, we and others have found that HF patients [33] and animal models [33,34,45], 

exhibit increased DPPIV plasma activity compared to controls, and DPPIV activity is negatively 

correlated with the left ventricular ejection fraction and pulmonary congestion [33]. Of note, plasma 

DPPIV activity seems to be increased independently of the etiology of HF because patients with 

different causes of HF were included in the study [33]. Furthermore, in patients with diastolic 

dysfunction, the higher the activity of DPPIV in the coronary sinus and peripheral circulation, the 

poorer the diastolic function [34]. 
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Interestingly, in addition to higher circulating enzymatic activity, HF rats may also exhibit  

elevated DPPIV activity and protein abundance in the heart. In a left ventricle radiofrequency ablation 

model of HF [33], cardiac activity and the expression of DPPIV, confined mainly to endothelial cells, 

were increased compared to sham-operated rats [33]. Additionally, Shigeta et al. [34] found that 

streptozotocin (STZ)-induced diabetic rats with cardiac dysfunction exhibit increased cardiac DPPIV 

activity and expression. Conversely, these same authors demonstrated that cardiac DPPIV activity and 

expression were reduced compared to controls in a model of pressure overload-induced HF [34]. 

Whether these conflicting results are due to the different models of myocardial injury-induced  

HF remains to be clarified. In fact, in situ regulation of DPPIV in HF seems to be a complex issue. 

Although the kidney is the organ with the highest expression level of DPPIV, HF animals do not  

show an increase in DPPIV in the kidneys, suggesting that this enzyme is transcriptionally and/or  

post-transcriptionally regulated in an organ specific manner. Notably, the downstream effectors protein 

kinase A (PKA) and protein kinase G (PKG), which are activated by the DPPIV substrates GLP-1 and 

BNP, respectively, were downregulated in the kidneys of HF rats [33]. These observations suggest that 

the soluble form rather than renal DPPIV is responsible for mitigating the natriuretic actions of GLP-1 

and BNP in HF animals. 

The molecular mechanisms and stimuli mediating the increase in the activity and abundance of  

both soluble and cardiac DPPIV in HF remain unresolved. An intriguing finding with regard to the 

modulation of DPPIV expression in HF is that competitive inhibition of DPPIV by sitagliptin also 

reduces DPPIV abundance both in the plasma and the heart [33]. A possible explanation for this 

unexpected observation arose from a study by Kanasaki and colleagues [46], which demonstrated  

that linagliptin increases the expression of components of the microRNA (miRNA) 29 family, which in 

turn reduce DPPIV abundance in the kidneys and endothelial cells of STZ-induced diabetic mice. 

Interestingly, the miRNA 29 family is downregulated after myocardial infarction [47,48]; however  

it remains to be established whether this posttranscriptional mechanism is also involved in the  

up-regulation of DPPIV activity/expression in the heart of experimental models of HF. Moreover,  

it is tempting to speculate that the sheddase that releases DPPIV from the cell surface to the bloodstream 

is stimulated in HF as well as other cardiovascular and metabolic diseases in which serum DPPIV 

activity is greater than that of healthy individuals. 

Some evidence from in vitro studies indicates that DPPIV expression and activity can be activated 

by HF-related stimuli. HF can be considered as a chronic pro-inflammatory state [1] in which cardiac 

remodeling and dysfunction correlates with increased AGEs and AGE receptors [49,50]. In this 

context, various inflammatory cytokines can increase DPPIV expression in immune, epithelial  

or endothelial cells [51–54]. Additionally, AGEs may up-regulate cellular DPPIV expression [55,56] 

and subsequently increase its release from the cell surface of endothelial cells [55]. Furthermore, 

hypoxia, which often occurs in HF as a result of impaired tissue blood supply, is also capable of  

up-regulating DPPIV in different cell types [19,57,58]. 

