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Deep learning models have been shown to be effective for material analysis, a subfield of
computer vision, on natural images. In medicine, deep learning systems have been shown
to more accurately analyze radiography images than algorithmic approaches and even
experts. However, one major roadblock to applying deep learning-based material analysis
on radiography images is a lack of material annotations accompanying image sets. To
solve this, we first introduce an automated procedure to augment annotated radiography
images into a set of material samples. Next, using a novel Siamese neural network that
compares material sample pairs, called D-CNN, we demonstrate how to learn a perceptual
distance metric between material categories. This system replicates the actions of human
annotators by discovering attributes that encode traits that distinguish materials in
radiography images. Finally, we update and apply MAC-CNN, a material recognition
neural network, to demonstrate this system on a dataset of knee X-rays and brain MRIs
with tumors. Experiments show that this system has strong predictive power on these
radiography images, achieving 92.8% accuracy at predicting the material present in a local
region of an image. Our system also draws interesting parallels between human perception
of natural materials and materials in radiography images.
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1 INTRODUCTION

Computer vision, the study of using computers to extract information from images and videos, has
become embedded in new, broad medical applications due to the high accuracy that deep learning
models can achieve. Recent deep learning models have shown to be effective at solving a variety of
vision tasks in medical image analysis like analyzing chest X-rays (Irvin et al., 2019; Wang et al.,
2019), segmenting brain scans (Lai et al., 2019), and annotating pressure wounds (Zahia et al., 2018).

However, such deep learning models are greatly affected by the quality of the data used to train
them and often sacrifice interpretability for increased accuracy. A lack of quality data, especially in
expert domains like medicine, limits the possible tasks that computer vision can be used for. One
such task, material analysis, examines low-level, textural details to learn about the textural and
physical makeup of objects in images. To make this task feasible without relying on experts to create
hand-crafted textural datasets, existing datasets need to be augmented to encode textural knowledge.

Medical images contain a great amount of textural data that has been underexplored. Intuitively,
different regions of a medical image exhibit low-level characteristics that imply what kind of material
is present in a portion of an image. Figure 1 demonstrates this for a knee X-ray and brainMRI. In this
example, a “spongy” section of an X-ray image appears to indicate that the section contains bone,
while a brighter region of a brain MRI indicates the presence of a tumor. Many medical image
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datasets capture such regions of textural interest but do not
explicitly encode these textures. For example, brain MRI
datasets often include segmentation masks for brain tumors
(Cheng, 2017; Schmainda and Prah, 2018) that encode these
regions, but without explicit textural context.

While these masks delineate the region where a tumor resides
in an image, they give no textural information about the tumors
themselves. To obtain this textural information, one must either
hire experts to create a dataset of such textures, or leverage these
pre-existing annotations in a way that automatically draws out
their relationships with the underlying textures andmaterials. We
propose a method to achieve the latter.

In this paper, we introduce a method to analyze medical
radiography images with or without such generic annotations
to generate a dataset of image patches representing different
textures found in medical images. Our method additionally
learns an encoding of the relationship between the textural
categories in these images and generates a set of machine-
discovered material attributes. These material categories and
attributes are then used to classify textures found within
medical images both locally and over an entire image.
Finally, we evaluate our method on a composite dataset of
knee X-rays and brain MRIs, observing the attributes learned
while also examining how the network automatically performs
knowledge transfer for textures between different image
modalities.

Our method has the following novel contributions. First, we
propose a method to automatically generate a medical material
texture dataset from pre-annotated radiography images. Second,
we propose a neural network, D-CNN, that can automatically
learn a distance metric between different medical materials

without human supervision. Third, we upgrade MAC-CNN, a
material analysis neural network from prior work (Schwartz and
Nishino, 2020), to use the ResNet (He et al., 2015) architecture,
which maintains its high accuracy while having greater scalability
to deeper layers.

The remainder of the paper is structured as follows. In Section
2, we discuss the methodology of our system. In Section 3, we
evaluate how our system performs on the composite dataset of
knee X-rays and brain MRIs. Finally, in Section 4, we evaluate
related works and conclude.

2 MATERIALS AND METHODS

At a high level, our approach uses two convolutional neural
network (CNN) architectures to predict the materials that appear
in small image patches. These image patches are sourced from full
radiography images. For material categories that require expertise
to properly label, such as brain tumor tissue in a brain MRI, the
patch’s material label is sourced from an expert mask. For more
recognizable materials, such as bone and the image background,
these labels are sourced automatically based on a region’s average
brightness.

The CNNs learn these material classifications while respecting
an embedding that encodes the relative difference of pairs of
categories, analogous to word embeddings in natural language
processing. The system’s material category classification for each
image patch is a K-long vector where K is the number of material
categories to be classified, and the system’s material attribute
classification is anM-long vector whereM is the selected number
of material attributes to be discovered.

FIGURE 1 | An example of image patches taken from a knee X-ray (A) and a brain MRI with a tumor (B) (Cheng, 2017). Although some categories, such as bone,
have apparent material distinctions, others such as tumor (in red) and healthy (in blue) brain tissue may not have obvious material differences. However, our system can
still discern these differences since the images are expertly labeled, while assigning smaller perceptual distances (similarity) between pairs of categories more similar to
each other.
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To ensure our network is using accurately categorized data, we
introduce a thorough patch generation and categorization
process on expertly annotated images in Section 2.1. Then,
the process to learn the perceptual distances between material
categories and encode them in a distance matrix is discussed in
Section 2.2. In Section 2.3, we present the discovery process for
another matrix that encodes both the material categories’
distances stored in the distance matrix and a new set of
material attributes. Finally, in Section 2.4, we introduce the
MAC-CNN, which uses this matrix to categorize local image
patches into material categories and material attributes. A
summary of the notations used is presented in Table 1.

2.1 Patch Selection and Categorization
The first component of the system is selecting and categorizing
patches from the medical images so that every patch corresponds
highly to its assigned category. Since images vary widely within
medicine, such as the differences between X-rays and MRIs, it is
important to normalize the images in such a way that the content
and annotations are preserved while removing variations that
may mislead the system.

