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Abstract

Liquid-based cytology (LBC) in conjunction with Whole-Slide Imaging (WSI) enables the objective and sensitive and
quantitative evaluation of biomarkers in cytology. However, the complex three-dimensional distribution of cells on LBC
slides requires manual focusing, long scanning-times, and multi-layer scanning. Here, we present a solution that overcomes
these limitations in two steps: first, we make sure that focus points are only set on cells. Secondly, we check the total slide
focus quality. From a first analysis we detected that superficial dust can be separated from the cell layer (thin layer of cells
on the glass slide) itself. Then we analyzed 2,295 individual focus points from 51 LBC slides stained for p16 and Ki67. Using
the number of edges in a focus point image, specific color values and size-inclusion filters, focus points detecting cells could
be distinguished from focus points on artifacts (accuracy 98.6%). Sharpness as total focus quality of a virtual LBC slide is
computed from 5 sharpness features. We trained a multi-parameter SVM classifier on 1,600 images. On an independent
validation set of 3,232 cell images we achieved an accuracy of 94.8% for classifying images as focused. Our results show that
single-layer scanning of LBC slides is possible and how it can be achieved. We assembled focus point analysis and sharpness
classification into a fully automatic, iterative workflow, free of user intervention, which performs repetitive slide scanning as
necessary. On 400 LBC slides we achieved a scanning-time of 13.9610.1 min with 29.1615.5 focus points. In summary, the
integration of semantic focus information into whole-slide imaging allows automatic high-quality imaging of LBC slides and
subsequent biomarker analysis.
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Introduction

Cervical cancer is the second most frequent cancer among

women worldwide [1,2]. Cytology-based cervical cancer screening

has led to a substantial reduction of cervical cancer incidence and

mortality in many industrialized countries [3]. Despite its success,

screening with conventional PAP smears faces several limitations:

the single-test sensitivity to detect pre-cancerous stages is about

50–60% [4], and thus has to be repeated frequently to achieve

high cumulative sensitivity. Further limitations result from

difficulties in standardization, different sample preparation tech-

niques, different cytological classifications, and the high inter- and

intra-observer variability of cytology interpretation [5]. Over the

last two decades, liquid-based cytology (LBC) has been increas-

ingly used in cervical cytology screening [6,7]. LBC slides contain

less debris and provide clearer cell preparations compared to

conventional Pap smears. LBC allows preparing multiple slides

from the same sample for biomarker studies. Several biomarkers

have been evaluated to improve reproducibility and accuracy for

cervical cancer screening. One of the most promising biomarkers

is cytological staining for p16/Ki-67. Double staining for p16 and

Ki-67 in the same cell highlights HPV-transformed cells and is a

marker for cervical precancers. p16/Ki-67 staining is performed

on liquid-based cytology (LBC) preparations and evaluated

manually [8,9].

Recently, whole slide imaging (WSI) scanners have become

available that are capable of generating full digital microscopic

images of glass slides [10,11]. Multiple WSI scanners are available

on the market and have been compared in detail in literature [10].

They are frequently used for digitization of full histological slides

[12] or Tissue Microarrays (TMAs) [13]. Accordingly, their

focusing technology, being a key feature of WSI scanners, has been

developed primarily for histological sections. Principally, WSI

should also enable the high throughput analysis of the enormously

large batches of cytological cervix samples occurring during

screening as has been postulated earlier [9–11]. In a previous

publication [14], we reported the first implementation of a fully

automatic image evaluation system for detecting p16+ cells on fully

imaged cytological ThinPrepTM slides. But the core problem of

applying WSI scanners up till now remained that their focusing

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e61441



technology is not adapted to sparsely populated cytology

specimens. For example, in [15], the authors showed that the

diagnostic accuracy of virtual slides is comparable to glass slides

despite an inherent difficulty of acquiring microscopically well

focused virtual slides due to the three-dimensional nature of

cytological preparations. Also, another study among cytology

technologists [16] reported the principal feasibility of whole-slide

imaging cytological slides but described the need for extensive

focusing in many z-layers. Thus, from our own experience and the

other published studies it became apparent that while working

mostly perfectly for histological specimen, in cytology focusing is

the key bottleneck hindering.

The problems of focusing a LBC slide can be circumvented by

multi-layered (z-stack) scanning. However, multi-layer scanning

leads to a multiplication in scanning times by a factor of the

number of layers. Furthermore, multi-layering severely compli-

cates manual and automatic image analysis.