Despite the uncertainties regarding how DPPIV activity and expression are upregulated in HF, 

elevated circulating levels of sDPPIV in HF have been consistently reported in pre-clinical and clinical 

studies [33,34,45]. High DPPIV activity most likely decreases the bioavailability of peptides with 

cardiorenal functions, and lower biological activity of these DPPIV substrates may be associated with 

progressive cardiac dysfunction and increased sodium and water retention by the kidneys (Figure 1). 
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Figure 1. Schematic model depicting the possible role of DPPIV in the pathophysiology  

of HF. Several stimuli may increase the activity and abundance of both soluble and  

cardiac DPPIV in HF during the acute and/or chronic stages of this syndrome. High  

DPPIV activity may reduce the biological activity of peptides with cardio-, vaso- and 

renoprotective actions including glucagon-like peptide-1 (GLP-1), brain natriuretic peptide 

(BNP), and stromal cell-derived factor-1 α (SDF-1α) leading to poorer cardiovascular 

outcomes. On the other hand, the protease activity of DPPIV can be beneficial for the 

cardiovascular system by cleaving neuropeptide Y (NPY) and peptide YY (PYY). 

3. Cardiorenal Effects of DPPIV Substrates 

3.1. Glucagon-Like Peptide-1 (GLP-1) 

GLP-1 is an incretin hormone secreted from intestinal L-cells in response to nutrient ingestion that 

potentiates glucose-dependent insulin secretion, suppresses glucagon levels and improves β-cell  

function [59]. Because native GLP-1 is rapidly degraded by DPPIV, its therapeutic use is limited. 

Thus, DPPIV inhibitors and GLP-1 receptor (GLP-1R) agonists that are resistant to DPPIV 

degradation have been developed and are currently in use as anti-diabetic agents [60,61]. 

In addition to its effect on glucose homeostasis, several independent lines of evidence have 

demonstrated that GLP-1 exerts beneficial renal and cardiovascular actions independent of its  

glucose-lowering actions [62–66]. The acute diuretic and natriuretic actions of GLP-1 have been 

consistently demonstrated by a variety of studies in rodents [67–70] and humans [71–74]. The 

mechanisms underlying the natriuretic effects of GLP-1 involve the inhibition of NHE3-mediated renal 

proximal tubule sodium reabsorption [68–70]. In fact, stationary in situ microperfusion experiments 

have demonstrated that GLP-1 is capable of directly inhibiting NHE3 via the cAMP/PKA signaling 

pathway [68]. GLP-1 may also be involved in increasing urinary sodium excretion through indirect 
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mechanisms because the GLP-1R agonist liraglutide has been shown to induce atrial natriuretic peptide 

(ANP) secretion in mice [75]. Interestingly, in a double-blind, single-day study, GLP-1 infusion 

induced diuresis and natriuresis in healthy subjects; however, these renal effects were not accompanied 

by significant changes in plasma proANP concentrations [71]. The effects of GLP-1 on sodium and 

water homeostasis may also involve hemodynamic mechanisms because GLP-1 infusion is known to 

increase the glomerular filtration rate and renal plasma flow. DPPIV inhibitors also induce diuresis and 

natriuresis in rodents; however, the effects of DPPIV inhibition on renal sodium and water handling 

may occur through both GLP-1 dependent and independent mechanisms, given that infusion of a 

gliptin was capable of inducing natriuresis in GLP-1R knockout mice [69]. Notably, GLP-1 as well as 

GLP-1R agonists also confer renoprotection by reducing albuminuria and ameliorating renal damage 

in numerous experimental models of cardiovascular and renal diseases [76–80]. 

The cardioprotective actions of GLP-1 independent of glucose control have also been reported in 

both preclinical and clinical studies [65,81–86]. In vitro, GLP-1R agonists activate cytoprotective 

pathways and reduce cardiomyocyte apoptosis in response to diverse stimuli such as ceramide, 

palmitate, staurosporine and tumor necrosis factor-α [65,87]. Additionally, native GLP-1 attenuates 

infarct size after ischemia/reperfusion in in vivo and isolated perfused hearts [81], and liraglutide 

improves myocardial infarction (MI) outcomes in both diabetic and non-diabetic mice [83]. 