Each specific image mode or dataset may use a different
approach to patch generation depending on the nature of the
source data. The following steps are used to generate patches of
background, brain, bone, and tumor categories, but this system
can be used to generate image patches in many different medical
applications.

To generate the medical-category image patches used to
evaluate the system, the first step is to invert negatives (images
where the brightest regions indicate dark areas). Then, each
image’s raw features are normalized to the range [0, 1], and
Algorithm 1 is used to generate patches.

Some images may have expertly annotated masks—like a brain
tumor in an MRI. Other images—like the knee X-rays in our
experiment—may lack masks and labeling, but the categories
sought to be analyzed are simple enough to be assumed. This
reduces the detail of the dataset, but still yields useful categories
for training which may even be applicable in other image modes.
We call material categories that are expertly annotated (such as
“tumor”) expert categories, while non-annotated material
categories (like “bone” for the knee X-rays) are called naïve
categories since the naïve assumption is made that the average
brightness of an image region corresponds to its category.

A third type of material category, the null category,
corresponds to a category that does not contain useful
information, but when isolated can improve the model’s
ability to learn the other categories. For the cases of X-rays
and MRIs, the null category is derived from the image
background.

We believe that brightness constraints are a useful way to
extract naïve categories in most cases. Generally, extremely bright
regions and dark regions lack interesting texture data—for
example, the image background. Meanwhile, moderately bright
regions may contain some textural information of interest.

Algorithm 1 | Patch categorization procedure
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For instance, in identifying brain tumors, gray matter tissue,
which may not be annotated with a mask, is not as significant as
tumor tissue. However, separating gray matter textures from the
background, which is much darker, allows for a classifier to
make more specific predictions by preventing it from learning
that background regions correspond with gray matter.
Additionally, when using multiple image modalities with
distinct categories to build a dataset, separating the dark
background prevents an overlap in each category’s
texture space.

Although we use brightness constraints, other constraints
could be used depending on the imaging modality. For

example, with a set of RGB color images, a set of constraints
could be created from the average value of an RGB color channel.

To generate a material patch from a selected region of an
image, the first step is to calculate the average brightness of the
region using Eq. 9, which is the sum of all the region’s normalized
raw feature values divided by the number of raw features. The
constraints Bmin, Bmax, B0, and T in Algorithm 1 can be altered at
run time to create better-fitting categories.

For expert categories, like “tumor”, that are defined by a mask
within the image, the patch generation process needs to ensure
that a large enough percentage of the region is within the mask.
This value is defined as the mask tolerance T, presented in Eq. 10.
This value is included to avoid categorizing regions that are on the
mask boundary, which may confuse the training of the system.
We define a small value of T > 0 since it allows for patches that
intersect categories while still avoiding ambiguity. This increases
the pool of eligible image patches, introduces variance to reduce
overfitting, and allows for smaller masks (like for pituitary
tumors, which are generally small) to be represented in the
patch set.

For any expert category patch, at least (1 − T) × 100 percent
of the patch’s source region is inside the mask boundary. For any
naïve category patch, at most T × 100 percent of the mask is
allowed to be within the patch’s source region.

To further normalize the patches, we also introduce the
average brightness constraints Bmin, Bmax , and B0. Since each
patch raw feature is normalized to the range [0, 1], the average
brightness constraints are likewise constrained to [0, 1]. First, if a
region has an average brightness B<B0, the region’s patch is
automatically added to the null category. For another patch to be
included in the dataset, its average brightness must fall within the
range [Bmin,Bmax].

Using the above constraints, for each iteration of
Algorithm 1, a random image in the set is selected, and
within that image, a random point (x, y) from a set of
points spaced p pixels apart is selected. For the selected
point, patch Pi is spliced from a 32 × 32 section of the
image below and to the right of (x, y). This patch is
evaluated against the constraints to determine if it is eligible
to be included in the patch set and what category it belongs to.
If the image has a mask, the patch is categorized into the mask
or non-mask category based on the mask tolerance value.
Patch Pi is added to its assigned category set Ci if it meets
the constraints.

The generation process ensures every saved patch originates
from a unique point, meaning there are no duplicate patches in
the dataset. Additionally, different image types containing
different categories may use different constraint values when
generating patches. The final patch set is used to form training,
validation, and test datasets for both of the CNNs in the following
sections.

2.2 Generating a Similarity Matrix for
Material Categories
This section introduces a novel Siamese neural network, the
distance matrix convolutional neural network (D-CNN), that

FIGURE 2 | The D-CNN architecture. The two ResNet34 (He et al., 2015)
networks share the same weights, forming a Siamese neural network. The
linear layers at the end of the network find a difference between the two
networks’ values for each patch and give a binary similarity decision sn
based on this difference. The goal of training the D-CNN is to maximize its
ability to make correct similarity decisions.
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learns to make similarity decisions between image patches to
produce a distance matrixD that encodes the similarities between
pairs of material categories.

The D-CNN works by making binary similarity decisions
between a reference image patch of a given category and a
comparison patch of a different or the same category. This
network assists in evaluating expert categories since it is effective
compared to human similarity decisions on naïve categories, while
not requiring the manual annotation necessary for humans.

The network architecture is based on a modified version of
ResNet34 (He et al., 2015) with custom linear layers that perform
pairwise evaluation between patches.1 Figure 2 shows the
D-CNN network architecture. The network is trained on a
large dataset of greyscale image patches, each having raw
feature vectors xi.

The purpose of the D-CNN is to obtain binary similarity
decisions sn � {0, 1}n between a reference image and each of a
set of n images representing each class in the dataset. The Siamese
D-CNN does this without human supervision, using a dataset with k
material categories C � {1, 2, . . . , k}. The dataset is divided into
batches of reference images Xr that are each associated with
comparison images Xc of every class ci ∈ C. For each sample, the
D-CNN is provided a set of k + 1 image patches, with the reference
image patch xr ∈ Xr having class ci and the k comparison image
patches {xc1, xc2, . . . , xck} having unique classes in shuffled order.

