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Abstract

The usefulness of ultra-deep pyrosequencing (UDPS) for the diagnosis of HIV-1 drug resis-

tance (DR) remains to be determined. Previously, we reported an explosive outbreak of

HIV-1 circulating recombinant form (CRF) 07_BC among injection drug users (IDUs) in Tai-

wan in 2004. The goal of this study was to characterize the DR of CRF07_BC strains using

different assays including UDPS. Seven CRF07_BC isolates including 4 from early epi-

demic (collected in 2004–2005) and 3 from late epidemic (collected in 2008) were obtained

from treatment-naïve patient’s peripheral blood mononuclear cells. Viral RNA was extracted

directly from patient’s plasma or from cultural supernatant and the pol sequences were

determined using RT-PCR sequencing or UDPS. For comparison, phenotypic drug suscep-

tibility assay using MAGIC-5 cells (in-house phenotypic assay) and Antivirogram were per-

formed. In-house phenotypic assay showed that all the early epidemic and none of the late

epidemic CRF07_BC isolates were resistant to most protease inhibitors (PIs) (4.4–47.3

fold). Neither genotypic assay nor Antivirogram detected any DR mutations. UDPS showed

that early epidemic isolates contained 0.01–0.08% of PI DR major mutations. Furthermore,

the combinations of major and accessory PI DR mutations significantly correlated with the

phenotypic DR. The in-house phenotypic assay is superior to other conventional phenotypic

assays in the detection of DR variants with a frequency as low as 0.01%.
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Introduction

Combination antiretroviral therapy (cART), also known as highly active antiretroviral therapy

(HAART) can decrease the morbidity and mortality of HIV-1/AIDS patients [1–3]. However,

the emergence of HIV-1 drug resistance (DR) may lead to cART failure [4, 5]. Therefore,

detection of DR viruses is important for clinical management of HIV-1/AIDS. Two assays

have been designed for the detection of HIV-1 DR: genotypic and phenotypic assays [6]. Geno-

typic assay uses direct PCR amplification of the HIV-1 pol region followed by Sanger sequenc-

ing (also called bulk sequencing). It is widely used in the clinical laboratory diagnosis of HIV-1

DR since it is less expensive and has a short processing time [6]. However, the results of these

assays do not always represent the clinical outcome because resistance is predicted by muta-

tions that had been previously observed [7]. In addition, the specimens need to contain at least

20% of the DR quasispecies or variants [8, 9]. In contrast, phenotypic assays measure HIV-1

viral replication in cells cultured in different drug concentrations. There are two types of phe-

notypic assays: commercially available phenotypic assays generate chimeric viruses by homol-

ogous recombination of PCR-derived sequences and then culture with cells in different drug

concentrations [10, 11] and in-house phenotypic assay use peripheral blood mononuclear cells

(PBMCs) to isolate HIV-1 and then incubate them in target cells (MAGIC-5 cells) with differ-

ent drug concentrations [12, 13]. It has been reported that phenotypic drug resistance using

recombinant virus assay was limited to detect low-frequency viral quasispecies below than

50% [14]. However, there is no data on the sensitivity of the in-house phenotypic assay which

uses primary isolates from the patients directly.

Compared with standard population sequencing, a number of ultrasensitive assays, includ-

ing allele-specific PCR and deep sequencing, can detect mutations present at a far lower fre-

quency [15–17]. Low-frequency variants containing non-nucleoside reverse transcriptase

inhibitor (NNRTI) resistance mutations were associated with virologic failure in patients

receiving first-line cART [18]. In addition, using allele-specific PCR, Rowley et al. demon-

strated that low-frequency variants containing K103N and Y181C increased the risk of treat-

ment failure of nevirapine [19]. One of the approaches is ultra-deep pyrosequencing (UDPS)

which sequences millions of PCR amplicons, such as sequencing on the Roche 454 platform.

However, few studies have been conducted to evaluate the usefulness of UDPS in the detection

of low-frequency DR variants in clinical settings [18, 20–22].