Furthermore, these preclinical results are supported by clinical data because GLP-1 and exenatide 

treatment significantly improves cardiac function and the myocardial salvage index in patients with 

acute MI and left ventricular dysfunction independently of the history of diabetes [82,85]. 

Interestingly, similar to DPPIV, GLP-1R is abundantly expressed in the vasculature, and GLP-1 has 

vasoactive properties. Vasodilatory actions of GLP-1 have been reported in several vessels as GLP-1 

induces vasorelaxation in the aorta and the femoral, renal and pulmonary arteries [88–90]. More 

detailed information about the vascular properties of GLP-1 can be found in recent review  

articles [86,91]. 

3.2. Brain Natriuretic Peptide  

BNP is produced in myocardial cells and secreted in response to distention of the cardiac chambers. 

Originally synthesized in the heart as the 108 amino acid precursor (pro-BNP)1–108, pro-BNP 

undergoes posterior processing, which culminates in the release of the biologically active form  

BNP1–32 and the N-terminal proBNP1–76 [92]. Active BNP1–32 binds to the natriuretic peptide-A receptor 

(NPR-A), which, via cyclic guanosine monophosphate (cGMP) and PKG, mediates its vasodilatory and 

natriuretic effects. Importantly, BNP is either cleared by the natriuretic peptide-C receptor (NPR-C)  

or degraded by neutral endopeptidase (NEP) or DPPIV [93]. 

BNP plays an important role in regulating extracellular fluid homeostasis and blood pressure by 

counteracting the actions of the sympathetic nervous system and the renin-angiotensin aldosterone 

system [94–96]. BNP exerts its natriuretic effects by both renal hemodynamic and tubular effects.  

In the glomerulus, BNP causes afferent arteriolar dilation together with efferent arteriolar 

vasoconstriction, thereby increasing the glomerular filtration rate (GFR). In the inner medullary 

collecting ducts, it decreases sodium chloride reabsorption, thereby increasing natriuresis [95]. 

Moreover, BNP also decreases aldosterone and renin release [94]. 



Int. J. Mol. Sci. 2015, 16 4232 

 

 

Plasma levels of BNP are increased in patients with HF and positively correlate with the degree of 

left ventricular dysfunction [97–99]. Indeed, BNP has been widely used as a reliable prognostic 

indicator for HF patients in all stages of the disease [100,101]. However, despite exceedingly high 

circulating levels of BNP measured by commercially available immunoassays, HF patients continue to 

experience fluid retention, increased peripheral vascular resistance and edema [102,103]. Several 

mechanisms have been proposed to explain the hyporesponsiveness to BNP in HF [103,104], including 

an increase in the proximal tubule sodium reabsorption with a resultant decrease of sodium delivery to 

the distal nephron where the BNP receptor is located, increased activity of peptidases that degrade and 

inactivate these peptides and/or decreased activity of peptidases that activate the peptides. Indeed,  

a report by Inoue et al. [105] demonstrated that NHE3 transport activity is significantly higher in  

the renal proximal tubules of an experimental model of post-myocardial injury-induced HF than in  

sham-operated animals. In addition, the endocrine BNP paradox has also been attributed to a deficiency 

of the active form of BNP in HF patients [106,107]. In fact, quantitative mass spectrometric analysis 

has demonstrated that the intact form of BNP is absent in the plasma of patients with severe chronic 

HF (New York Heart Association (NYHA) class IV) [106]. Interestingly, des-serine-proline BNP3–32, 

the cleaved form of BNP yielded by N-terminal dipeptide removal by DPPIV [108], displays 

remarkably reduced natriuretic actions and a lack of vasodilatory activity compared to BNP1–32 [109]. 

In line with these findings, overpacing-induced HF pigs treated with the DPPIV inhibitor sitagliptin 

exhibited an improvement in stroke volume and GFR. Moreover, acute BNP infusion was able to 

significantly improve end-systolic elastance, ventricular-arterial coupling and mechanical efficiency in 

HF pigs solely treated with sitagliptin [110]. 

