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Two-dimensional ground-state mapping of a
Mott-Hubbard system in a flexible field-effect device
Yoshitaka Kawasugi1*†, Kazuhiro Seki1,2,3†, Satoshi Tajima4, Jiang Pu5, Taishi Takenobu5,
Seiji Yunoki1,3,6, Hiroshi M. Yamamoto1,7*, Reizo Kato1

A Mott insulator sometimes induces unconventional superconductivity in its neighbors when doped and/or
pressurized. Because the phase diagram should be strongly related to the microscopic mechanism of the super-
conductivity, it is important to obtain the global phase diagram surrounding the Mott insulating state. However,
the parameter available for controlling the ground state of most Mott insulating materials is one-dimensional
owing to technical limitations. Here, we present a two-dimensional ground-state mapping for a Mott insulator
using an organic field-effect device by simultaneously tuning the bandwidth and bandfilling. The observed phase
diagram showed many unexpected features such as an abrupt first-order superconducting transition under elec-
tron doping, a recurrent insulating phase in the heavily electron-doped region, and a nearly constant supercon-
ducting transition temperature in a wide parameter range. These results are expected to contribute toward
elucidating one of the standard solutions for the Mott-Hubbard model.
INTRODUCTION
The electron correlation in solids, or the Mott physics, offers in-
triguing phenomena in materials such as unconventional super-
conductivity (SC). The key parameters for controlling the Mott
physics are the electronic bandfilling and bandwidth. Variation of
the former triggers the doping-induced high–transition temperature
(high TC) SC in cuprates (1) and the field-induced SC in a twisted
graphene bilayer (2), while variation of the latter triggers the pressure-
induced SC in organics (3) and the chemical pressure–induced SC in
fullerenes (4). However, the simultaneous control of these two param-
eters has been lacking so far, leaving a comprehensive phase diagram
of correlated materials inaccessible. For example, high-TC cuprates
can exhibit SC only in the bandfilling-controlled regime, and the
bandwidth cannot be sufficiently controlled to induce SC from a non-
doped Mott insulating state because of the hard crystal lattice. Re-
cently, however, we have achieved both electric field–induced SC
using a solid-gate field-effect transistor and strain-induced SC by
substrate bending in similar organic Mott insulator devices (5, 6).
This situation has motivated us to elucidate the two-dimensional
ground-state map of the Mott-Hubbard model by combining these
two technologies in a single organic device. Here, we report simulta-
neous control of the bandfilling and bandwidth at an organic Mott
insulator interface, where the details of the superconducting transi-
tions in the proximity of the Mott insulator in the two-dimensional
ground-state map are revealed.

The two-dimensional organic Mott insulator k-(BEDT-TTF)
2Cu[N(CN)2]Cl (hereafter referred to as k-Cl) comprises alternat-
ing layers of conducting BEDT-TTF+0.5 cations and insulating
Cu[N(CN)2]Cl

− counteranions (7). The conducting BEDT-TTF
molecules are strongly dimerized and can be modeled as a single-
band Hubbard model on an anisotropic triangular lattice with t′/t =
−0.44, where t is the nearest-neighbor (interdimer) hopping and t′ is
the next-nearest-neighbor hopping (Fig. 1A) (8). Similarities between
the k-type BEDT-TTF salts and high-TC cuprates, such as the prox-
imity between antiferromagnetism and SC, and the unconventional
metallic phase in the normal state, have been pointed out (9). In con-
trast to the high-TC cuprates, where the SC is induced with carrier
doping by chemical substitution, k-Cl has been studied in terms of
the pressure-induced superconducting transition because of its sensi-
tivity to pressure and the difficulty of chemical doping. However, re-
cently developed techniques for field-effect doping have enabled the
reversible and finely tuned doping to k-Cl (10, 11). In previous work
(11), measurements of transport properties and calculations based on
cluster perturbation theory indicate strong doping asymmetry, where
major pseudogaps open near the van Hove critical points under sub-
stantial hole doping, while a more non-interacting-like Fermi surface
appears under substantial electron doping. The doping asymmetry for
the SC, which should be observed under pressure at lower tempera-
tures, is currently of great interest because it will provide further in-
sight into unconventional superconductivities in strongly correlated
systems. Here, we report a two-dimensional mapping of the ground
state for a Hubbard system based on an organic field-effect device.
This is, to our knowledge, the first direct derivation of a ground-state
phase diagram with fine control of the bandfilling and bandwidth in a
Hubbard system in the solid state (Fig. 1B).