In Taiwan, HIV-1 circulating recombinant form (CRF) 07_BC is one of the predominant

strains in injection drug users (IDUs) [23, 24]. The risk factors associated with IDU infection

and the virological characteristics of CRF07_BC have been well addressed in our previous

study [24–28]. However, little is known about the characteristics of the DR profiles of treat-

ment naïve patients infected with CRF07_BC. Previously we performed in-house phenotypic

and genotypic assay to determine the DR profiles in two treatment naïve IDUs infected with

CRF07_BC. In-house phenotypic assay [12] showed that one IDU who was an early serocon-

verter had phenotypic DR to PIs. However, no DR mutations were observed in the HIV-1 pol

regions using genotypic assay. Therefore, we proposed that low-frequency of PI-resistant vari-

ants may exist in CRF07_BC infected patients that cannot be detected by genotypic assay but

can be identified through in-house phenotypic assay.

Materials and Methods

Subjects

Seven CRF07_BC isolates including 4 from early epidemic (collected in 2004–2005) and 3

from late epidemic (collected in 2008) were obtained from treatment-naïve patient’s PBMCs.

Demographic data was assessed through a self-administered questionnaire. PBMCs were
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collected for primary culture and HIV-1 subtyping. Blood plasma was collected for viral RNA

extraction.

Ethics statement

This study was approved by the Institutional Review Boards (IRB) of Kaohsiung Medical Uni-

versity Chung-Ho Memorial Hospital. Written informed consent was obtained from patients

who agreed to participate in this study.

HIV-1 subtyping and primary culture with PBMCs

Viral RNA was extracted from plasma using QIAmp viral RNA mini kits (Qiagen, Hilden,

Germany). DNA sequencing was performed using a ABI PRISM 3700 DNA analyzer (Applied

Biosystems, Foster City, USA). HIV-1 subtyping was determined using nested multiplex poly-

merase chain reaction (PCR) and phylogenetic tree analysis as described previously [26, 28].

Briefly, two sets of nested PCR were performed to determine the HIV-1 subtype. One set

added three pairs of primers for subtype B, C and CRF01_AE. Subtype can be determined by

the different size of PCR products. Another set of nested PCR was performed using

CRF07_BC specific-primer pairs to discriminate CRF07_BC from subtype C. Virus produc-

tion was performed by donor PBMCs co- culture with infected PBMCs. The culture proce-

dures have been described elsewhere [29, 30].

Virus stock titration

MAGIC-5 cells were counted and dispensed into a 96-well tissue culture plate at 4.5×103 cells/

well with growth medium. Medium was removed the next day, and the virus diluted by growth

medium plus DEAE-dextran (20μg/ml) (Sigma, Saint Louis, USA) was added to each well.

Infection by each virus was performed in triplicate wells. Cells were assayed for infection by

staining for β-galactosidase expression at 48 hours post-infection. Culture medium was

removed, and fixing solution (0.1% formaldehyde and 0.02% glutaraldehyde in PBS) was

added to each well. The monolayer was fixed at room temperature for 5 min, and 100μl of

staining solution (4mM potassium ferrocyanide, 4mM potassium ferricyanide, 2mM magne-

sium chloride, and 400μg/ml 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside [X-gal] in

PBS) was added to each well. The number of blue-stained cells was counted and expressed as

blue cell-forming units (BFUs).

In-house phenotypic assay

Each clinical isolate was directly tested for drug susceptibility in triplicate using MAGIC-5

cells as described previously [12]. Briefly, each drug was prepared in four serial 10-fold dilu-

tions with infection medium (growth medium supplemented with 20μg/ml of DEAE-Dex-

tran). MAGIC-5 cells were counted and dispensed into a 96-well tissue culture plate at 4.5×103

cells/well with growth medium. To determine the susceptibility to PIs, 400–600 BFU of virus

isolates with or without serial-diluted drugs were added to wells. The cells were cultured for

4–5 days for multiple-round replication, and the supernatant was transferred to another

96-well tissue culture plate with MAGIC-5 cells. In this step, the virus was cultured in a drug-

free medium, and the cells were fixed and stained as described above after 48 hours of drug-

free culture. To determine the susceptibilities to nucleoside reverse transcriptase inhibitors

(NRTIs) and NNRTIs, 100 BFU of virus isolates with or without serial-diluted drugs were

added to wells, and the cells were fixed and stained after 48 hours of co-culture with virus and

drugs. Blue infected cells were counted under an inverted microscope, and the 50% inhibitory
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concentration (IC50) of each drug was estimated from plots of the percentage of BFU reduction

versus drug concentration. Each experiment used the NL4.3 HIV-1 strain as control. For com-

parison, an in vitro phenotypic resistance assay that measures the level of resistance of recom-

binant HIV-1 from plasma samples was performed using Antivirogram assay [11].