3.3. Stromal Cell-Derived Factor 1-α (SDF-1α) 

SDF-1α, also known as chemokine CXCL-12, is a potent chemoattractant protein that plays  

a fundamental role in leukocyte recruitment to inflammatory sites. SDF-1α effects are thought to be 

mediated mainly by binding to the G protein-coupled receptor CXCR4, although binding to CXCR7 

has also been described [111]. Due to the prominent effects of this chemokine in leukocyte and stem 

cell recruitment to injury sites, several groups have studied its role after cardiac injury. It has been well 

described that after a cardiac injury, similar to MI, SDF-1α expression rapidly increases, and due to the 

higher gradient, several types of cells migrate to the injured heart tissue with the aim of improving 

cardiac repair and remodeling [111–113]. Among the cells that migrate to the injured heart tissue, bone 

marrow and circulating CXCR4+ progenitor cells are crucial for increasing cardiac angiogenesis and 

reducing cardiac remodeling [114]. Accordingly, several studies have shown that SDF-1α is a potent 

angiogenic factor in vitro [114]. Therapeutic use of SDF-1, in a similar manner to that of native  

GLP-1, is also challenged by its rapid degradation by DPPIV and matrix metalloproteinase-2. Indeed,  

a protease-resistant variant of SDF-1α significantly improves blood flow in a model of peripheral 

artery disease and exhibits greater potency for cardioprotection than wild-type SDF-1α after  

MI [113,115,116]. Moreover, synergism between granulocyte-colony stimulating factor and DPPIV 

inhibition significantly improves stem cell mobilization, angiogenesis, cardiac function and survival 

after MI in rodents [117]. Notably, co-treatment with the CXCR4 antagonist AMD3100 reverses the 
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recruitment of CD34+/CXCR4+ cells into the heart and mitigates the improvement in cardiac  

function [118]. 

Elevated levels of total SDF-1α and low migratory activity of circulating progenitor cells were both 

independent predictors of death or repeat acute MI and new-onset HF in patients with acute MI [119,120]. 

Interestingly, four-week treatment with sitagliptin significantly increased the levels of circulating 

endothelial progenitor cells in type 2 diabetic patients [121]. Moreover, after adjusting for traditional 

cardiovascular risk factors, SDF-1α was associated with HF and all-cause mortality risk in Framingham 

Heart Study participants [120]. 

3.4. Other DPPIV Substrates and Potential Effects on the Cardiovascular System 

Vasoactive intestinal peptide (VIP) belongs to the pituitary adenylyl cyclase activation polypeptide 

(PACAP)/glucagon superfamily that includes other DPPIV substrates such as GLP-1, glucose-dependent 

insulinotropic peptide (GIP) and PACAP. VIP is found in the gastrointestinal tract, peripheral and 

central nervous system, heart, lungs and kidney, as well as in the plasma. The beneficial effects of 

intact VIP consist of vasodilatation-mediated increases in local blood flow, anti-inflammatory and  

anti-oxidative actions in ischemic organs [58], positive inotropic and chronotropic effects associated 

with coronary vasodilatation [122,123], and renoprotective effects by the suppression of oxidative 

stress [124] as well as diuresis and natriuresis [125]. VIP is cleaved by DPPIV in two consecutive 

steps, thereby producing truncated forms with reduced biological actions [126]. Thus, DPPIV 

inhibition and the consequent increased bioavailability of endogenous VIP may have beneficial effects 

in cardiovascular diseases including HF. 

In addition to plasma metabolization by angiotensin converting enzyme (ACE), substance P is also 

inactivated by DPPIV. This neuropeptide, found primarily in sensory nerves, is also present in heart 

nerve fibers surrounding cardiac muscle cells, endocardium, epicardium and coronary vessels, as well 

as in coronary endothelial cells themselves [127]. Regarding cardiovascular actions, substance P plays 

an important role in adverse myocardial remodeling during its long-term activation in non-ischemic 

HF, inducing cardiac inflammation, oxidative stress, apoptosis and changes to the extracellular  

matrix [127]. However, cumulative evidence suggests that at the acute phase of ischemia-reperfusion 

settings, substance P may confer cardioprotection mainly by increasing myocardial reperfusion due to 

NO release and coronary dilatation [128–130]. Thus, it remains unresolved whether substance P 

inactivation by DPPIV would render deleterious or cardioprotective effects in HF [127]. 