To this end, we fabricated electric double-layer transistors (EDLTs)
using thin single crystals of k-Cl on flexible polyethylene terephthalate
(PET) substrates (Fig. 1C and fig. S1). EDLT doping is particularly
effective for materials with low carrier density because a small gate
voltage can markedly vary the bandfilling in these materials. The
carrier density of k-Cl is much lower than that of high-TC cuprates
(k-Cl: ~1.8 × 1014 cm−2; YBa2Cu3O7−d: ~6.7 × 1014 cm−2). According
to the Hall effect and charge displacement current measurements, the
carrier density in k-Cl can be reversibly tuned up to approximately
±20% (Supplementary Text and fig. S2). In addition, the effective pres-
sure of the sample can be simultaneously tuned by applying a bending
strain to the substrate (6). Therefore, this combination of the EDLT
doping and bending-strain techniques allows us to investigate the
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doping (d)–correlation (U/t)–temperature (T) phase diagram for the
same sample (U: on-dimer coulomb repulsion).
RESULTS
First, we study the resistivity without gating. Figure 1E shows the
temperature dependence of the resistivity r for various values of the
tensile strain S at zero gate voltage. As can be seen, the resistivity of
k-Cl is highly sensitive to the strain because it is in close proximity
to the pressure-induced first-order Mott insulator/superconductor
transition (12, 13). k-Cl, which is originally a Mott insulator at ambient
pressure, is a superconductor on a PET substrate owing to the com-
pressive strain from the substrate induced by its thermal contraction at
low temperatures. Upon applying the tensile strain S, k-Cl exhibits a
strain-induced superconductor-to-insulator transition at the lowest
temperature. At higher temperatures, the resistivity shows a nonmo-
notonic dependence, changing from semiconducting to metallic with
decreasing temperature, followed by resistivity jumps to antiferromag-
netic Mott insulating states at lower temperatures. This peculiar
dependence on the temperature indicates that the strained k-Cl is in
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the proximity of the superconductor/antiferromagnetic Mott insula-
tor transition at half filling, similarly to the bulk sample under hydro-
static pressure (13–15).

Next, we study the resistivity under gating. For S ≤ 0.44%, ambi-
polar SC is observed under gating (Figs. 1D and 2). Upon applying
negative gate voltages, the resistivity monotonically decreases by
orders of magnitude and SC emerges for VG ≤ −0.3 V at S = 0.41%
(Fig. 2C). The critical temperature TC of approximately 12 K does not
vary notably down to VG = −0.5 V.

On the other hand, the effect of VG is not monotonic for electron
doping. The resistivity abruptly drops, and a superconducting state
with TC of approximately 12 K again emerges with low electron dop-
ing (+0.14 V ≤ VG ≤ +0.22 V at S = 0.41%). However, the resistivity
increases again, and the SC disappears after further electron doping.
Although the hole- and electron-doped superconducting states show
similar values of TC, the doping concentration where SC appears is
significantly doping asymmetric, as shown in Fig. 2 (B to D). Because
the charge neutrality point (highest resistivity point) corresponding to
half filling is approximately +0.05V in this sample, the electron-doped
SC is observed only in a narrow region of VG near half filling. These
superconducting states are suppressed by magnetic fields, and their
normal states are insulating (fig. S3), as in the pressure-induced super-
conducting state at half filling (16). Curiously, the normal-state resis-
tivity takes a local minimum againstVG at the optimumdoping on the
electron-doped side, as shown in the upper part of Fig. 2 (B to D). The
“dip” of the resistivity is observed at least up to 80 K, which is several
times higher thanTC (fig. S4). The superconducting regions in theVG-T
plots become narrower and eventually disappear with increasing tensile
strain (Fig. 2, F and G). Both the p- and n-type SC fade at almost the
same value of strain.

Summarizing the tensile strain dependence of r in the VG-T plots
(Fig. 2, A to G), we obtain the VG-S plots at 5.5 K (Fig. 2H), which
should reflect the ground-state bandfilling-bandwidth phase diagram.
(However, note that the sample conductance is the sum of the doped
surface conductance and the nondoped bulk conductance. That is, the
sample resistivity deviates from the doped surface resistivity unless the
bulk conductance is much less than the surface conductance. In par-
ticular, the resistivity data at S = 0.35% below 12 K do not reflect the
doped states. Once the nondoped bulk becomes superconducting, it
cannot be determined whether the doped surface is superconducting.)

While the hole-doped superconducting phase lies slightly away
from the antiferromagnetic insulating phase, the electron-doped
superconducting phase is located in a very narrow region next to
the antiferromagnetic insulating phase. The resistive transition be-
tween the half-filled insulating state and the electron-doped supercon-
ducting state is very abrupt (r falls by up to eight orders of magnitude
within a gate voltage range of ~0.1 V). At the boundary, discontinuous
fluctuations in resistivity are also observed (fig. S5). These behaviors
are reminiscent of the pressure-induced phase separation/percolative
SC at half filling (13–15). Therefore, it is reasonable to consider that
the first-order transition line at least extends from half filling to the
electron-doped superconducting phase boundary in the diagram.

To summarize the experimental results, (i) the superconducting
region is narrower and closer to half filling under electron doping than
under hole doping, (ii) the electron doping–driven superconducting
transition is very abrupt and discontinuous (first-order–like), (iii) the
superconducting regions appear to be connected to each other in the
VG-S plots within the data resolution, and (iv) the doping asymmetry
for the resistivity diminishes with decreasing bandwidth.
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Fig. 1. Bandfilling and bandwidth control of k-Cl in the same sample. (A) Mo-
lecular arrangement of the BEDT-TTF layer in k-Cl (top view). (B) Conceptual phase
diagram based on the Hubbard model (37). The vertical axis denotes the strength of
the electron correlation. k-Cl is originally located near the tip of the insulating region
and is shifted along both directions to investigate the superconducting region.
(C) Schematic side view of the device structure. The doping concentration and
effective pressure are controlled by an electric double-layer gating and bending of
the substrate with a piezo nanopositioner, respectively. The resistivity is measured by
the standard four-probe method. (D) Sheet resistivity versus temperature plots under
hole doping at tensile strain S = 0.41%. The dashed line indicates the pair quantum
resistance h/4e2. (E) Resistivity versus temperature plots under different tensile strains
at gate voltage VG = 0 V.
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In contrast to other solid-state materials such as the high-TC cup-
rates and doped fullerenes, the bandfilling and bandwidth are simul-
taneously controlled in a single sample, and thus, the sample dependence
is less significant here. Furthermore, one simple molecular orbital
(highest occupied molecular orbital) governs the electronic properties
under both electron and hole doping in k-Cl. Accordingly, the observed
doping asymmetry is attributed to the intrinsic electron-hole asymmetry
of interacting fermions on the anisotropic triangular lattice.