The NIH AIDS Research and Reference Reagent Program (Division of AIDS, National

Institute of Allergy and Infectious Diseases [NIAID], NIH) provided the antiviral drugs used

in this study: PIs, ritonavir (RTV), saquinavir (SQV), indinavir (IDV), nelfinavir (NFV),

amprenavir (APV); NRTIs, zidovudine (AZT), lamivudine (3TC), stavudine (d4T), didanosine

(ddI), zalcitabine (ddC), abacavir (ABC), tenofovir (TDF); NNRTIs, nevirapine (NVP), efavir-

enz (EFV).

In this study, all of the CRF07_BC isolates were cultured with MAGIC-5 cells containing

different concentrations of RT inhibitors or PI inhibitors. Nine NRTIs, 2 NNRTIs and 5 PIs

were used in the in-house phenotypic assay. DR was determined by comparing the fold

increase of IC50 with NL4.3 control. Fold increase was interpreted and assigned a phenotypic

resistance or susceptibility using the clinical cut off values (CCOs) or biological cut off values

(BCOs). CCOs was defined as the clinical relevant breakpoints of treated patients with drug

resistant HIV-1. BCOs was defined as the breakpoints of drug susceptibility range of wild-type

virus in the in vitro susceptibility assay. If the fold difference between patient isolates and

NL4.3 control was above the upper CCO value or BCO value, the isolates were defined as hav-

ing DR. Drug susceptibility was defined as a fold increase below the lower CCO. Intermediate

DR was a fold increase between the lower and upper CCOs. In addition, the fold increase inter-

pretation used BCOs when CCOs were lacking. However, BCOs are not derived from data of

clinical responses to ARV drugs and may lack clinical relevance [31–34].

Genotypic assay

Viral RNA was reverse transcribed to cDNA using Tetro cDNA synthesis kit (Bioline, Taun-

ton, USA) with a random hexamer. The HIV-1 pol gene was amplified by PCR using Blend

Taqplus kit (Toyobo, Osaka, Japan) with the first (F1849 and R3500) and nested primers

(MAW26 and RT21) published previously [35]. Briefly, the first PCR reaction for HIV-1 pol

region was performed using cDNA as template. The products of the first PCR process contin-

ued with nested PCR. Sequences of the pol region were compared to the consensus B sequence

from the Stanford HIV DR Database (http://hivdb.stanford.edu/) to detect and estimate muta-

tions of DR and susceptibility to PIs and reverse transcriptase inhibitors (RTIs).

Ultra-Deep Pyrosequencing (UDPS)

Amplicon sequencing was performed according to the manufacturer’s instructions. PCR was

done using Expand High Fidelity DNA polymerase (Roche Applied Science, Basel, Switzer-

land). The purified PCR products were used in direct population Sanger sequencing (ABI

3730, Applied Biosystems, Foster City, USA) and UDPS (Roche/454 GS Junior, Branford,

USA). The PCR amplicons were sequenced by forward direction on the Roche 454 GS Junior

platform. Equimolar pooling of the DNA molecular for each patient was performed and fol-

lowed by emulsion PCR and pyrosequencing on a 454 GS Junior sequencer.

UDPS sequences analysis and bioinformatics

Data cleaning was important to increase the quality of sequences for subsequent analysis. First,

sequences from each run were separated into different multiple identifiers (MIDs), and then

the data was cleaned by several steps. Sequences containing the following were discarded: 1)

sequences that could not be separated by different MIDs, 2) sequences with a consecutive

Sensitive Assay for HIV-1 Drug Resistance Detection
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PHRED score of less than 20, 3) sequences with< 80% similarity to the corresponding Sanger

sequence, 4) sequences containing ambiguous bases (Ns), 5) sequences with lengths shorter

than 300 base pairs, and 6) sequences containing insertions, deletions and stop codons. In the

remaining sequences, the proportion of mutations in the protease region was calculated (S1

Fig) (S1 Table). The strength of relationship between phenotypic DR and low frequency DR

variants was estimated by a Pearson correlation coefficient. The difference was considered sta-

tistically significant when p< 0.05.