DPPIV also mediates the cleavage of the 36 amino acids neuropeptide Y (NPY) and peptide YY (PYY) 

to N-terminally truncated NPY3–36 and PYY3–36 forms, respectively [131]. Both of these peptides bind 

to at least six different G-protein coupled receptors, Y1–Y6 [132]. NPY is an abundant neuropeptide  

in the central and peripheral nervous system and plays an essential role in sympathetic tone and 

behavioral function. After binding to the Y1 receptor, NPY induces a potent vasoconstrictor effect, 

whereas binding to Y2 is implicated in inhibition of neurotransmitter release. In addition, binding  

to Y5 mediates the regulation of food intake. Moreover, Y2/Y5 receptor stimulation is involved  

in proliferation of smooth muscle and endothelial cells, angiogenesis and nitric oxide (NO)  

production [133,134]. Interestingly, after DPPIV cleavage, the truncated form, NPY3–36, displays 

higher affinity to the Y2 and Y5 receptors than to the vasoconstrictor receptor Y1 [132]. PYY is  
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a gastrointestinal hormone secreted mainly by L-cells and plays a role in regulation of food intake. 

Similar to NPY, which is a product of DPPIV cleavage, PYY3–36, also has a higher affinity to the Y2 

and Y5 receptors. Thus, as opposed to most of the peptides discussed above, it is likely that in the case 

of NPY and PYY, the protease activity of DPPIV would actually be beneficial for the cardiovascular 

system. Notably, NPY levels have been found to be elevated in HF patients and to correlate with 

tachycardia and left-sided HF [135,136]. 

4. DPPIV Inhibitors and HF: Preclinical Studies 

Diabetic patients have a three-fold higher risk of developing HF compared to non-diabetic  

subjects [137]. Because DPPIV inhibition is an effective therapy for reducing blood glucose,  

it is reasonable to assume that if DPPIV inhibition improved cardiac function at all, this improvement 

would likely be secondary to blood glucose control. However, as mentioned above, increased levels of 

plasma DPPIV have been associated with poorer outcomes in HF animals and patients [33,34,45].  

In addition, most peptides inactivated by DPPIV display beneficial cardiorenal functions, suggesting 

that inhibition of DPPIV may attenuate the development and/or progression of HF by mechanisms 

independent of glucose reduction. Accordingly, a large body of experimental data [32–34,38,87,138] 

has demonstrated that genetic deletion or pharmacological inhibition of DPPIV improves 

cardiovascular outcomes. 

Sauvé et al. [138] have demonstrated that normoglycemic DPPIV knockout mice display increased 

survival after experimental myocardial infarction (MI). Because DPPIV knockout mice are resistant to 

the development of diabetes induced by streptozotocin (STZ) [21], these authors examined the 

cardioprotective effects of pharmacological DPPIV inhibition in STZ-diabetic wild type mice 

subjected to MI. Likewise, treatment with sitagliptin improved survival post-MI in diabetic mice, and 

acute DPPIV inhibition was also capable of improving recovery from heart ischemia/reperfusion  

injury in normoglycemic mice. Additionally, four-week treatment with vildagliptin improved cardiac 

dysfunction, decreased fibrosis, attenuated cardiac levels of apoptosis and increased the survival  

rate in pressure-overloaded nondiabetic mice and rats [32,38]. Similarly, six-week treatment with 

sitagliptin significantly attenuated cardiac dysfunction in normoglycemic rats subjected to myocardial 

injury by radiofrequency ablation [33]. The preventive effects of inhibition of DPPIV included  

a reduction in diastolic left ventricular end pressure, increased systolic performance and decreased 