For a better understanding of the particle-hole asymmetry, we used
the variational cluster approximation (VCA) (17) to theoretically con-
sider antiferromagnetic and dx2�y2 superconducting orders in the
Hubbard model on the anisotropic triangular lattice defined by the
following Hamiltonian

Ĥ ¼ � ∑
〈ij〉;s

tijð̂cis† ĉjs þH:c:Þ þ U∑
i
n̂i↑n̂i↓ � m∑

is
n̂is ð1Þ

where ĉis
† creates an electron site iwith spinsð↑; ↓Þ; n̂is ¼ ĉ†isĉjs, tij is

the transfer integral between neighboring sites i and j (indicated as
t and t′ in Fig. 1A), U is the on-site coulomb repulsion, and m is the
chemical potential. In the following, we set t′/t = −0.44 (8) and used a
cluster of size L = 4 × 3. We performed scans at 0 K, varying m for
several values ofU/t. The strain dependence of the intradimer charge
degree of freedom is not considered because the effective coulomb
repulsion on the dimer (U) is not sensitive to changes in the intradimer
transfer integral (5, 18): BecauseU e 2jtidj � 4t2id=Ubare, where tid is the
intradimer transfer integral (~0.25 eV) andUbare is the on-site coulomb
repulsion for a single BEDT-TTF molecule (~1.0 eV), small changes in
tid cancel out. Here, we used the one-band model to obtain an approx-
imate outline of the phase diagram. However, note that it is not perfect
for describing the electronic properties of k-type BEDT-TTF salts. Dif-
ferent gap symmetry (extended s- + d-wave symmetry) has been pre-
dicted using the four-band models (19–21) and observed by scanning
tunneling microscopy in a superconducting salt (22).

Figure 3A shows the antiferromagnetic and superconducting
order parameters as a function of doping concentration d = n − 1,
where n is the electron density and d = 0 corresponds to half filling.
Similarly to the experiment, the antiferromagnetic order breaks down,
and SC emerges at higher d. Even with a small amount of electron
doping (d < 0.1), the transition takes place when U/t is small. In such
a case, the SC appears more abruptly than for hole doping. However,
this abrupt breakdown of the antiferromagnetic insulating phase dis-
appears when U/t is increased to more than 5.0.

In addition, we found a nonmonotonic dependence of the chem-
ical potential on d under electron doping (Fig. 3B). Accordingly, Fig. 3A
includes metastable and unstable solutions on the electron-doped side
for small U/t (indicated as empty symbols). As shown in Fig. 3C, the
Maxwell construction reveals phase separation between twophaseswith
different doping concentrations d1 and d2, where the volume fraction of
each phase is proportional to d − d1 or d2 − d for the average doping
concentration d, assuming that d1≤ d≤ d2. If one of the phases is super-
conducting, percolation SC can appear when d exceeds the percolation
limit. Although the results depend quantitatively on the clusters used,
we found that the tendency toward phase separation is robust under
electron doping (see section S2).

According to the resistivity behavior without a gate voltage (fig. S6),
the change inU/t from S=0.35 to 0.55% is comparable to or slightly larger
than that from bulk crystals of k-(BEDT-TTF)2Cu[N(CN)2]Br (k-Br,
U/t = 5.1, superconducting) to k-Cl (U/t = 5.5, Mott insulating) (8).
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Fig. 2. Electron-hole asymmetric phase diagram of k-Cl. (A to G) Contour
plots of the sheet resistivity r under tensile strains S = 0.35% (A), 0.39% (B),
0.41% (C), 0.44% (D), 0.46% (E), 0.50% (F), and 0.55% (G) as a function of tempera-
ture and gate voltage. (H) Contour plots of the sheet resistivity r at 5.5 K as a
function of gate voltage and tensile strain. Black dots in all figures indicate the
data points where the sheet resistivity was measured. The doping concentration
estimated from the average density of charge accumulated in the charge
displacement current measurement (fig. S2) is shown for reference on the upper
horizontal axis in (H). AFI, antiferromagnetic insulator; h-SC, p-type SC; e-SC, n-type
SC. In the region below the white dashed line at S = 0.35%, the surface resistivity
under doping cannot be measured because the nondoped bulk is superconducting
below 12 K.
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That is, the variation in the experiments (~8% change in t for 0.2%
increase in strain) is considered to be smaller than that in the calcula-
tions shown in Fig. 3A. In addition, the calculations indicate the Mott
transition at half filling between U/t = 3.5 and 4.0, while it occurs be-
tween k-Br (U/t = 5.1) and k-Cl (U/t = 5.5) in the real material system.
Despite these discrepancies, the characteristic features in the proxim-
ity of the transitions such as the doping asymmetry and the phase sep-
aration on the electron-doped side are qualitatively reproduced by our
calculations.