We here set out to develop a highly efficient autofocusing

approach for LBC slides. Slide scanners like the one used here,

first determine a set of unblurred (focused) candidate focus images

of the slide at chosen focus points [17]. From the determined z-

heights at the focus points, a three-dimensional ‘‘focus map’’ is

generated, extrapolating the measured height variations to the full

slide. Thereby, too few focus points, inadequately sampling the 3D

landscape, will lead to a partially unfocused virtual slide. As the

movement of the microscope objective during focusing is relatively

slow, too many focus points will in turn significantly increase the

total time needed for scanning. The main source of erroneous

focus maps are focus points targeting undesired objects like dirt or

artifacts within the sample, or dust or streaks located on top of the

cover slip. The quality of the focus map is also dependent on the

optimal spatial distribution of the focus points. Cell numbers on

cytology slides may range from less than 100, to more than 150000

cells and can show varying spatial distribution patterns. Technical

problems encountered with LBC preparations were analyzed by

Song et al. [18]. The authors described preparative difficulties

such as too few cells on the slide, thick preparations, cellular

material accumulated in some regions, and blood/debris on the

slides.

Concluding, the underlying problem in focusing LBC slides is

that semantic information about the scanned sample is missing in

general-purpose focusing routines of the slide scanners. General-

purpose focusing algorithms are not able to determine whether a

focus point is correctly targeting a cell or incorrectly an artifact or

whether the whole set of focus points is correctly chosen to capture

the essence of the slide. This is because such routines lack any

conceptual understanding of cytological liquid based preparation

samples. Thus, in this publication we make a first step to

incorporate such cytopathological knowledge into the automatic

focusing of LBC slides. Such focusing would be optimal if a

‘‘master-focus layer’’ is found, representing the full 3D focus map

of the LBC slide. Slide scanning with this master-focus layer could

capture each region of the slide in-focus (Figure 1). In the optimal

case, one focus layer would be sufficient for scanning and multi-

layering would not be needed or only as a supplement to cover

thick cell clusters.

To achieve this, we first performed a systematic analysis of the

height variations within cytological samples in the z-dimension

(section 3.1). Then, two image processing algorithms were

developed, one cell based, and one slide based. The first one

(section 3.2) decides whether a focus point is valid, i.e. detects a cell

instead of an artifact. This cell based algorithm implements a

semantic auto-focus function neglecting undesired non-cellular

objects. The second algorithm determines the total focus quality of

a virtual slide from an LBC glass slide. The algorithm thereby

yields an objective measurement of a virtual slide’s focus quality

comparable to a human observer’s assessment (3.3). A complete

automatic workflow (3.4) was then created to automatically set

valid focus points, measure the virtual slide’s focus quality and

automatically re-scan it in total or partially. In this way, the

master-focus layer is iteratively determined. To our best knowl-

edge this is the first reported systematic analysis of whole-slide

imaging of LBC slides and the first development of a system,

capable of fully automated single-layer focusing of LBC slides.

Materials and Methods

Technical setup
LBC slides were digitized using the NanoZoomer HT Scan

System (Hamamatsu Photonics, Japan, http://sales.hamamatsu.

com/assets/pdf/hpspdf/e_ndp20.pdf) capable of scanning whole

slides. The NanoZoomer can scan up to 210 brightfield or

multicolor fluorescently stained slides automatically. It is able to

digitize the whole slides and it has a Z-stack (or multilayer)

capability that allows the focus to move three dimensionally to any

part of the slide. The imaging system consists of three 4096664

pixel TDI-CCD sensors (cell size 8 mm*8 mm) and a 206objective

lens (NA0.75). Flat field correction can be done easily with an

empty blank slide. Misaligned lanes can be corrected with a

calibration slide provided by Hamamatsu. Standard glass slides

were scanned at 20-fold magnification (0.46 mm/pixel). The

resulting virtual slides had an averaged compressed file size of

250 MB (JPEG compression, quality factor = 0.9), while uncom-

pressed the file size was about 9 GB. The spatial dimensions of the

scanned areas are about 65000650000 pixels. A direct connection

to the scanner control routines was provided by an application

programming interface (API). This API provided several methods

to call certain control routines, e.g. start scan, start focusing, load

slide, unload slide, etc.. This enables a bidirectional communica-

tion with the scanner by obtaining live scan information and also

sending back control commands to the scanner during the

scanning process. The software which controls the main workflow

is written mainly in ANSI/ISO C++, and calls MATLAB

functions for the image processing tasks during runtime. Scan

software and the developed algorithms were running on a personal

computer with an Intel Xeon H E5430 Dual Core, 2.66 GHz,

4 GB RAM with Windows 7 Professional 32 bit operating system.

Cytological samples and immunostaining
Liquid-based cytology cervical specimens were acquired from

women enrolled in a large cross-sectional study of women

attending a colposcopy clinic at the University of Oklahoma

[19]. Written informed consent was obtained from all women

enrolled into the study and Institutional Review Board approval

was provided by OUHSC (University of Oklahoma Health

Sciences Center) and the US National Cancer Institute. All

analyses were conducted on anonymized liquid-based cytological

specimens generated using the Thinprep system [20–23]. Liquid-

based cytology is a method of preparing cytological samples for

microscopic examination. Instead of conventional smear prepara-

tions, it involves making a suspension of cells from the sample that

is used to produce a thin layer of cells on a slide [24]. Slides were

generated using the T2000 processor, an automated slide

preparation unit. Briefly, the cytological sample is obtained from

the transition zone of the uterine cervix. The sample is then

dispersed in vial containing a liquid suspension (PreserveCytH).