A single pass through the D-CNN consists of the reference
image xr being paired with one of the comparison images xci.
Each patch is sent through the D-CNN’s convolutional layers
with the same weights, and the two convolutional outputs are
compared in the linear layers. The D-CNN returns ŷ � 0 if it
evaluates that the paired images are of the same class or ŷ � 1 if it
evaluates that the paired images are of different classes. This
process repeats with xr and each of the comparison images xci.

For a D-CNN with network parameters Θ, and predictions
ŷ � f (xr, xc;Θ) with corresponding similarity decision labels y,
the training process can be formalized as the minimization
problem described in Eq. 1.

Θ* � argmin
Θ

∑̂
y,y

− (y ln(ŷ) + (1 − y) ln(1 − ŷ)) (1)

The minimization term represents the cross-entropy loss between
the D-CNN’s predicted value on the comparison between image
sets Xr and Xc, and the actual values of the similarity decisions
between the two sets. Minimizing this term helps the D-CNN
more closely fit the target function, which makes it more
accurately evaluate if two image patches are of the same or
different material categories.

We note that we selected cross-entropy loss despite many
Siamese neural network models using triplet loss (Chechik et al.,
2010) in their minimization objective. Triplet loss is useful for
tasks like facial recognition (Schroff et al., 2015), where classes
cannot be represented in a one-hot manner due to a large number
of possibilities. In such cases, an n-dimensional non-binary

embedding is learned. However, with medical materials, we
expect only a small number of categories for each application.
Cross-entropy loss greatly simplifies the comparison problem for
such cases, as no anchor input is needed. We believe this is viable
because the problem space has been simplified—sample labels
can only take two values (0 or 1). If one desires to learn a distance
metric between a large number of medical material categories, the
D-CNN could be tweaked to use triplet loss by adding an anchor
input and changing the minimization objective.

Specifically, we train the D-CNN as follows. For a predetermined
number of epochs, we train the network on a training set of patch
comparison samples. At the end of each epoch, we then evaluate the
network on a separate validation set of patch comparison samples.
The loss on the validation set is tracked for each epoch, and if the
current epoch’s validation set loss is the lowest of all epochs so far,
the D-CNNmodel’s weights are saved. Ideally, the training regimen
would converge to the lowest validation set loss on the final epoch,
but this is not always the case.

Saving the lowest-loss D-CNN model rather than the final
epoch D-CNN model mitigates risks of overfitting the model.
Overfitting occurs when, in later epochs of the training
process, the validation set loss increases due to a model
losing its ability to generalize features learned from the
training set. Our procedure avoids this by ignoring any
D-CNN model iterations that yield a larger validation set
loss than earlier epochs.

After training the network, the network is evaluated with a testing
set of patch comparison samples it has not seen before. Like in
training, the D-CNN makes binary similarity decisions between a
reference patch and n comparison image patches. These similarity
decisions are encoded in a K-dimensional vector p using Eq. 2.

pk �
1
Nk

∑
n|cn�k

sn (2)

The distance matrixD is built from the L2-norm between pairs of
entries in p. Each entry in D, dkk′, represents the perceptual
distance the D-CNN has established between material categories
k and k′. The value of each entry of D is presented in Eq. 3.

Dkk′ �
∣∣∣∣∣∣∣∣pk − pk′

∣∣∣∣∣∣∣∣2 (3)

While training the D-CNN, we define the “optimal” D matrix as
the one that is generated when the D-CNN has the lowest loss on
the validation set. This optimal matrix is saved in addition to the
model’s weights and is used as the basis for generating the
material attributes in later steps.

2.3 Generating Material Attributes
The distance matrix D introduced in Section 2.2 maps distances
from material categories to other material categories. However,
we are also interested in discovering a set of M novel material
attributes that provide new, useful information that can improve
the categorization and separation of image patches.

We reintroduce the method in Schwartz and Nishino (2020)
for mapping material categories to material attributes. This
procedure preserves the distances discovered in D while
introducing values for the mapping that reflect how humans

1The D-CNN uses the Adam optimizer (Kingma and Ba, 2014) for gradient descent
and weight updates.
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generally perceive materials. This mapping is encoded in the
material category-attribute matrix A.

A is a K ×M matrix, where K is the number of material
categories encoded by D and M is a freely selected value that
defines the number of material attributes that are generated. The
entries of A are bound to the range [0, 1] so that each entry
represents a conditional probability. The minimization objective
for A is presented in Eq. 4.2

A* � argmin
A

∑
k,k′ ∈ C

(∣∣∣∣∣∣∣∣ak − ak′
∣∣∣∣∣∣∣∣2 −Dkk′)2

(4)

+ c∑
p ∈ P

β(p; a, b) ln(β(p; a, b)
q(p;A) )

q(p;A) � 1
KM

∑
k,m

(2πh2)− 1
2 exp( − (akm − p)2

2h2
) (5)

The first term of the objective captures the distances between
material categories in D and material attributes in A with a
distance measure that iterates over the L2-distance of columns ak
in A and compares them against individual entries in D.

The second term of the objective captures an important feature
of the A matrix—that its entries should conform to a reasonable
distribution that mirrors human perception. Like Schwartz and
Nishino (2020), we use a beta distribution with parameters
a, b � 0.5. The beta distribution is ideal because, for human
perception, material attributes usually either strongly exhibit a
certain material category or not exhibit it at all. We assume that
this observation, like with natural categories, holds with expert
categories.

Since the Beta distribution is continuous, it still permits
intermediate cases where materials may be similar (as is the
case for “tumor” and “brain”). The γ-weighted term accomplishes
this by embedding the A matrix in a Gaussian kernel density
estimate q(p;A) and comparing it to the target beta distribution.
This comparison is accomplished by evaluating the
Kullback–Leibler (KL) divergence between those two terms.
The Gaussian kernel density estimate of A at point p is
presented in Eq. 5.

The optimized matrix Ap from Eq. 4 is held constant and used
as the A matrix in further portions of the system.