The tendency of the phase separation with the sign of doping is
opposite to that in the Hubbard model on a square lattice with the
model parameters relevant for cuprates, where the phase separation
is more likely to occur under hole doping (23). We attribute the phase
separation tendency to the high density of states around the bottom of
the upper Hubbard band split off from the van Hove singularity by
the electron correlation (Fig. 3E). The high density of states accumu-
lated along the Z-M line is characteristic of the anisotropic triangular
lattice owing to the fact that the direction of the hopping t′ is or-
thogonal to the Z-M line, along which the dispersion remains flat.
The calculations imply that our experiment was able to capture such
a highly nontrivial correlated band structure on the unoccupied side as
an abrupt change in the transport properties under electron doping.
DISCUSSION
The doping and correlation dependence of TC in the Hubbardmodel
on an anisotropic triangular lattice has also been calculated using
cluster dynamical mean field theory (24). It predicts hole-doped super-
conducting states in a wide doping region from extremely low to mod-
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erate hole doping (from 1 to 10%), while no SC appears under low
electron doping of less than 10%. TC tends to be enhanced under hole
doping and reduced under electron doping, compared with the value at
half filling. However, in our experimental results shown in Fig. 2, there
are many discrepancies among these theories as well as our previous
expectations (5). An abrupt first-order superconducting transition
was expected, but it is only observed in the electron-doped region.
The recurrent insulating phase in the heavily electron-doped region is
also a new observation. The values of TC are unexpectedly independent
of both doping and strain. In addition, the electron-doped SC seems to
persist at higher U/t than the hole-doped SC. Note that the optimal
doping concentration does not change significantly when the strain
is varied. These are all new findings observed by the two-dimensional
scanning of the strain and carrier density at the k-Cl surface, although
their origins require further discussion.

The disappearance of SC and the appearance of an insulating
phase for large electron doping (VG ≥ +0.25 V) cannot be explained
by the calculations, for example. To understand this, we should prob-
ably be aware of the simplicity of the model considered here, which
ignores elements specific to this material, such as the intradimer charge
degree of freedom and the intersite coulomb repulsion (20). One pos-
sibility is that a magnetic or charge-ordered state emerges at specific
doping levels (for example, ~12.5%), as in the case of the stripe order
in the cuprates (25–28). Recent theoretical calculations for the Hubbard
model on a square lattice suggest that a large part of the macroscopic
phase separation region can be replaced by more microscopically in-
homogeneous stripe states (29, 30). The presence of a magnetic or charge-
ordered state with high resistivity at 12.5% doping may explain the dip
in resistivity in the normal state (fig. S4).
A B C