stiffness of the heart chamber. Treatment with sitagliptin also attenuated cardiac hypertrophy and 

interstitial fibrosis of the remaining myocardium. Furthermore, inhibition of DPPIV was able to 

prevent a decrease in the glomerular filtration rate and an increase in NHE3-mediated proximal tubular 

reabsorption of sodium and minimized pulmonary congestion [33]. On the other hand, Yin and 

colleagues have found that administration of the DPPIV inhibitor vildagliptin (15 mg/kg/day) failed to 

prevent cardiac remodeling and dysfunction after MI in rats [139]. Notably, the lack of vildagliptin-induced 

cardioprotection in this study is most likely attributed to the low dose and frequency of administration 

of vildagliptin employed (once-daily vs. twice-daily dosing frequency). Indeed, we have found that 

chronic treatment with high (120 mg/day given twice per day) but not low-dose (20 mg/kg given once 

a day) vildagliptin is capable of ameliorating cardiac and renal function and reducing pulmonary 

congestion in rats with established HF [140]. 
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Taken together, these data suggest that DPPIV inhibitors might have a place in the therapeutic 

armamentarium for cardiovascular diseases other than diabetes. 

5. DPPIV Inhibitors and HF: Clinical Studies 

Despite the extensive amount of experimental data documenting that DPPIV inhibitors are 

beneficial for treating cardiac disorders, conflicting results have been found when translating these 

promising findings from preclinical animal models to clinical therapy. 

In accordance with the pre-clinical studies, small pilot studies have reported positive effects of 

DPPIV inhibitors in patients with cardiac disease. In a small study, fourteen patients with coronary 

artery disease and preserved left ventricular function awaiting revascularization received an oral load 

of 75 g of glucose after a single dose of 100 mg of sitagliptin or placebo. Dobutamine stress 

echocardiography was conducted with tissue Doppler imaging at rest, during peak stress, and after  

30 min of recovery. Interestingly, patients treated with the DPPIV inhibitor exhibited an improvement  

in global left ventricular function at peak stress, and after a 30 min recovery. Moreover, sitagliptin 

mitigated post-ischemic stunning dramatically compared to the placebo [141]. Because an oral load of 

glucose was administered to patients in this study, one can infer that GLP-1 may be the major DPPIV 

substrate responsible for the observed cardioprotective effects. 

The failing heart undergoes an intense metabolic remodeling, switching its primary energy substrate 

to glucose. In this regard, DPPIV inhibition seems to exert a positive effect on myocardial energy 

metabolism because four-week treatment with sitagliptin significantly increased myocardial glucose 

uptake in a cohort of nondiabetic patients with nonischemic dilated cardiomyopathy [142]. These 

findings may be attributed, at least in part, to the fact that sitagliptin is capable of increasing the 

protein and mRNA expression of glucose transporter-4 (GLUT-4) in the heart [143], at least in part, 

due to a GLP-1-dependent mechanism because this incretin directly enhances GLUT4 expression in 

isolated cardiomyocytes in vitro [143]. 

Since 2008, regulatory agencies have demanded that all new anti-diabetic drugs undergo cardiovascular 

safety assessments. In 2013, two major clinical trials assessing the benefits and risks of DPPIV 

inhibitors in high-cardiovascular risk patients with diabetes had their results published in The New England 

Journal of Medicine: The Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with 

Diabetes Mellitus—Thrombolysis in Myocardial Infarction 53 study (SAVOR-TIMI 53) [144] and the 

Examination of Cardiovascular Outcomes with Alogliptin vs. Standard of Care (EXAMINE) [145]. 