We have deposited our sequences data in the NIH short read archive (SRA). Data can be

public accessed by theses accession numbers: SRS1830977 to SRS1830983.

Results

Patient demographics and clinical characteristics

A total of 7 male IDUs were recruited in this study. All of them were treatment naïve patients

with CRF07_BC infection. The mean age of patients was 37.6 years (range, 28–51 years).

Patients were separated into two groups defined as early epidemic (4 patients collected in

2004) and late epidemic (3 patients collected in 2008). Three of 4 early epidemic patients were

early seroconverters (Table 1).

Early epidemic CRF07_BC isolates have phenotypic DR to most PIs

using in-house phenotypic assay

The result of in-house phenotypic assay showed that all the early epidemic isolates had DR to

most PIs (4.4- to 47.3-fold increase compared with CCO or BCO). For ritonavir (RTV),

TW_D38, TW_D53 and TW_D83 had phenotypic DR (5.8-, 8.9- and 8.3-fold increase, respec-

tively). All the early epidemic isolates had phenotypic DR to amprenavir (APV). For nelfinavir

(NFV), TW_D38 and TW_D83 had phenotypic DR (27.4- and 47.3- fold increase, respec-

tively). None of the late epidemic isolates had phenotypic DR to the PIs. However, two early

epidemic isolates (TW_D53 and TW_D78) and one late epidemic isolate (TW_D855) had

intermediate phenotypic DR to NFV (Table 2). Most early epidemic and late epidemic isolates

did not have phenotypic DR to most RTIs. However, TW_D53 and TW_D78 had phenotypic

DR to nevirapine (NVP) (9.77-fold increase) and tenofovir (TDF) (3.47-fold increase), respec-

tively. TW_D38 had intermediate phenotypic DR to atazanavir (AZT) (2.9-fold increase)

Table 1. Demographic and clinical data of HIV-1 infected patients.

Patient Gender Age Year of diagnosis Year of collection CD4/μl HBsAg HCVAb Detuned assaya

CRF07_BC

Early epidemic

TW_D38 M 37 Jun.2004 Nov.2004 325 - + Positive

TW_D53 M 38 Sep.2004 Nov.2004 364 - + Positive

TW_D83 M 28 Mar.2003 Dec.2004 360 - + NT

TW_D78 M 51 2004 Dec.2004 322 - + Positive

Late epidemic

TW_D848 M 31 Dec.2006 Mar.2008 NT - + NT

TW_D854 M 37 Nov.2004 Mar.2008 NT - + NT

TW_D855 M 41 Sep.2005 Mar.2008 NT + + NT

a Determined by BED-CEIA.

NT, Not test.

doi:10.1371/journal.pone.0170420.t001
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(Table 3). In addition, the results of Antivirogram showed that none of the CRF07_BC isolates

had phenotypic DR to PIs and RTIs.

The results of genotypic assay showed that none of the patients had major DR mutations in

the protease and reverse transcriptase regions. In the protease region, the following accessory

mutations including E35D, M36I, R41K, D60E, L63P and I93L were detected in all the

patients. I13M mutation occurred in TW_D38 and TW_D53. N37H and N37P occurred in

TW_D78 and TW_D854, respectively. I64M and V77I occurred in TW_D848 and TW_D854,

respectively. However, most of the mutations mentioned above were defined as amino acid

polymorphic mutations according to the Stanford HIV-1 DR database. D60E and L63P are

polymorphic mutations and more common in patients receiving PIs (Table 4 and S2 Table).

Taken together, all the early epidemic isolates have phenotypic DR to most PIs. While none

of them have DR observed by both genotypic and Antivirogram assays. We speculate that the

Table 2. Fold increase of IC50 of Taiwanese CRF07_BC for various protease inhibitors.