D                                              E                                   

Fig. 3. VCA calculations. (A) Antiferromagnetic and dx2�y2 superconducting order parameters, M and D, respectively, versus doping concentration d for several values
of U/t. M and D for the metastable and unstable solutions (empty symbols) are also shown at U/t = 4 and 4.5 under electron doping (corresponding to positive d). (B) Doping
concentration d versus chemical potential m relative to that at half filling (mhalf) for several values of U/t. The results for the metastable and unstable solutions at U/t = 4 and
4.5 are indicated by dashed lines, while the results obtained by the Maxwell construction are denoted by solid vertical lines. This implies the presence of phase separation
and a first-order phase transition. It is noteworthy that there is a steep (nearly vertical) increase in d with increasing m for larger values of U/t under electron doping,
suggesting a strong tendency toward phase separation. The values of mhalf are mhalf = 1.3725t for U/t = 3.5, mhalf = 1.8375t for U/t = 4, and mhalf = U/2 for U/t 4.5. (C) Chemical
potential m versus doping concentration d for U/t = 4 (see fig. S8 for more details). d1 and d2 are the doping concentrations of the two extreme states in the phase
separation. All results in (A) to (C) are calculated using the VCA for the single-band Hubbard model on an anisotropic triangular lattice (t′/t = −0.44) with a 4 × 3
cluster. (D) Noninteracting tight-binding band structure and density of states (DOS) for t′/t = −0.44 with t = 65 meV. Here, G = (0,0), Z = (0,p/c), M = (p/a,p/c), and X =
(p/a,0), with a and c being the lengths of the primitive translation vectors indicated in Fig. 1A. The Fermi level for half filling is set to zero and denoted by dashed
lines. (E) Single-particle spectral functions and DOS of k-Cl at half filling in an antiferromagnetic state at zero temperature, calculated by VCA. The Fermi level is
denoted by a dashed line at zero energy. The flat features seen away from the Fermi level indicate incoherent continuous spectra due to the electron correlation.
The reason why they appear rather discretized is because of the discrete many-body energy levels in the VCA calculation, for which a finite-size cluster is used to
obtain the single-particle excitation energies.
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The correlation strength and bandfilling are the most fundamental
parameters that determine unconventional SC in correlated electron
systems. To construct an experimental correlation-bandfilling phase di-
agram, however, it has been necessary to combine data from different
materials, resulting in unavoidable material and sample dependences.
Obtaining the phase diagram in a single sample is a milestone for
understanding the pristine mechanism of unconventional SC. This is
achieved here by virtue of the high tunability of the organic Mott insu-
lator. In addition, despite the use of a real material, the high controlla-
bility and cleanness of our device are in commonwith those of quantum
simulators (31) such as cold atoms in an optical lattice. We hope that
these results also serve as a useful reference for quantum simulations of
the Fermi-Hubbard model beyond the field of materials science.
MATERIALS AND METHODS
Sample preparation and transport measurement
The source, drain, and gate electrodes (18-nm-thick Au) were pat-
terned on a PET substrate (Teflex FT7, Teijin DuPont Films Japan
Limited) using photolithography. A thin (~100 nm) single crystal
of k-Cl was electrochemically synthesized by oxidizing BEDT-TTF
(20 mg) dissolved in 50 ml of 1,1,2-trichloroethane [10% (v/v) ethanol]
in the presence of TPP[N(CN)2] [tetraphenylphosphonium (TPP),
200mg], CuCl (60mg), and TPP-Cl (100mg). After applying a current
of 8 mA for 20 hours, the thin crystal was transferred into 2-propanol
with a pipette and guided onto the top of the substrate. A diagonal of the
rhombic crystal, which is usually parallel to the crystallographic a or
c axis, was aligned parallel to the direction of the current and strain
(although it is unknown which axis was the a or c axis). After the
substrate was removed from the 2-propanol and dried, the k-Cl crystal
was shaped into aHall bar using a pulsed laser beamwith awavelength
of 532 nm. The typical dimensions of the Hall bar sample were ap-
proximately 15 mm (width) by 40 mm (length) by 100 nm (thickness),
as shown in fig. S1. Figure S1C shows an atomic force microscopy
image of the surface of a typical k-Cl crystal laminated on the substrate.
The roughness of the surface was suppressed to less than 1.5 nm over
the micrometer scale (fig. S1D), which corresponds to the thickness of
one set of BEDT-TTF and anion layers. As a gate electrolyte, the ionic
liquid 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate
was added dropwise to the sample and an Au side gate electrode. The
EDLT device was completed bymounting a 1.2-mm-thick polyethylene
naphthalate (PEN) film on the ionic liquid droplet. Thinning of the
gate electrolyte using the PEN film reduced the thermal stress at low
temperatures.

The transportmeasurements were performed using a Physical Prop-
ertyMeasurement System (QuantumDesign). The four-terminal resist-
ancewasmeasuredwith a dc of 1mAusing a dc source (Yokogawa 7651,
Yokogawa) and a nanovoltmeter (Agilent 34420A, Agilent Technolo-
gies). Themaximumapplied voltagewas limited to 1V (that is, themea-
surement was voltage biased in the high-resistance states). The applied
current was monitored with a current amplifier (SR570, Stanford Re-
search Systems). The resistivity was estimated from the resistance and
sample dimensions. In Fig. 1E, the resistivity r (Wcm) was estimated as
r = R ×W ×D/L, where R,W,D, and L denote resistance, width, thick-
ness, and length of the sample, respectively. In the other figures, the
sheet resistivity r = R ×W/L is shown because only the sample surface
was doped and the three-dimensional resistivity cannot be accurately
estimated. According to the Hall measurements (11), the effect of dop-
ing is confined within one molecular layer under sufficient doping.
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The four-terminal resistivity was measured during temperature
cycles between 220 and 5 K. The temperature was varied at rates of
2 K/min (T > 20 K) and 0.3 K/min (T < 20 K). The gate voltage VG

was swept from+0.5 to−0.5 Vwith a step of 0.05 V at 220K, but in the
low–electron doping regime from +0.22 to 0.08 V, it was more finely
tuned with a step of 0.02 V. After varying the gate voltage, we waited
1 min for the stabilization of the gate bias before cooling the sample.

Because the samples are top-gate and bottom-contact transistors,
the current flows through the ungated regions between the electrodes
and the doped surface, resulting in non-negligible contact resistance.
Figure S1 (E and F) shows the four- and two-terminal resistances
without and with a gate voltage, respectively. One can see that the
temperature dependence of the contact resistance is more moderate
than that of the four-terminal resistance. Therefore, the ratio of con-
tact resistance to sample resistance is large when the sample is metallic
or superconducting. However, the contact resistance is typically up to
the order of 10 kilohms and does not hinder the four-terminal resis-
tivity measurement.

After the temperature cycles at different gate voltages, a tunable ten-
sile strain was mechanically applied with a nanopositioner (ANPz51,
attocube) from the back side of the substrate at 220 K. The basic tech-
niques and apparatus for the strain measurements were the same as
those in our previous report (6). The tensile strain was estimated from
S = 4tx/(l2 + 4x2), where t and l are the thickness and length of the sub-
strate, respectively, and x is the displacement of the nanopositioner.We
assumed that (i) the bent substrate (and k-Cl crystal) is an arc of a circle
and (ii) the angle between the ends of the substrate is small (small-angle
approximation). The tensile strain was applied in the following order:
0.39, 0.41, 0.44, 0.46, 0.50, 0.55, and 0.35%.