The vial is then placed under the T2000 processer and the

suspension gets centrifuged and passed through a filter to remove
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obscuring material (blood and mucus) leaving relevant cells on the

filter surface. Finally, the cells on the filter are transferred onto a

ThinPrep glass slide within a circular area measuring 22 mm in

diameter. The slides are then immediately deposited into a fixative

bath to be held for staining. All slides were stained using the

CINtecH PLUS kit (Roche mtm laboratories AG, Heidelberg,

Germany) according to the manufacturer’s instructions. Briefly,

slides were incubated subsequently with two monoclonal antibod-

ies. The first one (E6H4) is directed against p16, followed by a

second antibody linked to horseradish peroxidase and detected by

adding DAB substrate, generating a brown stain. The second

primary antibody is directed against Ki-67, a cellular proliferation

marker which is highlighted by a red stain (Fast Red chromogen).

All slides were counterstained with Hematoxylin. In this study, 555

LBC slides were analyzed (67 slides for focus point analysis, 88 for

slide sharpness analysis and 400 for the analyzing the complete

workflow).

Results

Z-dimension Analysis of LBC Slides
In general, cytological samples do not maintain a perfect planar

surface when transferred onto a glass slide in a liquid based

preparation. To capture the whole glass slide in an optimal quality,

the scanner must be able to detect the height profile of the cells

inside the liquid preparation. To obtain information about how

many focus points are needed to capture the whole focal variation

of a LBC slide, the z-dimension ranges of six LBC slides were

systematically analyzed. We evaluated how many focus points are

necessary to cover the whole z-range variation of the cytological

samples. 800 focus points were set on each slide distributed over

the whole area covering the cells. These focus points were focused

by the scanners’ auto focus routine. The scanner then returned the

distance relative to a normalized origin of the z-axis located inside

the microscope objective. For each focus point, the corresponding

image and its coordinates (X, Y and Z) were stored (Figure 2a). All

focused objects had a minimum spacing of over 1.9 centimeter to

the z-axis origin, so we normalized all z-data by this distance. The

images at the focus points are acquired with a linear array sensor

(4096696 pixels). The plotted 3D graphs of every slide showed two

different layers of focus points on every slide (Figure 2b with a

representative graph of an exemplary slide). The first layer (in red)

results from focus points from dust on the cover slip and so was

incorrectly accepted by the general-purpose auto-focus routine of

the scanner. For obtaining the objective height variations of the

cell layer, all z-values belonging to measurements of the dust layer

were removed. Subsequently, the focus point images were

manually inspected and images which were blurred or were

focused on artifacts were removed from the dataset. Also, the focus

points which were set beyond the borders of the cell circle area

were manually removed. The average number of the remaining

focus points was 570 per slide. Based on these data, statistical

values were extracted in order to obtain information about the

focal variation of the focus points like the min, max, and average z

values of the particular slides; also the difference between the slides

was measured. A mesh was plotted over the surface constructed by

the focus point dataset, enabling a visual 3D interpretation of the

slides (Figure 2c and 2d). It is apparent that cells inside liquid

based LBC slides do not exhibit a planar surface, and that cells

with a whole range of different z values are located all over the

slide. Figure S1 shows a boxplot of the z values of all 6 analyzed

slides. The biggest z range within a slide was about 29.5 mm

(Table 1). A multilayer scan with a spacing of 2 mm would at least

require 15 layers to cover the whole focal variation. The standard

deviation of the z values was at least 2.1 mm and at the maximum

was 5.7 mm. Scanning one of these slides with one planar layer

would necessarily result into out-of-focus regions. The data also

shows that the height of the cell layer is different from slide to slide;

Figure 1. Comparison multi-layer scanning with single-layer scanning. Two cross sections of a LBC slide are shown. The upper one shows
the multilayer scanning principle. The lines represent the particular layers. Green line parts represent in-focus regions and red line parts represent the
out-of-focus regions. In multilayer scanning, the most parts of the layers are out-of-focus and thereby an unnecessary amount of data is generated.
The lower cross section shows the principle of a single-layer scan. A ‘‘master-focus layer’’ (green line) represents the full 3D focus map of the LBC slide.
In the optimal case, one focus layer would be sufficient and multi-layering would not be needed anymore or only as a supplement to cover thick cell
clusters (transparent green lines).
doi:10.1371/journal.pone.0061441.g001
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due to this inter-slide variability an individual focal plane has to be

calculated for each particular slide. Also the results show, that the

liquid based preparation method does not produce a planar layer

of cells but instead a three dimensional gel of probably varying

thickness in which the cells are embedded.