Fold increase (IC50 [μM]±S.D) a

Patients from early epidemic Patients from late epidemic

PIs Lower CCO—

Upper CCO

TW_D38 TW_D53 TW_D83 TW_D78 TW_D848 TW_D854 TW_D855

RTV 3.5* 5.8 (0.04±0.014) 8.9 (0.06±0.011) 8.3 (0.06±0.001) 1.7 (0.06±0.004) 1.2 (0.01±0.001) 0.8 (0.03±0.019) 1.1 (0.05±0.014)

APV 2.5* 4.4 (0.03±0.020) 5.4 (0.03±0.029) 5.5 (0.03±0.023) 6.1 (0.04±0.003) 0.2 (0.00±0.00) 1.0 (0.55±0.034) 0.8 (0.03±0.009)

NFV 1.2–9.4 27.4 (0.02±0.012) 3.6 (0.00±0.004) 47.3 (0.04±0.006) 5.0 (0.03±0.020) 1.4 (0.01±0.001) 1.2 (0.01±0.001) 2.3 (0.02±0.010)

SQV 3.1–22.6 1.2 (0.01±0.000) 1.0 (0.01±0.000) 1.2 (0.01±0.000) 1.2 (0.01±0.001) 0.7 (0.00±0.00) 0.7 (0.00±0.003) 1.0 (0.01±0.000)

IDV 2.3–27.2 1.1 (0.01±0.001) 0.9 (0.00±0.001) 1.0 (0.01±0.001) 1.4 (0.01±0.001) 1.1 (0.01±00.00) 1.0 (0.01±0.00) 1.5 (0.01±0.00)

RTV, ritonavir; SQV, saquinavir; IDV, indinavir; NFV, nelfinavir; APV, amprenavir.
a Fold increase was calculated by dividing the IC50 of each drug by the mean IC50 for NL4.3 in each assay.

* These drugs have only one biological cut-off value (for in vitro susceptibility).

doi:10.1371/journal.pone.0170420.t002

Table 3. Fold increase of IC50 of Taiwanese CRF07_BC for various reverse transcriptase inhibitors.

Fold increase (IC50 [μM]±S.D) a

Patients from early epidemic Patients from late epidemic

RTIs Lower CCO—

Upper CCO

TW_D38 TW_D53 TW_D83 TW_D78 TW_D848 TW_D854 TW_D855

NRTI

AZT 1.5–11.4 2.90 (0.04±0.01) 1.92 (0.03±0.02) 0.91 (0.02±0.01) 1.38 (0.55±0.10) 0.85 (0.16±0.14) 0.92 (0.23±0.25) 1.82 (0.45±0.36)

3TC 1.2–4.6 1.24 (1.09±0.45) 1.31 (1.14±1.13) 0.79 (0.69±0.18) 0.38 (0.68±0.18) 0.66 (1.52±1.14) 1 (5.23±2.88) 0.79 (4.12±2.95)

d4T 1.0–2.3 0.59 (3.11±2.35) 0.92 (5.85±1.87) 0.87 (4.94±1.61) 1.10 (6.22±1.14) 0.17 (1.51±0.69) 0.76 (4.55±2.05) 0.61 (3.65±1.32)

ddI 0.9–2.6 0.69 (3.87±1.32) 1.69 (6.03±4.45) 0.95 (5.72±0.60) 1.16 (5.19±0.29) 0.52 (2.42±1.48) 0.66 (5.58±1.14) 0.72 (6.06±0.67)

ddC 3.5* 0.78 (0.78±0.06) 1.21 (0.85±0.23) 0.73 (0.73±0.06) 0.91 (0.64±0.02) 0.29 (0.59±0.06) 0.26 (0.77±0.04) 0.27 (0.78±0.28)

ABC 0.9–3.5 0.51 (3.11±1.04) 1.03 (6.25±0.77) 0.79 (4.79±1.09) 1.24 (6.66±0.48) 0.55 (2.47±1.21) 0.75 (5.19±1.22) 0.51 (3.52±0.29)