VCA calculations
1. Model Hamiltonian
To study the ground-state phase diagram of the organic Mott insulator
k-Cl from the theoretical point of view, we considered the single-band
Hubbard model on the anisotropic triangular lattice (8, 32–35). The
Hamiltonian of the model is given by Eq. 1. The transfer integral be-
tween the different (same) dimers of BEDT-TTF molecules is given
by tij = t (t′). We set t′/t = −0.44, which is relevant for k-Cl (8), and
varied U and m to control the strength of the electron correlation and
the carrier concentration, respectively. In experiment,U/t and m can be
controlled by applying the strain S and the gate voltageVG, respectively.
That is, the tensile strain S increasesU/t, and the positive (negative) gate
voltage increases (decreases) m.
2. Variational cluster approximation
We applied the VCA (36) to the single-band Hubbard model in Eq. 1.
The VCA is a many-body variational method based on the self-energy
functional theory (37–39) and allows us to investigate the possible
spontaneous symmetry breaking including antiferromagnetism
(AFM) and SC by taking into account the short-range electron correla-
tions through the exact self-energy of a so-called reference system,
which will be introduced later. The VCA has been applied for the
single-band Hubbard model on the anisotropic triangular lattice at
half filling (40–42) and also on the square lattice with finite dopings
relevant for cuprates (23, 43) to study possible magnetism and SC.
Moreover, the VCA has been able to capture the first-order phase
transtions of strongly correlated systems, as well as the free-energy
balance and the Maxwell construction consistently (44–46).

Let us first review the variational principle for the grand poten-
tial on which the VCA was constructed (38, 47, 48). There exists a
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functional W[S] of the self-energy S that gives the grand potential
W as W = W[S*] such that

dW½S�
dS

����
S¼S*

¼ 0 ð2Þ

where

W½S� ¼ F½S� � 1
b
Tr lnð�G�1

0 þ SÞ ð3Þ

G0 is the noninteracting single-particle Green’s function, F[S] is the
Legendre transform of the Luttinger-Ward functional F[G] (45), i.e.,
F[S] = F[G] − b−1Tr[GS] with S = bdF[G]/dG, G is the interacting
single-particle Green’s function, b = 1/T is the inverse temperature,
and Tr is the functional trace that runs over all (both spatial and tem-
poral, regardless of discrete or continuous) variables of the functions
in Tr[· · ·]. The stationary condition Eq. 2 ensures that S* is the
physical self-energy in the sense that S* satisfies the Dyson equation.
The variational principle for the grand potential has been derived by
the diagrammatic-expansion technique for many-body Green’s
function (47) and later by the functional-integral technique for the
grand-partition function in a nonperturbative way (48). A remarkable
property of the Luttinger-Ward functional is that its functional form
F depends only on the interaction term of the Hamiltonian (48).

Although the variational principle is rigorous andnonperturbative, a
difficulty in applying it for practical calculations is that the explicit form
of the Luttinger-Ward functional F[S] is unknown. The key approx-
imation of the VCA is to restrict the space of the trial self-energy S to
that of the exact self-energy S′ of a reference system described by the
HamiltonianĤ′ whose interaction term must remain unchanged, but
the single-particle terms can be modified fromĤ forĤ′ to be solvable
exactly. The invariance of the Luttinger-Ward functional F enables us
to write the grand-potential functional of reference system asF′½S′� ¼
F½S� � b�1Tr lnð�G′�1

0 þ S′Þ, whereG′0 is the noninteracting Green’s
function of the reference system. By restricting the trial self-energy to
S′ and eliminating F[S] from Eq. 3, we obtained

W½S′� ¼ W′½S′� � 1
b
Tr lnðI � VG′½S′�Þ ð4Þ

whereV ¼ G′�1
0 � G�1

0 represents the difference of the single-particle
terms between the original and reference systems and G′½S′� ¼
ðG′�1

0 � S′Þ�1 is the exact interacting single-particle Green’s function
of the reference system. Note that the right-hand side of Eq. 4 is com-
putable as long as the reference system Ĥ′ is solvable.

The remaining arbitrariness of the single-particle terms in the
reference systemĤ′ allows us to optimize the trial self-energyS′ through
varying single-particle fields l, which parameterize the single-particle
terms, as variational parameters, i.e., S′ = S′(l), so as to satisfy the sta-
tionary condition in Eq. 2. Simply denoting ΩðlÞ ¼ Ω½S′ðlÞ�, the op-
timization scheme of the VCA amounts to find the extrema

∂WðlÞ
∂l

����
l¼l*

¼ 0 ð5Þ

in the space of the variational parameters l, where l* denotes the set of
optimal variational parameters.
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3. Reference system
Now, we specify our reference system Ĥ′ used for the VCA calcula-
tions. We assumed that our reference system is composed of a collec-
tion of identical, disconnected, and finite-size clusters, each of which
is described by a Hamiltonian ĤcðRicÞ, i.e., Ĥ ′ ¼ ∑Nic¼1Ĥ cðRicÞ, where
Ric is the icth position of the cluster and N is the number of the
clusters in the reference system. Because the clusters are identical,
i.e., Ĥ cðRicÞ ¼ Ĥ c, we refer to it as Ĥc.