2.4 Material Attribute-Category
Convolutional Neural Network Architecture
The material attribute-category convolutional neural network
(MAC-CNN) is an end-to-end convolutional neural network
that seeks to directly learn the K material categories while also
simultaneously learning the M material attributes embedded by
A. We improve on the MAC-CNN design in Schwartz and
Nishino (2020) by updating the architecture to classify medical
materials more robustly. Figure 3 demonstrates the architecture
of our MAC-CNN.

The MAC-CNN in Schwartz and Nishino (2020) used VGG-
16 (Simonyan and Zisserman, 2014) as its backbone architecture.
However, to maintain consistency with the D-CNN and use a
more powerful architecture, we introduce an updated version of
the MAC-CNN that is built on ResNet34 (He et al., 2015). ResNet
is more reliable with deeper layers since its architecture reduces
the vanishing gradient problem. This means that, when compared
to a deeper version of the VGG network, a deeper version of
ResNet could give the MAC-CNN greater predictive power,
which could be useful for complex medical material problems.
Like all models with more parameters, this comes at the expense
of training time.

FIGURE 3 | The Material Attribute Classifier CNN (MAC-CNN)
architecture. The network uses convolutional layers from ResNet34 (He et al.,
2015) followed by sequential 512-node and 2048-node fully connected layers
to predict the material category ci ∈ [0, 1]K . An auxiliary network of fully
connected layers also predicts the material attribute probabilities f(xi).

2The L-BFGS-B optimization algorithm is used to find a local minimum for the
objective, starting from a randomized A with entries akm ∈ [0, 1].
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The fully-connected layers in the ResNet network are
replaced by two fully-connected layers to be trained from
random initialization. These layers determine the K material
category predictions as shown in Figure 3, and output a one-
hot vector with the material category classification. If the
D-CNN is effective at discerning expert categories and the A
matrix encodes these categories well, then the MAC-CNN
should be able to categorize expert, naïve and null categories
effectively.

To predict the M material attributes, the backbone network is
augmented with multiple auxiliary classifier networks. The
responses from each block of the ResNet backbone, along with
the initial pooling layer, are used as inputs to individual auxiliary
classifier networks. An additional auxiliary classifier is used to
combine each module’s prediction into a single M-dimensional
prediction vector. The auxiliary network learns to give
conditional probabilities that the patch fits each material
attribute, allowing the MAC-CNN to retain features that are
informative for predicting material attributes.

The goal of the MAC-CNN is realized through training the
network on image patches, like the D-CNN. However, the
patches’ material categories are learned directly instead of
through similarity decisions. The MAC-CNN also learns
material attributes. Therefore, the weights from the D-CNN
cannot be directly transferred to the MAC-CNN.

To predict the M discovered material attributes, the MAC-
CNN uses a learned auxiliary classifier f with parameters Θ that
maps an image patch with d raw features to the M attribute
probabilities. The model f’s mapping is given by
f (xi;Θ) : Rd → [0, 1]M . Each term in the output is a
conditional probability that the patch exhibits that particular
attribute.

Given a D-dimensional feature vector output from a hidden
layer of the MAC-CNN, the M dimensional material attribute
prediction is computed by Eq 6. The network’s weights and
biases Θ � {W1,W2, b1, b2} have dimensionality W1 ∈ RH×D,
W2 ∈ RM×H , b1 ∈ RH , and b2 ∈ RM , where H is the
dimensionality of the hidden layer.

f (xi;Θ) � h(W2h(W1xi + b1) + b2)

h(x) �
⎧⎪⎨⎪⎩

0 x ≤ 0
x 0< x < 1
1 x ≥ 1

(6)

2.5 Material Attribute-Category
Convolutional Neural Network Training
The convolutional layers in the backbone network are pretrained
on ImageNet (Deng et al., 2009) for robust feature extraction,
while the fully connected layers and auxiliary network are
initialized with random weights. The training process
optimizes these weights with respect to the target function and
allows for a faster training process than starting with random
weights for the entire network. A fast training process is
important if the MAC-CNN is to be used in many different
expert domains with little correlation to each other.

Like the D-CNN, we reduce overfitting by saving the MAC-
CNN model from the training epoch with the lowest validation-
set loss, which is not necessarily the model from the final epoch.
This allows for the model to be trained for more epochs while
mitigating potential overfitting later in the training process. To
improve the MAC-CNN’s training convergence, we also use a
learning rate scheduler that reduces the learning rate by a factor of
10 following epochs where validation set loss increases.

We train the network parameters Θ, dependent on the
material attribute-category matrix A, to classify patches into K
material categories andMmaterial attributes simultaneously. The
training setX is a set ofN pairs of raw feature vectors andmaterial
category labels of the form T � {(xi, yi)}, where xi is the raw
feature vectors of image patch i and yi is a one-hot encoded label
vector for its K material categories. Equation 7 formalizes the
definition of these training pairs.

T � {(xi, yi) : 1≤ i≤N , xi ∈ Rd , yi ∈ {0, 1}K}. (7)

The loss function and minimization objective for the MAC-CNN
is given in Eq. 8, which follows from the loss function used in
Schwartz and Nishino (2020).3 The loss function combines the

TABLE 1 | Summary of notations.

Notation Definition

T Mask tolerance for a given patch
B The average brightness value of a given patch
Bmin ,Bmax The minimum and maximum average brightness allowed
B0 The maximum average brightness for the null class
Ci The set of patches of category i
N The number of patches generated

k, K The number of material categories (human)
m, M The number of material attributes (generated)
c Weight hyperparameter for minimization objectives
Θ Network parameters
Θp Optimized network parameters

Xr Set of reference images
Xc Set of comparison images
f(xn , xc), ŷ D-CNN prediction on reference and comparison sets
Y True similarity value for reference and comparison patch
p D-CNN vector of binary similarity decisions
D K × K distance matrix between material categories

A K ×M material category/attribute matrix
q(p;A) Gaussian kernel density estimate of A at point p
β(p; a,b) Beta distribution with parameters a, b at point p
Ap Optimized A matrix

X Training set of image patches for MAC-CNN
T Pairs (xi , yi) of the set X
xi Raw feature vectors of image patch i
yi One-hot encoded label of image patch i
f(xi) MAC-CNN prediction on image patch xi
f(T) Equivalent to f(xi) but while also considering label yi

3The MAC-CNN uses the Adam optimizer (Kingma and Ba, 2014) for gradient
descent and weight updates.
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negative log-likelihood of the K material category predictions for
each image patch xi ∈ T .