TDF 1.0–2.3 0.90 (0.04±0.01) 1.89 (0.08±0.01) 1.09 (0.05±0.01) 3.47 (0.04±0.01) 0.79 (0.008±0.00) 0.75 (0.02±0.01) 0.51 (0.01±0.01)

NNRTI

NVP 6.0* 0.99 (0.08±0.03) 9.77 (0.79±0.07) 0.93 (0.08±0.01) 4.91 (0.36±0.09) 0.71 (0.14±0.06) 0.23 (0.07±0.01) 0.02 (0.07±0.01)

EFV 3.3* 1.04 (0.003±0.00) 1.44 (0.005±0.00) 1.57 (0.005±0.00) 1.42 (0.005±0.00) 0.78 (0.005±0.00) 0.91 (0.006±0.00) 0.68 (0.005±0.00)

AZT, zidovudine; 3TC, lamivudine; d4T, stavudine; ddI, didanosine; ddC, zalcitabine; ABC, abacavir; TDF, tenofovir; NVP, nevirapine; EFV, efavirenz
a Fold increase was calculated by dividing the IC50 of each drug by the mean IC50 for NL4.3 in each assay.

* These drugs have only one biological cut-off value (for in vitro susceptibility).

doi:10.1371/journal.pone.0170420.t003
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phenotypic PI DR of early epidemic isolates was caused by low-frequency variants containing

PI major DR mutations. Therefore, we performed UDPS to detect the low-frequency variants

of the CRF07_BC isolates.

Low-frequency PI DR variants were positively associated with

phenotypic PI DR

The low-frequency variants of CRF07_BC isolates were detected by UDPS. After different

steps of quality control, the remaining sequences were analyzed for correlation with pheno-

typic PI DR. We analyzed the correlation between phenotypic PI DR and the sequences con-

taining major mutations along or concurrent with major mutations and accessory mutations

in the protease region. As shown in Table 5, the low-frequency PI DR variants associated with

phenotypic PI DR occurred at a frequency of 0.01 to 0.08. For RTV, the low-frequency PI DR

variants harboring the major mutation I54S concurrent with accessory mutations M36I, L63P

Table 4. The amino acid changes in the protease region in Taiwanese CRF07_BC strains.

Amino acid residue

Patient I13 E35 M36 N37 R41 D60 L63 I64 V77 I93

CRF07_BC

CN54 - D I - K E P - - L

Early epidemic

TW_D38 M D I - K E P - - L

TW_D53 M D I - K E P - - L

TW_D78 - D I H K - P - - L

TW_D83 - D I - K E P - - L

Late epidemic

TW_D848 - D I - K E P M - L

TW_D854 - D I P K E P - I L

TW_D855 - D I - K E P - - L

Amino acids identical to consensus B sequence (top) were indicated with dashes. CN54 was the prototypic CRF07_BC strain from mainland China.

doi:10.1371/journal.pone.0170420.t004

Table 5. Correlation between the phenotypic drug susceptibility and low frequency variants in Taiwanese CRF07_BC early epidemic isolates.

Fold increasea / Percentage of major or major + accessory mutations

PIs Correlation (R) P value TW_D38 TW_D53 TW_D83 TW_D78

RTV

I54S + M36I + L63P + I93L 0.87 0.01 5.8 / 0 8.9 / 0.02 8.3 / 0.01 -

APV

I54V 0.91 < 0.01 4.4 / 0.04 5.4 / 0.05 5.5 / 0.06 6.1 / 0.08

NFV

D30N + G73S 0.85 0.01 - - 47.3 / 0.01 -

I54T + A71V 0.85 0.01 - - 47.3 / 0.01 -

I54M + M36I + L63P + I93L 0.85 < 0.01 - - 47.3 / 0.01 -

I54L + M36V 0.91 < 0.01 27.4 / 0.01 - 47.3 / 0.01 -

V82F + M36I + L63P + I93L 0.99 < 0.01 27.4 / 0.01 - 47.3 / 0.01 -

a Fold increase was calculated by dividing the IC50 of each drug by the mean IC50 for NL43 in phenotypic drug susceptibility assay.