The SAVOR-TIMI 53 study was a multicenter, randomized, double-blind, placebo-controlled, 

phase 4 trial. A total of 16,492 patients with a history of documented type 2 diabetes mellitus,  

a glycated hemoglobin level of 6.5% to 12.0%, and either a history of established cardiovascular 

disease or multiple risk factors for vascular disease were randomly assigned to receive the DPPIV 

inhibitor saxagliptin at a dose of 5 mg daily (or 2.5 mg daily in patients with an estimated GFR of  

≤ 50 mL/min) or a placebo. The primary endpoints consisted of cardiovascular death, nonfatal MI  

or nonfatal ischemic stroke. The secondary endpoints included hospitalization for HF, coronary 

revascularization, or unstable angina. The median follow-up period was 2.1 years. As expected, 

patients treated with saxagliptin exhibited lower levels of fasting plasma glucose and glycated 

hemoglobin. Notably, the saxagliptin group presented a better albumin-to-creatinine ratio than the 
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placebo group, suggesting a positive effect on renal function. Unexpectedly, this trial showed a 27% 

increased relative risk of hospitalization for HF in patients assigned to the saxagliptin group (3.5% vs. 2.8% 

in placebo; p = 0.007) [144]. Further analysis showed that patients with a high overall risk of HF  

(i.e., a history of HF, impaired renal function, or elevated baseline levels of N-Terminal proBNP) were 

more susceptible to the detrimental effects of the DPPIV inhibitor [146]. 

The EXAMINE trial was a multicenter, randomized, double-blind trial [145]. Unlike the SAVOR-TIMI 

53 study, patients were eligible for enrollment if they had type 2 diabetes mellitus, a glycated 

hemoglobin level of 6.5% to 11.0%, and had an acute coronary syndrome within 15 to 90 days  

before randomization. Acute coronary syndromes included acute MI and unstable angina requiring 

hospitalization. The patients were assigned to receive alogliptin or a placebo. Because alogliptin  

is cleared by the kidneys, dose adjustment in patients with diabetes and chronic kidney disease was 

required. Patients with normal renal function or mild renal insufficiency, i.e., levels of estimated GFR 

(eGFR) > 60 mL/min received 25 mg, patients with an eGFR of 30 to less than 60 mL/min received 

12.5 mg and patients with an estimated GFR < 30 mL/min received 6.25 mg. The mean follow-up was 

18 months, and the primary outcomes were cardiovascular death, nonfatal MI and nonfatal stroke.  

A total of 5380 patients were evaluated, and similar to the SAVOR-TIMI 53 study, no significant 

differences in primary cardiovascular outcomes between the placebo and alogliptin groups were 

observed [145]. Further analyses regarding HF and the EXAMINE trial were published, and despite 

the similar history of HF in both groups, alogliptin neither induced new onset of HF nor worsened the 

outcomes in patients with prior HF [147]. 

An ongoing study evaluating DPPIV inhibitors and cardiac outcomes is the Vildagliptin in 

Ventricular Dysfunction Diabetes (VIVIDD) trial. In the VIVIDD trial, 254 patients with type 2 

diabetes mellitus, a glycated hemoglobin of 6.5% to 10%, and chronic HF (New York Heart 

Association class I to III) were randomized to receive vildagliptin (50 mg bid) or a placebo [148]. The 

ejection fraction (primary endpoint) was measured at baseline and after 52 weeks of follow-up.  

No significant difference in the ejection fraction was found between the groups; however, patients 

taking vildagliptin exhibited a significant increase in left ventricular end-diastolic volume, end systolic 

volume and stroke volume. Interestingly, despite the increased volume, after 52 weeks, BNP levels 

decreased by 14% relative to baseline in the placebo group vs. 28% in the vildagliptin group. These 

data suggest a decrease in cardiac stress. According to new findings reported at the American Diabetes 

Association 2014 Scientific Sessions, patients treated with the DPPIV inhibitor vildagliptin exhibit no 

significant difference in the incidence of hospitalization for HF compared to the placebo group [149]. 

The outcomes of two large ongoing studies are of high importance for clinicians and patients 

because they will help to clarify whether risks and/or benefits exist for DPPIV inhibitors used to treat 

type 2 diabetes patients with a history of cardiovascular disease. The Cardiovascular Outcome Study of 

Linagliptin vs. Glimepiride in Patients with Type 2 Diabetes (CAROLINA) study is a multicenter, 

randomized, parallel group, double blind study to evaluate the cardiovascular safety of linagliptin vs. 

sulfonylurea (glimepiride) in patients with type 2 diabetes mellitus at a high cardiovascular risk [150]. 