Θ* � argmin
Θ

∑
(xi ,yi) ∈ T

∑
(yj ∈ yi)

− yjln(f (xi;Θ)j)

+ c1 ∑
p ∈ P

β(p; a, b)ln β(p; a, b)
q(p; f (T;Θ))

+ c2∑
k�1

K
∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣ak −

1

|Tk| ∑
(xi ,yi) ∈ Tk

f (xi;Θ)
∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
2

2

(8)

The c1-weighted term represents the KL-divergence between
theMmaterial attribute predictions for xi and a Beta distribution
with a, b � 0.5. The Beta distribution is again chosen as a
comparison distribution for reasons like those discussed in
Section 2.2.

The c2-weighted term constrains the loss to the material
attributes encoded in the A matrix. The term represents the
mean squared error between rows of A, where each row
represents one category’s probability distribution of attributes,

and the material attribute predictions on the samples Tk for each
category.

The hyperparameters c1, c2 assign weights to their respective
loss terms and are chosen at training time.

3 RESULTS

The patch generation procedure, D-CNN, and MAC-CNN were
implemented using the PyTorch neural network library (Paszke
et al., 2019) and the Python programming language. The
implementation was run on a system with an Intel Core i9
processor and two Nvidia Quadro RTX 8000 graphics cards.
Our implementation is available on GitHub at https://github.
com/cmolder/medical-materials.

To evaluate our methods on an expert domain, we compiled a
dataset of local image patches of four categories—background,
tumor, bone, and brain—using the procedure described in
Section 2.1. These patches were generated from a
combination of medical image datasets of knee X-rays and
brain MRIs with tumors. The dataset was divided into a 60-20-20

FIGURE 4 | D-CNN andMAC-CNN loss and accuracies per epoch, for one randomly initialized pair of models. The training procedure always saves the model with
the lowest validation set loss, regardless of whether it is from the last epoch. For the D-CNN in this example, the model from epoch 5 is saved, as well as the Dmatrix it
generates on the validation set. For the MAC-CNN in this example, the model from the final epoch (epoch 14) is saved. Saving the lowest-loss model instead of the final
model greatly mitigates the potential effects of overfitting in later epochs.
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percent training, validation, and testing split to be evaluated using
our system.

3.1 Dataset
For bone category material patches, a set of 300 knee X-rays were
sampled from the Cohort Hip and Cohort Knee (CHECK) baseline
dataset (Bijlsma and Wesseling, 2015). For healthy brain and brain
tumor category material patches, two datasets were combined: 3804
MRI scans with brain tumors were sourced from Cheng (2017) and
additional brain MRI scans were sourced from The Cancer Imaging
Archive (Clark et al., 2013; Schmainda and Prah, 2018).

These medical radiography scans were used to generate image
patches using the procedure discussed in Section 2.1. The raw
feature vectors from these image patches were then used to train,
validate and test the D-CNN, optimize the material attribute-
category matrix, and train, validate and test the MAC-CNN. 50
brain MRIs from Cheng (2017) were removed from the dataset
to test the MAC-CNN’s capabilities of evaluating images in a
sliding-window manner in Section 3.5.

The patches were generated using the process described in
Section 2.1 at a size of 32 × 32 pixels.

3.2 Training Distance Matrix Convolutional
Neural Network and Material
Attribute-Category Convolutional Neural
Network
To demonstrate that the D-CNN and MAC-CNN classifiers
are trained effectively and do not overfit the training data, we
present results from training multiple initializations of the
D-CNN and MAC-CNN models. For reference, Table 2
contains the list of parameters we selected to train the
D-CNN and MAC-CNN.

To evaluate how the training process affects the D-CNN and
MAC-CNN, we first evaluated the effects of training a single
instance of each network. For each network, we plotted the
resulting loss and accuracy from each training epoch on the
training, testing, and validation datasets. Figure 4 presents these
results.

The resulting losses and accuracies yield three main
findings—first, our decision to save the lowest-loss model rather
than the final model is justified, especially for the D-CNN. For the
D-CNN, validation and testing loss can vary significantly between

FIGURE 5 | D-CNN and MAC-CNN loss and accuracies per epoch, sampled over 30 pretrained networks with random initializations of the fully connected layers.
The lines represent themedian loss/accuracy, and the shaded regions represent losses/accuracies between the 25th and 75th percentile for each epoch. As results from
the validation and testing sets trend very closely, only results from the training and validation sets are presented.
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epochs, and later epochs may yield noticeably higher losses and
lower accuracies on the validation and testing sets. Second, testing
and validation losses and accuracies trend very closely, as both sets
are large and similar in size. Third, the learning rate scheduler used
to train the MAC-CNN appears to better regulate its loss and
accuracy in later epochs.

We also considered how the random initializations of the non-
ResNet34 layers affect the training of the networks. While the
convolutional layers for both the D-CNN and MAC-CNN are
initialized with weights pretrained on ImageNet (Deng et al.,
2009), the fully connected and auxiliary layers are trained from
scratch. Therefore, we trained 30 instances of both the D-CNN
and MAC-CNN to see the loss and accuracy distributions on the
training and validation sets.4 Figure 5 presents these distributions
over the 15-epoch training process. The center lines depict the
median loss and accuracy, while the shaded regions depict the
region between the 25th and 75th percentiles of loss and accuracy.

The distribution plots demonstrate that the results in Figure 4 are
typical of training a D-CNN and MAC-CNN. That is, the D-CNN
trains more sporadically, but still achieves a lower validation loss
during training, while the MAC-CNN trains more regularly and
achieves its lowest validation loss in later epochs. The MAC-CNN is
unlikely to overfit, as its validation loss does not typically increase
late in the training process. The D-CNN has a somewhat greater risk
of overfitting, but the impact of any potential overfitting from the

D-CNN is mitigated by saving the lowest-loss model. It may be
possible to regularize the D-CNN training by using a learning rate
scheduler like the one used for the MAC-CNN.