Semantic focus point analysis
The built-in auto-focus algorithm of the scanner is a contrast-

based method which finds the best in-focus image for a given focus

point; the inbuilt focus routine calculates the contrast of several

images along the optical axis (z-plane) of each focus point. The

image with the highest contrast is then used for calculating the

focus map. However, a contrast-based method in itself is not able

to decide whether a focused object is a cell or an artifact. The goal

here was to determine and further include criteria enabling the

decision whether a focus point image is valid or not. We define a

focus point image as only valid if a cell is in focus. If an image is

considered not containing cellular material, the corresponding

focus point is removed. Figure 3 (a–f) show six different focus point

images which were accepted by the built-in auto-focus routine of

the scanner although just the above two reflect valid focus points.

From the results of the previous section (3.1) we hypothesized

that three filter criteria should be sufficient to judge the validity of

an individual focus image. These were maximal object size, the

presence of visual object edges and a certain range of frequent

color values. We tested then in how far these criteria would apply.

Size-filter. Binary objects from the image are obtained by

performing a simple thresholding with the average grayscale

background intensity from background areas of the slides as a

threshold. Subsequently, the number of pixels of each object in the

binary focus point image was counted. If none of the objects of the

binary image has at least the minimum size of 200 pixels (the size

of a typical small nucleus of a superficial cell), the focus point is

classified as invalid.

Edge-filter. To detect and remove blurred images, an edge

detect like the Canny edge (threshold 0.07 and sigma 1.41)

detector [25] can be applied to grayscale intensity images. The

result of the edge detector is a binary image containing edges of

the objects which are present on the images. If an image is blurred,

the number of its edges is much smaller compared to an image

containing in-focus objects. A simple binary decision classifies the

image as invalid if no edges are present.

Color-filter. Finally, the color values of the pixels provide

valuable information whether they belong to cells. We determined

the following image pixel classes which represent all pixel-

categories: nuclei, cytoplasm, p16-staining or KI-67 staining. A

pixel training dataset encompassing 340 images of nuclei,

cytoplasm, background, p16-stained and KI-67 cells (85 images

for each class obtained from 10 different slides) was collected. We

then manually cropped the corresponding region for each class

from the image. Within these regions, 100 pixels were randomly

selected, yielding a training dataset of 85,000 pixels per class. On

this dataset, an analysis of the individual objects in their respective

HSV (hue, saturation, value) channels was carried out. The

determined narrow ranges are depicted in Table S1. The focus

point image was classified as invalid if less than 10 object pixel

belonged to one of these classes. We created a potential classifier

encompassing three criteria: images are required to have objects

larger than a typical nucleus, at least one edge has to present in the

image and 10 pixels have to fall into one of the four valid color

categories.

We tested the in-total classification ability of the described

criteria with a total data set of 2295 focus point images (containing

190051 objects), obtained from 51 LBC slides. The focus point

images are RGB images and had a size of 4096664 pixels and

were acquired in a 206 magnification. The results of the

automatic focus point analysis were tested against a manual

reference inspection of the focus point images. Valid reference

images contained in-focus cells or parts of cells whereas invalid

images were out-of-focus, focused on dust, debris or other artifact,

or in general were blurred. Table 2 shows the results of the applied

algorithm combining edge and color analysis. Both, sensitivity

(98.1%) and specificity (99.1%) of the algorithm that classified the

focus point images were very high. The positive prediction value,

which is the proportion of objects with positive test results that are

correctly classified, was 98.9%. The negative prediction value,

proportion of objects with a negative test result that are correctly

classified as negative was 98.2%.

Slide Sharpness Analysis
After having obtained a set of valid focus point, the question is

whether they are a set in such a way so they accurately sample the

three-dimensional height-profile of the LBC glass slide. Figure 3

(g–h) shows a well-focused cell image in contrast to a typical out-

of-focus cell image from our data set. Commonly, a slide can

exhibit three different quality states which can be determined by a

sophisticated classifier: in-focus, partially out-of-focus or complete-

ly out-of-focus. To assess this sharpness we developed a special,

ThinPrep-Slide dedicated measurement algorithm. The goal of

this analysis is to enable an objective assessment on the quality of a

slide by a classifier that corresponds to the subjective assessment by

a human viewer. Figure 4 shows the concept we propose to

perform this measurement.

In the first step, all slides were automatically divided into 16

regions and sample images were extracted automatically from all

those regions as follows to determine the overall slide’s image

quality. The regional division allows a time-saving re-scan of parts

of the virtual slide. The scores for the individual regions were later

averaged to describe the sharpness of the whole slide. From each

region a low resolution overview was extracted from the virtual

slide. This overview image was converted into grayscale, and

objects were separated from the background using Otsu’s

segmentation method [26]. The HSV-values of the objects were

analyzed to test if the objects are cells. The coordinates of the

detected cells were then used to randomly extract up to 200 cell

images in the original 206magnification. An analysis yielded that

a higher number of cell images does not increase the accuracy of

the slide focus quality analysis (Figure S2 (f)).