Bold indicates PI major drug resistance mutations.

doi:10.1371/journal.pone.0170420.t005
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and I93L had positive correlation with phenotypic PI DR (R = 0.87, p = 0.01). For APV, the

low-frequency PI DR variants harboring the major mutation I54V had positive correlation

with phenotypic PI DR (R = 0.91, p< 0.01). For NFV, the following mutations had positive

correlation with phenotypic PI DR: D30N + G73S (R = 0.85, p = 0.01), I54T + A71V (R = 0.85,

p = 0.01), I54M + M36I + L63P + I93L (R = 0.85, p< 0.01), I54L + M36V (R = 0.91, p< 0.01)

and V82F + M36I + L63P + I93L (R = 0.99, p< 0.01).

In summary, we collected 7 CRF07_BC isolates including 4 from early epidemic (collected

in 2004–2005) and 3 from late epidemic (collected in 2008). The in-house phenotypic assay

showed that all of the early epidemic and none of the late epidemic CRF07_BC isolates were

resistant to most PIs (4.4–47.3 fold). Neither genotypic assay nor Antivirogram detected any

DR mutations. UDPS showed that early epidemic isolates contained 0.01–0.08% of PI DR

major mutations. Furthermore, the combinations of major and accessory PI DR mutations sig-

nificantly correlated with the phenotypic PI DR.

Discussion

In this study, in-house phenotypic assay showed that early epidemic CRF07_BC isolates from

treatment naïve patients had phenotypic DR to most PIs, while genotypic assay and Antiviro-

gram showed that none of them had DR mutations in the HIV-1 protease region. UDPS

showed that early epidemic isolates contained 0.01–0.08% of PI DR major mutations. Further-

more, the combinations of major and accessory PI DR mutations significantly correlated with

phenotypic PI DR.

In this study, the low-frequency PI DR variants could be detected with the in-house pheno-

typic assay but not with the other phenotypic assays. The difference between Antivirogram

assay and in-house phenotypic assay is the method of virus preparation. The former uses a chi-

meric virus generated by homologous recombination of RT-PR PCR-derived sequences,

which is then cultured with cells and different drug concentrations [10, 11]. The latter uses

PBMCs co-culture to isolate HIV-1 and is then incubated in MAGIC-5 cells with different

drug concentrations [12, 13]. It has been demonstrated that the DR mutations can impair

HIV-1 fitness [36–40]. However, several studies have shown that mutations in HIV-1 gag

region can compensate the fitness loss from the DR mutations [41, 42]. Other studies have

shown that strong selection and loss of certain genotypes occur on virus cultivation [43–45].

The chimeric virus contains only the RT-PR sequence of HIV-1. Therefore, the Antivirogram

assay was unable to detect the low-frequency resistance variants, as they could be influenced

by partial loss of low-frequency variants due to reduced fitness of viruses containing the DR

mutations and decreased number of low-frequency resistance variants in the population. In

contrast, we isolated the patient’s virus by PBMCs co-culture. These culture isolates can pro-

vide more accurate results than the chimeric virus. In addition, the detection of low-frequency

variants has been used in clinical settings. For instance, low-frequency variants have been

shown to predict the treatment failure to NNRTIs [46]. Another study found that use of Roche

454 UDPS can be a potentially better predictor of maraviroc response than the original pheno-

typic test [47].

Based on phenotype effects, mutations that cause resistance to PIs can be classified as major

mutations and accessory mutations. Major mutations are frequently associated with a several

fold increase in resistance to one or more PIs. Accessory mutations, on the other hand, do not

cause a great increase in resistance to PIs. If a major mutation occurs in a genetic background

containing accessory mutations, resistance to PIs may be augmented. In this study, low-fre-

quency variants containing major PI DR mutations (at positions 30, 54 or 82) and accessory

mutations (at positions 36, 63, 71, 73 or 93) significantly correlated with the phenotypic PI DR
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(Table 5). Several studies showed that, for the major PI DR mutations observed by UDPS,

I54V/A/S/T/L/M mutations reduced the drug susceptibility to most PIs and most occurred in

patients receiving multiple PIs [48–51]. It has been reported that D30N is exclusively selected

by NFV and confers resistance to this drug [52]. For the accessory mutations observed using