As mentioned in Section 2.5, we would also like our models to
have a short training time so they can be quickly applied to new
expert medical domains. Therefore, we timed the training process of
10 instances of the D-CNN and MAC-CNN over 15 epochs. We
found that the time required to train both the D-CNN and MAC-
CNN, starting with pretrained convolutional layers, is relatively short.

In a separate experiment with a single, consumer-grade Nvidia
RTX 2080 Ti graphics card, we evaluated the training times for 10
instances of the D-CNN andMAC-CNNusing our implementation.
Training 10 D-CNN instances for 15 epochs required an average of
23.7 min per instance (standard deviation 6.1 s), while training
10 ResNet34-based MAC-CNN instances for 15 epochs required
an average of 14.3 min per instance (standard deviation 8.6 s).

3.3 Evaluating Distance Matrix
Convolutional Neural Network Performance
On a testing set of 42,768 patches with evenly split categories, the
D-CNN achieved an accuracy of 90.79%, which is the percentage
of times that it correctly determined whether a reference and
comparison patch were from the same material category or
different material categories.

Although the D-CNN is accurate at making similarity
decisions in general, the most informative accuracy values are
those for each pair of material categories, as these accuracy values
are reflective of the similarity between categories. Figure 6
demonstrates the accuracy of the D-CNN on each pair of
category groupings.

FIGURE 6 | The accuracy of the D-CNN making correct similarity
decisions between reference and comparison patches of every pair of
categories. The null category, background, was easily determined to be
similar or dissimilar to other patches due to its homogeneity and
difference from other classes of patches. Meanwhile, the D-CNN was less
accurate at classifying more similar pairs of categories, such as brain and
tumor. The less accurate comparisons result in a smaller perceptual distance
in the D matrix.

FIGURE 7 | The correlation of MAC-CNN categorizations between
material categories and material attributes. The most strongly exhibited
association is with attribute 0 and the background category, which may be
attributable to its homogeneity as the null category. Attributes 1 and 2 do
not greatly separate the brain and tumor material categories, likely due to their
small perceptual distance.

4The testing set loss and accuracy distributions are not included, as they have
similar distributions to the validation set.
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These accuracies follow human intuition on how perceptually
different these materials are expected to be. For example, brain
and tumor patches generally appear similar, and therefore
the D-CNN is less likely to correctly determine if patches
of the two categories are the same or different.
Meanwhile, the network is far more accurate at
evaluating material patches that appear highly different,
such as brain and bone.

3.4 Evaluating Material Attribute-Category
Convolutional Neural Network Performance
The distance matrix generated during the training epoch where
the D-CNN achieved the greatest validation accuracy was used as
the basis for the material attribute-category matrix A. The
L-BFGS-B algorithm optimized an A matrix with a minimal
distance d(D,A) � 1.18.

Using this matrix, the MAC-CNN reached 92.82% accuracy at
determining the material category of each image patch from a
testing set. For reference, Schwartz and Nishino (2020) attained
84% accuracy at best for a given category. However, the fewer
number of categories that our MAC-CNN is evaluating may
make the classification problem easier, yielding a higher accuracy.
Our network evaluates four categories while Schwartz and
Nishino (2020) evaluated 13.

When withholding the material attributes and calculating loss as
a mean squared error between the predicted and actual image patch
material category, the accuracy of the MAC-CNN for determining
material categories on the testing set was 91.74%. This shows that
including the A matrix’s material attributes does not significantly
alter the network’s ability to predict material categories.

Additionally, we compared the performance of our ResNet34-
based MAC-CNN to a variant based on VGG-16 (Simonyan and

Zisserman, 2014). The VGG-16 variant reflects the MAC-CNN
architecture proposed by Schwartz and Nishino (2020), with
convolutional sequential layers and an identical auxiliary
network design. After training the VGG-16 model on the
material patch dataset with the same learning parameters, the
VGG-16 model had an accuracy of 93.39% for determining
material categories on the testing set. This shows that the
ResNet34 and VGG-16 models have comparable accuracy
(within 0.6%). While these two smaller models perform
similarly, ResNet’s better scalability to more layers (He et al.,
2015) makes it advantageous for larger medical material datasets.

To evaluate the relationship between the material attributes
learned by the MAC-CNN from A and the material categories of
the image patches, a correlation matrix was generated to show
how positively or negatively each learned material attribute
related to the occurrence of the true label of a given material
category. Figure 7 presents this matrix.

The matrix shows that attributes 1 and 3 are relatively
uncorrelated to brain, bone, and tumor, and attribute 0 is
negatively correlated to brain, bone, and tumor. Attribute 2 is
moderately positively correlated with tumor and brain and
slightly less positively correlated with bone. This matrix
demonstrates that the attributes do not correspond one-to-one
to given categories, meaning that the attributes encode different
information than the categories.

An important factor in evaluating the MAC-CNN is
determining if the material attributes encoded in A can
accurately separate image patches by category. We used a
method called t-SNE embedding (van der Maaten and Hinton,
2008), also used to evaluate the material attributes in Schwartz
and Nishino (2020), to determine how well the MAC-CNN’s
material attribute predictions separate material categories
compared to the raw feature vectors of the patches. t-SNE

FIGURE 8 | The results from t-SNE embedding (van der Maaten and Hinton, 2008) on the raw feature set (A) and the learnedM attribute predictions encoded
in A (B). Although some separation is apparent on the raw feature embedding, especially between less-correlated categories like bone and brain, the separation is
far stronger on theM attribute embedding, and even separates similar categories like brain and tumor while maintaining perceptual distances. This shows that the
MAC-CNN has effectively learned to distinguished categories of image patches using the M attributes.
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embedding is a machine learning procedure that embeds the
distributions of neighboring points in high-dimensional spaces to
lower-dimension spaces, making the visualization of these high-
dimensional spaces practical.