To quantitatively measure the sharpness quality of the

individual sample images extracted a blind image assessment

measurement is required. A blind image assessment technique is

independent from any subjective reference standard but requires

more sophisticated analysis techniques. We therefore used five

different features to quantify the sharpness of a cell image (The

features are described in detail in Table S2)). To classify each

image a support vector machine (SVM) was used [27]. An SVM

maps feature input vectors into a higher dimensional space and

constructs an optimal hyper plane separating a set of training data

into two groups [28–30]. The authors used a Gaussian Radial

Basis Function (RBF) kernel with a default scaling factor (sigma) of

1. After initial computation of this hyper plane the SVM can be

used as a sharpness classifier. To achieve higher accuracy in the

classification, cells which are deemed inappropriate were removed

from the training dataset. This includes huge cell clusters (.4

megapixels) and very small cells. A training set constructed

containing one class of in-focus cell images and one class of out-of-

focus images. The percentage of in-focus cells for each region is

then stored and used for calculating an average sharpness score for
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each slide. In detail, to calculate these sharpness scores, at first the

percentage of in-focus cells is determined for each of the 16 regions

by examining a maximum number of 200 cells per region. To

calculate the average sharpness score for the slides, the percentages

of in-focus cells of each region are added and then divided by the

total number of regions. The resulting score is then compared with

a user defined threshold. If the final score is lower than the

threshold, the slide has to be rescanned. These scores basically

represent the proportion of in-focus to out-of-focus cells that exist

in the slides. Based on the outcome of this analysis, a decision can

be made whether to re-scan the whole slide or re-scan specific

regions. Another important issue is that this analysis also returns

location-specific information of the cells. This is important

especially for slides which contain a small number of cells as this

information can be used to improve the setting of focus points on

these slides.

For the training of the SVM a training set A of 1600 cell images

was used. We divided the training set into two classes. The first

class was composed of 800 in-focus cell images whereas the other

half contained out-of-focus cell images. Cell images were obtained

from 63 different slides which were manually scanned. Figure S2

shows the plots of the training dataset of the five different features

used for classification. The plots show that it is possible to separate

the in-focus cell images from the out-of-focus ones based on these

five features (Table S2). For the first 4 features, a linear classifier

would be satisfactory to separate the data. For the fifth feature, a

Figure 2. Highly detailed single-slide analysis. (a) A schematic showing the origin of the optical z-axis; Red arrow: showing the measured
distance from the objective to the measured objects. (b) A 3D graph of the focus points of two different layers which can be found on the slides. The
red dots represent points focused on dust which are located on the coverslip. The blue dots are the focus points of the cell layer. The graph looks
inverse comparing to the real physical location of the focus points as its origin lies in the lower left corner; (c) a 3D mesh plot of the obtained focus
point data only by the cell layer of the slide shows a high degree of heterogeneity within the slides; (d) another example similar to (c) in which smaller
variations in the z values were observed. The examples in (c) and (d) demonstrate that it is not possible to scan the slides as a planar mono-layer and
that there is a high height variation within the slides.
doi:10.1371/journal.pone.0061441.g002

Table 1. Descriptive statistics of the focus point dataset of
the particular slides showing the high variations between the
z-values within and between the slides.

Statistics Cytological samples

Slide 1 Slide 2 Slide 3 Slide 4 Slide 5 Slide 6

Nr. of valid
focus points

561 423 387 528 323 621

Arithmetic
average (mm)

100.9 92.6 127.6 128.1 116.9 69.6

Median (mm) 101.2 93.0 128.1 129.0 116.7 69.8

Standard
deviation
(mm)

4.0 3.9 5.0 5.7 2.1 3.9

Minimum
(mm)

85.9 82.0 113.2 108.4 111.7 59.2

Maximum
(mm)

110.4 99.2 137.9 137.9 123.5 77.8

Range (mm) 24.6 17.3 24.7 29.5 11.8 18.6

doi:10.1371/journal.pone.0061441.t001
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nonlinear classifier (Blur metric) had to be applied. The feature

vectors of A were the input for the training of the SVM. Feature

vectors were also computed from a test set B, which contained

4784 cell images. The test set was obtained from 25 LBC slides

which do not belong to the training set.

To determine classification performance, the accuracy, sensi-

tivity and specificity were computed from the test set. Big cell

clusters and small cells were not used in the sharpness analysis.

Based on these criteria, 1552 cell images were removed from the

test set. The remaining 3232 cell images were then classified by the

trained SVM. The results of the classification task were manually

inspected by two reviewers (The percent agreement regarding

focus status for the two observers was: 98%; n = 50 cell images).

Table 3 shows the results of the classification task.