To study the SC and AFM phases under the carrier doping, we
considered the following Hamiltonian of the cluster

Ĥ c ¼ ĤH þ Ĥ D þ Ĥh þ ĤD ð6Þ

where

Ĥ D ¼ D∑
i
ðn̂i↑ þ n̂i↓Þ ð7Þ

Ĥh ¼ h∑
i
ðn̂i↑ � n̂i↓ÞeiQ⋅ri ð8Þ

ĤD ¼ D∑
〈i;j〉

ðhijĉi↓ĉj↑ þH:c:Þ ð9Þ

and ĤH is the Hubbard Hamiltonian given in the right-hand side of
Eq. 1 but defined in the cluster. Here, Q = (p, p) and ri is the position
of the ith site. D is the variational parameter for the on-site potential
that has to be optimized to calculate the particle density satisfying the
thermodynamic consistency (23). D and h are the variational param-
eters that are introduced to detect the d-wave SC and AFM states by
explicitly breaking the corresponding U(1) and SU(2) symmetries in
the reference system, respectively. The spatial dependence of the form
factor hij for the SC considered here is given as

hij ¼
þ1 if ri � rj ¼ ±e1;
�1 if ri � rj ¼ ±e2;

0 otherwise;

8<
: ð10Þ

where e1 and e2 are the primitive lattice vectors on the anisotropic
triangular lattice bridging the two sites connected by the nearest-
neighbor hopping integral t (not by t′). Note that the form factor
hij corresponds to that of the dx2�y2–wave SC if it is considered on
the square lattice spanned by the primitive lattice vectors e1 and e2
(assuming that e1 and e2 point to the x and y directions, respectively).
Therefore, we refer to the SC state found in the VCA as dx2�y2–SC.
4. Particle-hole transformation
Because the pairing term ĤD in Eq. 9 explicitly breaks the U(1) sym-
metry, the particle number is not conserved as long as D is finite. This is
inconvenient if the computer program of the exact diagonalization
method is implemented with the number of particles fixed. However,
because the z component of the total spin is conserved, it is still pos-
sible to work in the basis set for the fixed number of particles after the
particle-hole transformation

ĉi :¼ ĉi↓

d̂
†

i :¼ ĉi↓

�
ð11Þ
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In terms of the newly defined spinless fermion operators ĉi and d̂i,
the single-particle terms in Eqs. 7 to 9 become

Ĥ D ¼ D∑
i
ðn̂ic � n̂id þ 1Þ ð12Þ

Ĥh ¼ h∑
i
ðn̂ic þ n̂id � 1ÞeiQ⋅ri ð13Þ

ĤD ¼ D∑
〈i;j〉

ðhijd̂i†ĉj þH:c:Þ ð14Þ

where n̂ic ¼ ĉ†i ĉi and n̂id ¼ d̂
†

i d̂i. Note that ĤD becomes the hybrid-
ization between the c and d orbitals. By applying the particle-hole
transformation also for ĤH, the Hamiltonian of the cluster is now
given as

Ĥ c ¼ �∑
〈ij〉
tijð̂c†i ĉj þH:c:Þ þ ∑

〈ij〉
tijðd̂†

i d̂ j þH:c:Þ
þ ðU � mþ Dþ hÞ∑

i
n̂ic þ ðm� D� hÞ∑

i
n̂id

ð15Þ

�U∑
i
n̂icn̂id þ D∑

〈ij〉
ðhijd̂i†ĉj þH:c:Þ � mLþ DL� h∑

i
eiQ⋅ri

where L is the number of sites in a cluster. It is now apparent that
the total number of the particles is conserved as the operator com-
mutes with the Hamiltonian Ĥc, which is inherited from the con-
servation of the z component of the total spin before the particle-hole
transformation.

Here, several remarks on the nonoperator terms (i.e., constant
terms) in Eq. 15 are in order. Unlike the single-particle operator terms
multiplied by the variational parameters, the nonoperator terms in the
last line of Eq. 15 cannot be “subtracted” as perturbation in the V
matrix in Eq. 4 because the V matrix is a representation of the
single-particle operators (34). Instead, those numbers have to be sub-
tracted either from Ĥc itself or from the eigenspectrum of the cluster
Hamiltonian Ĥc (for example, see Eq. 16). Note also that the term −mL
in the third line of Eq. 15 has to be kept because m is the model
parameter that has the definite physical meaning. Last, we comment
on the number of the basis states in the cluster. Because we considered
the ground state of the cluster at zero temperature, we can focus on
the sector for which the z component of the total spin is zero, i.e.,
∑Li¼1ðn̂i↑ � n̂i↓Þjx〉 ¼ 0jx〉, where |x〉 is an arbitrary basis state for
the corresponding sector. After the particle-hole transformation of
Eq. 11, this sector corresponds to that with the total number of par-
ticles being L, i.e., ∑Li¼1ðn̂ic þ n̂idÞjx〉 ¼ Ljx〉. Because the cluster con-
sists of 2L orbitals with L particles, the number of configurations in

this sector is given by the binomial coefficient
2L
L

� �
. In the main

text, we considered the cluster of the 4 × 3 sites (L = 12), for which

the number of the configuration is
24
12

� �
¼ 24!=ð12!Þ2 ¼ 2704156.