Figure 8 shows the t-SNE embedding on the raw feature
vectors and the M attributes learned by the MAC-CNN from A
on the test set. The graphs demonstrate a much clearer
separation of categories for the material attributes compared
to raw feature vectors, while also maintaining intuitive
perceptual distances–for example, brain and tumor are more
closely grouped than brain and bone. This indicates that the
MAC-CNN’s learned attributes provide useful information that
separates material patches by category compared to merely
parsing the raw features.

3.5 Expanding Material Recognition to Full
Images
As shown in Section 3.4, the MAC-CNN can accurately
distinguish material categories from localized image
patches. However, it is interesting and potentially useful to
explore if this localized information can still yield useful
results in the context of an entire image. If this were the
case, then the MAC-CNN could be a promising component for
future image analysis systems. However, it would not be

reasonable to use the MAC-CNN alone since it is only able
to extract local information, losing valuable information that
comes from greater context.

To test the MAC-CNN to full medical scans, patches were
sampled in a sliding-window fashion from full images. A 32 × 32
pixel window was used with a stride of 4 pixels.

The one-hot classification of material categories from
performing a sliding-window analysis on the MAC-CNN was
mapped to a matrix that contains the label of each patch sampled
from the image. Figure 9 shows the MAC-CNN’s output on four
brain MRI images using this convolutional system.

The MAC-CNN is effective in most cases at isolating the
expertly annotated mask, which for the case of a brain scan is of
the “tumor” category. However, the network is often too sensitive
and miscategorizes some portions of the brain MRI as tumor
despite it being outside the expertly annotated mask. The
miscategorizations are likely because the network is only
viewing small image patches of the MRI, meaning the network
has no greater context when making its categorizations.

With that in consideration, the network still generally
identified tumors when they were present. This shows that the
network successfully learned a variety of textures that indicate the
presence of a brain tumor. Interestingly, some transfer learning
also occurred from learning on knee X-ray image patches, as the
sliding-window analysis sometimes picked up the perimeter of

FIGURE 9 | The MAC-CNN’s category decisions applied in a sliding-window manner to some full brain scans. The first column contains raw images with the
expertly annotated mask (“tumor”) highlighted, while the second column contains raw images overlaid with the results from the MAC-CNN. The MAC-CNN is effective at
detecting tumor regions, but often picks up extraneous noise. The network also appears to exhibit knowledge transfer from the knee X-rays, as it recognized bone
textures around the perimeter of the skull that it learned from the knee X-rays.
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the skull as having a bone texture. This shows that the MAC-
CNN’s predictive power is robust enough to apply its
categorizations from a variety of image types to other image
types with similar textural appearances.

Learned material attributes may also provide insight into full
image analysis. Figure 10 shows the MAC-CNN’s sliding-window
evaluation of a single brain MRI on each of the m material
attributes. The attributes appear to pick up different but useful
information from the material categories. Attributes 0 and 1, for
example, tend to identify regions of the scan that are not tumor,
while attribute 3 tends to pick up on likely tumor regions.
Meanwhile, attribute 2 tends to pick up regions that are non-
null. This behavior tends to correspond to the correlation values
presented in Figure 7.

4 DISCUSSION

4.1 Related Work
Our methodology draws from many recent, relevant works about
material analysis, computer vision, neural networks, and machine
learning applications in medicine.

A few recent works in the medical field include applying
machine learning to classify necrotic sections of pressure

wounds (Zahia et al., 2018), segment brain scans (Lai et al.,
2019), and segment chest X-rays (Wang et al., 2019).

In material analysis, there has been significant research into
leveraging fully and weakly-supervised learning systems. Bell et al.
(2015) introduced and evaluated theMaterials in Context database,
a large set of image patches with natural material category labels, in
a fully supervised manner. Berg et al. (2010) proposed a weakly
supervised attribute discovery model for data mining images and
text on the Internet, which did include some local attribute
classification. However, their network’s text annotations were
associated with an entire image, and the images were not
specific to an expert domain.

Material analysis has been performed in multiple expert
domains with reduced data availability, including medicine.
Gibert et al. (2015) performed material analysis on photographs
of railroad tracks using several different domain-specific categories
to detect decaying infrastructure. Their annotation uses a system of
bounding-boxes on photographs of railroad ties to determine
regions of given categories. Material analysis has also been
studied in medicine. Marvasti et al. (2018) performed texture
analysis on CT scans of liver lesions using a Bayesian network,
evaluating features such as location, shape, proximity, and texture.

Specifically, our method is based on the material analysis method
introduced by Schwartz and Nishino (2020). The work proposed a
dataset of natural material categories and used a weakly supervised
learning method to generate material attributes. The proposed
method differs from Schwartz and Nishino (2020) in several
ways. First, we specialize our method to medical radiography
images, while Schwartz and Nishino (2020) focused exclusively
on natural materials found in common photographs. Second, our
method automatically generates a material distance metric from
material patches using the D-CNN, while Schwartz and Nishino
(2020) used human annotators to manually make binary similarity
decisions among pairs of material patches. We decided this was
necessary because the evaluation medical material similarity needs
experts to properly evaluate by hand, and doctors and similar experts
are scarce and expensive to retain in most situations. Third, our
method upgrades the MAC-CNN proposed by Schwartz and
Nishino (2020) by using the more scalable ResNet (He et al.,
2015) architecture instead of VGG (Simonyan and Zisserman,
2014), letting larger, more augmented medical material datasets
benefit from easier training on larger variants of the MAC-CNN.

We based the D-CNN on the Siamese neural network
architecture as it has shown to be useful in a variety of
similarity-evaluation problems. The Siamese neural network
was first introduced by Bromley et al. (1994) to detect forgeries
in digital signatures. Since then, Siamese networks have been
used for human re-identification (Varior et al., 2016; Chung
et al., 2017), one-shot image classification (Koch et al., 2015),
object tracking (Bertinetto et al., 2016; Guo et al., 2017), and
sentence similarity (Mueller and Thyagarajan, 2016). In
medicine, Siamese networks have been used in similarity-
evaluation tasks like gait recognition (Zhang et al., 2016),
spinal metastasis detection (Wang et al., 2017), and to
segment brain cytoarchitectonics (Spitzer et al., 2018).