Complete workflow
Lastly, we evaluated the focusing quality when integrating the

previous two algorithms into a single, automated workflow for

cytological samples (Figure 5, pseudocode S1). After the slide is

loaded, the circular overall region-of-interest on the slide

containing all cells is automatically detected. We detect this region

by converting a macro image of the slide into a binary image by

using Otsu’s method (threshold 0.1). ThinPrep slides have black

borders surrounding the cell region (cell circle). These borders are

very easy to segment by Otsu’s method. Furthermore the

coordinates of these borders remain nearly constant on every

slide. The cell circle is usually placed into the middle of these

borders. Therefore, a segmentation of these borders provides the

middle point of the cell circle which has a diameter of 22 mm. A

set of 12 focus points is then automatically placed on the slide in

this area. A smaller number of focus points was in many cases not

enough for scanning LBC slides, while a higher number would

significantly increase scanning time. After setting the focus points,

the built-in auto-focus routine of the scanner commences with the

focusing operation and subsequently the focus point analysis

begins. If the resulting number of valid focus points is higher than

five, the subsequent scanning of the slide is started. If the number

of focus points is fewer than five, the number of focus points

distributed over the slide is increased, and the scanner repeats the

focusing operation. This step is repeated for a maximum number

of five times. If the slide is not scanned after the fifth iteration, new

focus points are automatically re-set and the whole procedure is re-

started. If the slide passes focus point analysis within five iterations,

then sharpness analysis is applied on the scanned slide. If the slide

is completely out-of-focus, the number of focus points is increased

and the slide is re-scanned. If the slide is partially out-of-focus, the

out-of-focus regions are re-focused by increasing the number of

focus points in these regions and the slide is re-scanned.

Consequently, if the slide contains out-of-focus regions, the total

sharpness is increased by stepwise improving the sharpness of

those particular regions. The re-scanning of the slide is repeated

for a maximum number of seven times. Slides which are not in-

focus enough for further analysis after these iterations are denoted

as ‘‘not scannable’’.

Figure 3. Six different focus point images and comparison of in-focus and out-of-focus images; (a) a valid image containing in-focus
cells. Cells are stained with hematoxilin resulting in blue color; (b) a valid example showing some parts of normal stained cells and cells highlighted
with a biomarker conjugated to a brown stain (DAB); (c) an invalid image with only very small objects present; (d) an invalid image with no objects
present; (e) an invalid image containing in-focus artifacts; and (f) an example of an invalid out-of-focus image. (g) an example of an in-focus image,
and an image which is out-of-focus (h). It is very problematic to obtain relevant image information from (h).
doi:10.1371/journal.pone.0061441.g003

Table 2. Contingency table and overall performance of the
focus point analysis of 2295 focus points from 51 LBC slides.

Algorithm
classification Manual Observer Analysis Predictive value

Valid Invalid

Valid 1086 11 Positive: 98.9%

Invalid 21 1177 Negative: 98.2%

Overall performance of the applied algorithm

Sensitivity: 98.1% Specificity: 99.1% Accuracy: 98.6%

doi:10.1371/journal.pone.0061441.t002
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Performance analysis of the complete workflow
The complete setup was integrated into the operating software

of the scanner to measure performance. This enables the fully

automated LBC slide scanning without any user interaction. Slides

were determined as focused if their sharpness score was higher

than 90%. The integrated workflow was tested with a total set of

400 LBC samples. We measured the time until the slides reached

the mark of 90% sharpness in a single layer. Table 4 shows the

results of the workflow. An average scan time of 13.9 min per slide

was achieved in a single master-layer. The maximum scan time

was 55.2 min for one slide and the fastest scan time was 5.7 min.

The average number of focus points was 29.1. The maximum

number of focus points was 85. The scan iterations which were

needed to reach the sharpness criteria of 90% were also measured

(Table 5). Nearly 50% of the slides were already successfully

scanned after the first slide-scanning iteration. The remaining

slides which were not in-focus enough after the first round were

refocused on their out-of–focus regions within the next scanning

rounds to achieve the required sharpness criteria. The slides which

were not completed after the seventh round were automatically

aborted (3 slides). These slides contained only a very small number

of cells. An exemplary cluster-analysis illustrates the scanning

process (Figure S3).

Discussion

Liquid-based cytology (LBC) preparation techniques open new

possibilities for a systematic biomarker analysis in cytology. They

create clear and rather uniform slides that can facilitate

interpretation of Pap-stained and biomarker-enhanced slides.

LBC slides are also amenable to high throughput automated

analysis. Especially for the detection of rare events on LBC slides,

Whole-Slide Imaging (WSI) and subsequent image-processing is of

crucial importance for guaranteeing a standardized high quality

read out. Unfortunately, digitization of cytological samples is a

complex process compared to the routinely used histological tissue

samples. Cytological samples have a pronounced three-dimen-

sional profile due to their liquid based preparation and are

therefore are harder to capture in sufficient quality. Up till now

LBC slides have been digitized by scanning the slides with several

layers to cover the whole cell distribution along the z-axis. For

example in [31], 15–20 mm is noted as a suitable range for

scanning LBC slides, in [15] the slides are scanned at 31.5 mm, in

[16] the authors used 20 mm and in [32] the authors conclude that

the optimal number of focal planes remains unknown for cytology.