Considering that the VCA has to calculate the ground state and the
single-particle Green’s function of the cluster repeatedly until the sta-
tionary condition Eq. 5 is satisfied and also that the model parameters
U/t and m/t are swept finely in a wide range to find not only stable but
also metastable and unstable solutions that can identify the regions of
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the phase separation or the first-order transitions, L = 12 is reasonably
large among the clusters feasibly handled by the exact diagonalization
method.
5. Grand-potential functional and order parameters
Having specified the reference system, we can further substantiate
the grand-potential functional. Because the system is considered at
equilibrium and the clusters in the reference system are periodically
aligned, the summand of the functional trace Tr[· · ·] in Eq. 4 is diagonal
with respect to the Matsubara frequencies and the wave vectors of the
superlattice on which the clusters are lined up. The grand-potential
functional per site can hence be written as

W ¼ W′� 1
NLb

∑
n
∑
~k
ln det½I � Vð~kÞG′ðiwnÞ� ð16Þ

where

W′ ¼ � 1
Lb

ln∑
s
e�bðEs�~~EÞ ð17Þ

Es is the eigenvalue of Ĥc for sth eigenstate |Ys〉 with the ground
state |Y0〉 (note that Ĥc includes the chemical potential term in our
convention), ~E ¼ DL� h∑ieiQ⋅ri is the nonoperator term in Ĥc as an-
notated after Eq. 15, wn = (2n + 1)p/b is the fermionic Matsubara
frequency with n integer, and ~k is the wave vector defined in the
Brillouin zone of the superlattice with the number of wave vectors
~k being N. Here, we redefined W and W′ as the corresponding
quantities W[S]′ and W′[S′] per site. G′(z) represents the exact single-
particle Green’s function of the cluster, which is given as

G′cdij ðzÞ ¼ ∑
s
ebðW′�EsÞðGþ;cd

ij;s ðzÞ þ G�;cd
ij;s ðzÞÞ ð18Þ

where

Gþ;cd
ij;s ðzÞ ¼ 〈Ys ĉi½z � ðĤ c � EsÞ��1d̂j

†
��� ���Ys〉 ð19Þ

G�;cd
ij;s ðzÞ ¼ 〈Ys d̂

†

j ½z þ ðĤ c � EsÞ��1ĉi
��� ���Ys〉 ð20Þ

and similarly for G′ccij ðzÞ, G′dcij ðzÞ, and G′ddij ðzÞ. The block Lanczos
method is adapted for the calculation ofG′(z).V represents the hopping
process between the clusters and the subtraction of single-particle terms
added to the reference system (i.e.,ĤD,Ĥh, andĤD after the particle-hole
transformation without the nonoperator term).

For a given set of the model parameters U/t and m/t, all the var-
iational parameters l = (D, h, D) are optimized simultaneously to
satisfy the stationary condition

∂WðlÞ
∂D

;
∂WðlÞ
∂h

;
∂WðlÞ
∂D

� �����
l¼l*

¼ ð0; 0; 0Þ ð21Þ

where l* = (D*, h*, D*) are the optimal variational parameters. The
Newton-Raphson method was used for the optimization. The first and
the second derivatives of Ω with respect to the variational parameters
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necessary for the gradient and the Hessian matrix are calculated by the
central finite-difference method with the error in the second order of
the step size. The step size for the finite difference was chosen adapt-
ively by monitoring the curvature of Ω in the variational parameter
space according to the scheme proposed in (45).

After the optimal variational parameters l* were found, the ex-
pectation value of a single-particle operator could be evaluated
from the VCA Green’s function

~Gð~k; iwnÞ ¼ G′ðiwnÞ½I � Vð~kÞG′ðiwnÞ��1
l¼l*j ð22Þ

For example, the doping concentration d, the staggered magne-
tization M, and the dx2�y2–SC order parameter D were calculated,
respectively, as

d ¼ 1
NLb

∑
n
∑
~k
Tr½~Gð~k ; iwnÞ� ð23Þ

M ¼ 1
2NLb

∑
n
∑
~k
Tr½m~Gð~k ; iwnÞ� ð24Þ

D ¼ 1
2NBb

∑
n
∑
~k
Tr½h~Gð~k; iwnÞ� ð25Þ

where B is the number of pairs of sites connected by the dx2�y2–wave
pairing field in the cluster, and m and h are real symmetric 2L × 2L
matrices whose matrix elements are either −1, 0, or +1 to represent the
staggered magnetization and the dx2�y2 pairing, respectively. Note that
~Gð~k; iwnÞ was assumed to be in the Nambu spinor representation,
and thus, the trace of ~Gð~k; iwnÞ is not the electron density but the
doping concentration.

In the zero-temperature limit, the sum Ss over the eigenstates of Ĥc

in Eqs. 17 and 18was takenonly for the ground state of the cluster (s=0),
and the sum Sn over the Matsubara frequencies in Eqs. 18 and 23 to 25
was converted to the integral over the continuous frequency along the
imaginary axis with a proper regularization for the integrand (49). The
numberN of wave vectors ~k in the Brillouin zone of the superlattice was
chosen adaptively by monitoring the convergence of the sum S~k over

~k
with respect toN for each frequency. In general, the largerN is required
for frequencies closer to the Fermi level to reach the convergence.
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