Many novel neural network architectures have been proposed
for computer vision tasks, including ResNeXt (Xie et al., 2017),

FIGURE 10 | The MAC-CNN’s M � 4 attributes applied in a sliding-
window manner across a single brain scan. Each row represents a different
attribute being evaluated, with the raw output (B) and the output overlaid on
the image (A). A higher value means the given attribute is expressed
more strongly at that location in the image. Each attribute picks up different
aspects of the scan, and different attributes can either positively or negatively
exhibit aspects of different material categories. For example, attributes 0 and 1
negatively correlate to the expertly annotated mask (tumor) while attribute 3
correlates highly to it.
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DenseNet (Huang et al., 2017), PNASNet (Liu et al., 2018), and
the Vision Transformer (ViT) (Dosovitskiy et al., 2020). For both
the D-CNN and MAC-CNN, the ResNet (He et al., 2015)
architecture is used. ResNet was selected over these other
architectures for a few reasons.

For ViT, we do not believe the model is suitable for small texture
patches. ViT divides its input into patches as tokens, and embeddings
of these tokens are used as inputs into the model. While ViT achieves
excellent performance on small-sized image datasets like CIFAR-10/
100 (Krizhevsky, 2009), where each image is 32 × 32 pixels, such
images containmore information than our texture patches. Each sub-
patch of a CIFAR image sample may contain distinct information,
but the sub-patches of a texture patch are not expected to do so
because material patches only contain local context.

For PNASNet and other neural architecture search models,
interpretability is sacrificed for accuracy. These discovered
architectures are less interpretable than handcrafted
architectures like ResNet. Interpretability is important in
domains like medicine. For example, identifying causal
relationships is key for doctors to diagnose conditions, and
these causalities are easier to identify from interpretable models.

ResNet specifically has the following benefits. First, its structure, like
VGG (Simonyan and Zisserman, 2014) and earlier convolutional
architectures, allows for greater interpretability. The convolutional
layers are stacked sequentially, and the feature maps of the hidden
states can be visualized to determine what each convolutional filter
detects. Second, unlike VGG, ResNet’s skip connections allow for the
training of amuch deeper network, which could be useful for complex,
large medical material datasets with dozens of categories. Third, unlike
some recent architectures, the purely sequential layers of ResNet’s
design allow for an intuitive auxiliary network design. The sequential
design allows for the auxiliary classifiers of theMAC-CNN to be placed
so that each classifier processes a hidden state from a different stage of
the network. With non-sequential models like ViT and PNASNet,
finding an efficient placement of these auxiliary classifiers may be
challenging. Fourth, ResNet models have a relatively small number of
parameters compared to larger, more recent models, allowing for
quicker training. This could be useful for specialized medical material
problems, where a small group of researchers or doctors may not have
many available computational resources.

U-Net (Ronneberger et al., 2015) uses a fully convolutional
network to predict segmentation maps from input images. A

fundamental difference between U-Net and the proposed method
is that U-Net requires segmentation maps as ground truth label data.
In the proposedmethod, we do not use segmentationmaps as ground
truth label data because often complete and complex segmentation
maps are not available for training. For example, in Figure 9, to
segment bone, brain tissue, brain tumor tissue, and the background, a
4-class segmentation map would be required by U-Net to be the label
data for each training image. The dataset created in the proposed
method instead uses a 2-class segmentation map: brain tumor tissue
and everything else. In the proposed method, the dataset used to train
the network uses class labels only or simple derived labels as explained
in Section 2.1. The proposed method uses a patch generation process
to create labeledmaterial patches that can be used to train the network
to pick up on local patterns relating to material type. This avoids the
problem of expensive manual annotation.

4.2 Conclusion and Future Work
The D-CNN and MAC-CNN demonstrate that medical material
categories can be successfully evaluated from radiography images
using local information. They also demonstrate that naïve
categories, such as healthy brain tissue in an MRI scan, are
useful to augment expert categories, like brain tumors. We
also demonstrated that such a system can be trained
simultaneously on a range of expert, naïve, and null categories
and can robustly pick up relevant categories without being
conditioned on a subset of categories or attributes.

The knowledge transfer demonstrated on the brain MRIs and
knee X-rays suggests that a larger version of themodel would be able
to analyze a more detailed or broader set of materials. For example,
training this network on brain MRI data with more detailed labeling
could yield greater accuracy and less noise than merely comparing
healthy brain tissue and tumors. More granular data could also
reduce the number of inaccurate predictions and noise when
attempting sliding-window material categorization of whole images.

Rather than relying on more expensive segmentation maps to act
as ground truth, instead, thismodel could be improved bymodifying
the patch generation procedure or sliding window approach. The
patch generation procedure could be improved by iterating the
process and using the model’s predictions to create a new set of
patches, which can be used to train a newmodel. The slidingwindow
approach uses a small, but fixed window size whichmakes it difficult
to predict the labels of fine details in the image where multiple
materials are present. The limitations of a fixed sliding window are
avoided in U-Net (Ronneberger et al., 2015) at the cost of requiring
complete segmentation maps for ground truth.

The D-CNN andMAC-CNN could also be extended to consider
a larger context to further enhance material analysis. For example, a
temporal dimension could be added to brain MRI data to model the
progression of a brain tumor’s texture over time. Additionally, the
networks could be extended to parse three-dimensional voxel data to
extract more information from MRIs.

Overall, the D-CNN and MAC-CNN demonstrate the
ability to perform expert material analysis from existing
expertly annotated data without the need for experts to
manually classify materials. The system also successfully
demonstrates that intuitive observations about materials in
nature can also hold in expert domains.

TABLE 2 | D-CNN and MAC-CNN training parameters.

Notation Definition Value

D-CNN

E Number of epochs 15
B Batch size 50
η Learning rate 10-3

MAC-CNN

E Number of epochs 15
B Batch size 50
η0 Initial learning rate 10-4

c1 KL-divergence weight 10-2

c2 Perceptual difference weight 1
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