Multi-layered imaging substantially hinders the subsequent man-

ual or automatic image processing. There is no guarantee that

even multi-layering acquires all necessary objects on the slide.

There is no ‘‘optimal’’ number of layers nor of an ‘‘optimal’’

spacing between them [32]. Our results show that multi-layering

has so far only been used for LBC slides to circumvent the

determination of a ‘‘master-focus’’ layer, which allows the imaging

of the far majority of all cells in all regions of the slide in-focus.

Figure 4. The detailed steps for whole-slide sharpness quantification; At first, the slide is divided into 16 sub-regions. Then, cells are
detected by their color values. In total 200 cells are used to quantify the sharpness of each region. For every cell, five sharpness features are
computed and a support vector machine (SVM) is used to classify each cell into the in-focus (class 1) or out-of-focus(class 0) category. The percentage
of in-focus cells (0–100%) is used to calculate a score for each region, and a combination of these scores is used to represent slide sharpness.
doi:10.1371/journal.pone.0061441.g004

Table 3. Confusion matrix and overall performance of the
classifier used to determine the sharpness of the cell image.

Algorithm
Classification Manual Observer Analysis Predictive value

In-focus Out-of-focus

In-focus 2207 30 Positive: 98.7%

Out-of-focus 136 859 Negative: 86.3%

Overall performance of the applied algorithm

Sensitivity: 94.2% Specificity: 95.9% Accuracy: 94.8%

doi:10.1371/journal.pone.0061441.t003
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Therefore we set out to provide the first systematic analysis of

ThinPrep slides to determine if such a master-layer can be

determined and which proportion of in-focus cells it comprises. As

a result of this analysis we stepwise developed an automated

imaging procedure for these slides. We then evaluated the

resulting overall system and showed, for the first time, that it is

a highly effective whole-slide imaging system, capable of the

highest quality focusing. Although our approach is based on a

specific slide scanner, the Hamamatsu Nanozoomer NDP HT, it

can be transferred to all similarly working scanning devices.

To obtain data about the 3D spatial distribution of the cell layer

in LBC-prepared cytological samples, the height variation of six

different slides were analyzed in a first step. The results showed

that cells are indeed arranged in some kind of ‘‘mono-layer’’, but

in a three-dimensional, complex folded height profile. The range

of cells along the z-axis is up to 29 mm in our examples. Hence,

capturing of the corresponding height profile will require a

substantial number of focus points to cover the whole height

variation of the slide. But scanning with an excessive number of set

focus points would result in a substantial loss of time performance.

We therefore developed a novel, semantic focus routine, capable

of intelligently checking focus points for whether they truly reflect

individual cells or cell clusters. We then observed that still this

would not be sufficient as it is necessary to place the focus points in

such a way that the overall three-dimensional profile of the liquid

based preparation is captured. In this process the initial number of

focus points deployed is minimal at the beginning but is

automatically increased to the necessary extent. Also the location

of the placement has to be adapted to allow slide-scanning. During

cover slipping of LBC slides, the spatial distribution of the cells is

slightly perturbed. This perturbation occurs around points of

similar pressure and shows only little variation in a small distance

(several millimeters). Therefore, cells that are located in close

proximity also have very similar location in the z-axis. Thus, it is

possible to find a surface which allows single-layer scanning of the

LBC slide. An automated focus analysis must be able to

autonomously distinguish between in-focus and out-of-focus cells,

and accordingly provide an objective quality measurement for

cytological samples. Therefore, we trained a support vector

machine with five different features on a training set consisted of

over 1600 single cells. The classifier was able to correctly classify

in-focus cells with an accuracy of 94.8%. The assembly of the

individual steps into a general workflow results in the first system

capable of automatically scan liquid based preparation slides.

This was validated with a complete series consisting of 400 LBC

slides and only 3 of them were finally not scanned. These slides

exhibited only a very small number of cells. In routine diagnostics,

such slides would be discarded as inadequate samples. With the

implemented approach, we achieved an average total scanning

time of 13.9 min. This average time allowed for scanning

approximately a hundred slides at one day which is acceptable

for high throughput processing. However, a major time consuming

part of this approach are the image processing algorithms.

Sharpness analysis takes at least 60 sec per slide. If a slide has to

be scanned 3 times, then 3 min of the total scan time are used for

calculating the sharpness of the slide. Also the scanning-time of the

hardware can be expected to improve in future. Thus, several

options for accelerating the so far achieved scanning times exist.