This trial has been ongoing since November 2010, and the estimated primary completion date is 

September 2018. Because it is such a large trial, it will provide a unique perspective with respect to 

cardiovascular outcomes and linagliptin. 
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Another important trial is the Sitagliptin Cardiovascular Outcome Study (TECOS) [151]. The 

TECOS is a multinational, randomized, double-blind, placebo-controlled trial designed to assess the 

cardiovascular outcome of long term treatment with sitagliptin in patients with type 2 diabetes 

mellitus, a history of cardiovascular disease and a glycated hemoglobin of 6.5% to 8.0%. It has been 

ongoing since November 2008 with an estimated enrollment of 14,000 patients and a primary 

completion date of December 2014. 

6. Summary and Perspectives 

The key points discussed in this review are summarized in Figure 2. Clinical and experimental 

studies have shown that the higher the activity of plasma DPPIV, the poorer the cardiovascular 

outcomes in HF, suggesting that DPPIV might be involved in the pathophysiology of this syndrome. 

The poor prognosis in the presence of high circulating levels of DPPIV is most likely due to the  

lower bioavailability of cardio and renoprotective peptides such as GLP-1, BNP and SDF-1α and to the 

fact that DPPIV directly and/or indirectly may exert pro-fibrotic and inflammatory actions. Thus,  

in theory, inhibition of DPPIV would confer cardioprotection. Indeed, the majority of preclinical 

studies have demonstrated that gliptins ameliorate cardiac remodeling and function and may even 

increase survival in experimental HF. It is of particular note that gliptins have been consistently reported  

to exert renoprotective actions in both experimental models of cardiac disease and in patients with  

cardiac dysfunction. 

 

Figure 2. DPPIV as a therapeutic target in HF. Diagram summarizing the rationale and 

approaches used to test the hypothesis that DPPIV inhibition may exert cardio and 

renoprotective effects in experimental and clinical HF as well as the main outcomes 

obtained in experimental and clinical studies (see text for further detail). 
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A lower level of consensus is evident with regard to the cardiovascular benefits of DPPIV inhibition 

in the clinical setting. Clinical studies have documented that DPPIV inhibitors may improve cardiac 

dysfunction in some patients, but not affect cardiac outcomes or even increase the risk of HF 

complications in others. In pilot studies, non-diabetic subjects with cardiac dysfunction treated with 

DPPIV inhibitors displayed improved myocardial glucose uptake, reduced circulating AGEs and 

elevated levels of circulating progenitor cells as compared to placebo-treated individuals. On the other 

hand, the results of the SAVOR-TIMI 53 and EXAMINE trials have shown that either saxagliptin or 

alogliptin, respectively, achieved non-inferiority, but not superiority, compared to placebo in terms of 

primary cardiovascular outcomes in type 2 diabetic patients. Actually, the increase in hospitalization 

for HF in diabetic patients treated with saxagliptin vs. patients treated with placebo observed in the 

SAVOR-TIME 53 trial have raised some cardiovascular safety concerns with respect to administering 

DPPIV inhibitors to diabetic patients with HF. It remains to be established whether this disappointing 

outcome can be considered an adverse effect of DPPIV inhibitors, what is its clinical relevance, 

whether it is common to all DPPIV inhibitors and if it may be associated with comorbidities and 

polypharmacy. So far, the possible underlying mechanisms to explain why saxagliptin would increase 

the risk for HF hospitalizations remain speculative. 

Ongoing trials such as TECOS and CAROLINA may shed light on the potential benefits and 

drawbacks of DPPIV inhibition in diabetic patients with a history of cardiovascular diseases. Morever, 

together with additional translational research, the results from these clinical studies may also clarify 

whether DPPIV plays a role on the pathophysiology of HF beyond glycemic control in a harmful, 

beneficial or neutral way. 
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