UDPS, M36I is a consensus mutation frequently occurring in non-B subtypes and particularly

in PI-experienced patients [50, 53]. M36I can increase the replication capacity when combined

with PI major resistance mutations. In addition, I36 introduced into HIV-1 subtype B strain

showed a higher replication capacity in both the absence and presence of PIs [54]. Moreover,

the position 36 polymorphism in the HIV-1 protease region had different drug susceptibility

to PIs and the effect depended on the viral subtype [55]. L63P and I93L are mutations fre-

quently seen in non-B subtypes and PI-treated patients. L63P mutation compensated the

impairment of fitness caused by the major DR mutation [56]. I93L mutation showed had a

hypersusceptibility to lopinavir in the presence of a subtype C protease backbone [57].

Another study showed that the I93L mutation was associated with resistance to RTV [58]. This

is the first study to use UDPS to analyze the correlation between the combinations with major

DR and accessory mutations with the phenotypic DR to PIs in Taiwanese CRF07_BC infected

treatment naïve patients. Further study is needed to determine the proportion of CRF07_BC

infected patients containing low-frequency PI DR variants and their clinical treatment

outcome.

In this study, we could still detect the transmitted low frequency PI DR variants in early epi-

demic patients after CRF07_BC was transmitted to Taiwan in 2002. It is well known that most

DR mutations reduce the replication capacity of HIV-1, and the transmitted DR mutations

can rapidly revert to wild type in the absence of drug pressure [59–62]. However, a recent

study showed that CRF07_BC has slow replication kinetics and lower viral load than subtype B

[25]. We speculate that the lower replication capacity of CRF07_BC may affect the DR muta-

tions reverting to wild type. Moreover, we speculate that the transmission of PI DR variants

among Taiwanese IDUs infected with CRF07_BC originated from China. The Chinese govern-

ment initiated free cART for HIV-1/AIDS patients in 2002 [63]. However, from our under-

standing, there was a clinical trial of HIV vaccine conducted in Yunnan Province, where IDUs

recruited, and if they were tested positive, they will be offered one year free treatment since

they were not eligible for the participation (personal communication). Therefore, it is possible

that PI DR emerged in the IDUs in Yunnan Province was transmitted to Taiwanese IDUs in

2002 and these DR variants were detected in early epidemic patients recruited in 2004–2005.

These low-frequency variants can contribute to phenotypic DR to PIs. In addition, the Chinese

government initiated free treatment of RTIs to HIV-1 infected patients in 2002. However, all

the patients recruited in this study did not have DR resistance to RTIs using in-house pheno-

typic, Antiviragram and genotypic assays. Due to the vital role of reverse transcriptase in the

early phase of HIV-1 replication. We speculated that DR mutation occurs in reverse transcrip-

tase region can cause substantial reductions in viral fitness. Therefore, low-frequency variants

containing DR mutation in reverse transcriptase can decrease dramatically. However, further

studies are needed to compare the impact on viral fitness of DR mutation in reverse transcrip-

tase and protease regions.

Previous studies showed that most of the CRF07_BC were CCR5-tropic virus and had non-

syncytium-inducing (NSI) phenotype using genotypic and phenotypic assays [25, 64]. How-

ever, several studies have demonstrated that T-cell-tropic (X4) and macrophage-tropic (R5)

viruses can effectively produce using MAGIC-5 cells. Therefore, both R5-tropic and X4-tropic

viruses can using MAGIC-5 cells to determine the HIV-1 drug susceptibility to PIs and RTIs

[12, 13].
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There are several limitations to this study. The patients recruited in this study were not fol-

lowed up to determine the dynamics of the low-frequency variants. A small number of patients

was recruited into this study. Despite the limitations, this study was able to demonstrate that

both in-house phenotypic assay and UDPS can detect low-frequency DR variants as low as

0.01%.

In conclusion, this study showed that early epidemic patients infected with CRF07_BC had

phenotypic DR to PIs. Moreover, the combinations of major and accessory PI DR mutations

significantly correlated with the phenotypic DR. In addition, our in-house phenotypic assay

correlated well with UDPS results and both methods can detect the low-frequency variants of

HIV-1 quasispecies.
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