Already with our current system, cytological samples are scanned

within an adequate timeframe in a fully automated manner,

Figure 5. A simplified schematic of the complete workflow for scanning one slide. The slide is loaded and the area to be scanned is
detected automatically. Focus points are set and after autofocussing, the focus point images are analyzed. If the number of valid focus point is higher
than five, the slide is scanned and its sharpness is analyzed. From the results of sharpness analysis, a decision is made whether to re-scan the slide or
not. The slide is re-scanned until the quality is sufficient for further analysis.
doi:10.1371/journal.pone.0061441.g005

Table 4. Scanning duration and number of focus points for
the 400 scanned LBC slides.

Statistics Time (min)

Maximum scan time 55.2

Minimum scan time 5.7

Average scan time 13.9610.1

Average number of focus points 29.1615.5

6 denotes standard deviation.
doi:10.1371/journal.pone.0061441.t004
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without generating too much data. Our results show that indeed a

master-focus layer can be determined in LBC slides and that

scanning in this layer captures more than 90% of the cells in focus.

Thus, our system show that in principle the user does not have to

switch manually between multiple z-layers and the implementa-

tion of image processing algorithms is simpler and more reliable.

However, on some slides thick cell clusters may appear. These cell

clusters cannot be covered along their entire z-axis by a single

layer. Using the determined master-layer as a base layer, with very

few additional layers now also these cells can be efficiently

captured if requested. An added benefit of the automated

sharpness analysis is objectivity compared to manual inspection.

All regions of the slide are processed which reduces considerably

the probability of ‘‘unseen’’ out-of-focus regions. Concluding, high

quality image processing with an effective technique is essential for

high quality screening.

Some scanners provide a dynamic focusing option. There, the

sample surface profile is tracked while scanning and the focus layer

is adapted on the fly. This occurs extremely fast based on physical

surface parameters and does not and also cannot comprise any

semantic analysis like performed in our work. Our detailed

analysis shows that often focusing is impaired by dust or

preparation artifacts. In such a case, a dynamic focus would

continue to focus in the incorrect z-layer (dust) instead on the cells.

Our approach shows for the first time that it is possible to scan

LBC slides in a single layer. Current limitations of the approach

include high investment costs for the instrument and possibly long

scanning times. To obtain information about the reproducibility of

the scan quality of the scanner, we scanned one slide 5 times with

exactly the same settings and compared the focus quality (98.07%;

97.51%; 97.41%; 97.39%; 97.15%) of the slides. The calculated

coefficient of variation (CV) was very low (0.35%) showing that the

scanner was very robust by reproducing nearly the same slide

quality by scanning with equal settings.

The most exciting result from our work is that we achieved a routine

scanning of LBC slides in only one single layer that generated virtual

slides of highest quality and suitable for further high throughput

analysis. Thus, our system allows fast imaging, and expands the

possibilities of automated image based cytological screening.

Supporting Information

Figure S1 Detailed analysis of 6 slides. Boxplot of different

z values show that a mono-layer of cells is not present in

cytological samples. The focal height of the cells is different within

a slide, and also among slides.

(TIF)

Figure S2 Distribution-plots of the five different fea-
tures used for sharpness analysis obtained from the
training set. Every plot contains 800 in-focus cell images (blue

crosses) and 800 out-of-focus cell images (red circles). (a) number of

edges, (b) gradient score, (c) difference to sharpened image, (d)

difference to blurred image, and (e) Blur metric. Data points with

the cross symbol indicate the in-focus class while the diamond

symbol indicates the out-of-focus class. The plots demonstrate in

practice that it is possible to separate the in-focus from the out-of-

focus images based on these features. (f) A plot showing the

average sharpness scores of one slide calculated with a different

random number of cells per field (x-axis: 10, 50, 100, 150, 200,

350, 500 and 1000). Blue data: every number of cells was tested

within 10 runs and the average sharpness scores and the standard

deviations are shown. Data showing that increasing the number of

cells does not affect the accuracy of the sharpness score

significantly after a value of 200 cells per field. Red data: showing

that the processing times increases linear with the number of cells

processed.

(TIF)

Figure S3 Iterative gain of total slide sharpness in
different batches. The plots show the sharpness in % of a slide

at the current scan iteration. (A) Batch of 20 slides which already

reached the 90% after the first or second scan iteration. (B) Batch

of 20 slide reaching 90% sharpness after the third or fourth

iteration. (C) Slides which needed more than 5 iterations to reach

the 90% mark. (D) Of the total of 400 slides, 3 did not reach the

90% mark and were classified as not scannable.

(TIF)

Table S1 HSV color ranges. HSV color ranges used to

identify object pixel in focus point images.

(PDF)

Table S2 Sharpness Features. Detailed description of the

five sharpness features used for the classification.

(PDF)

Pseudocode S1 Pseudo-code for the whole control flow
and the total focus quality analysis.

(PDF)
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