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Involvement of epithelial–mesenchymal transition in liver 
fibrosis
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INTRODUCTION

The epithelial–mesenchymal transition (EMT) is a process 
by which epithelial cells lose their cell polarity and cell–cell 
adhesion, and acquire migratory and invasive properties 
to become mesenchymal cells.[1,2] EMT was first observed 
in embryogenesis and was critical for the development 
of  tissues and organs.[3,4] EMT is not irreversible; 
together with its reverse process mesenchymal–epithelial 
transition (MET), EMT plays crucial roles in cancer 
progression,[2,5,6] wound healing,[2,7] and organ fibrosis.[1,2,8,9]

Liver fibrosis is a protective response to chronic liver injury 
from diverse etiologies.[10‑12] The feature of  liver fibrosis is 
the excessive accumulation of  extracellular matrix (ECM) 
produced by myofibroblasts.[13] Activated hepatic stellate 
cells (HSCs) are believed to be the primary source of  
myofibroblasts.[14] Advanced liver fibrosis results in 
cirrhosis, portal hypertension, even liver failure, and other 
life‑threatening complications and only liver transplantation 
will rescue the patients.[10,15] Recently, EMT was implicated 
in liver fibrosis.[16‑18] As research continues, however, the 
notion becomes controversial.[19,20]

Fibrosis of the liver is an inherent wound healing response to chronic liver injury. Regeneration of liver 
epithelium and restoration of normal liver structure were generally involved in this process. Although the 
liver has a striking capacity to adapt to damage through tissue repair, excessive accumulation of extracellular 
matrix during this process often leads to scar tissue formation and subsequent fibrosis. Epithelial to 
mesenchymal transition (EMT) enables a polarized epithelial cell to undergo multiple changes biochemically 
and to bear a mesenchymal cell phenotype. EMT plays a critical role in tissue and organ development and 
embryogenesis. In the liver, it is proposed that epithelial cells can acquire fibroblastic phonotype via EMT 
and contribute to fibrogenesis. This made EMT a potential target for antifibrotic strategies. Following 
an original passion, many investigators devote themselves to exploring this mechanism in liver fibrosis. 
However, as research continues, this hypothesis became highly controversial. The exact contribution of 
EMT to fibrogenesis was challenged due to the contradictory results from related studies. In this review, we 
summarized the recent advances regarding EMT in hepatic fibrosis and discussed the potentially involved 
liver cell types and pathways in order to reach rational and helpful conclusions.
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CLASSIFICATION OF EMT

EMT was classified into three subtypes that carry 
different functional effects based on distinct settings 
they encountered.[21,22] The EMTs that contributed to 
implantation, embryogenesis, and organ development 
through transformation of  various cell types are termed 
as Type 1 EMT.[22] These transformed cells usually 
share common mesenchymal phenotypes and have the 
potential to undergo a reverse process, namely MET, to 
generate epithelial cells.[22] Type 2 EMT was implicated 
in wound healing, tissue regeneration, and organ 
fibrosis.[22] This kind of  EMT usually occurs following 
tissue injuries such as inflammation, and forms fibroblasts 
to repair injured tissue. Once inflammation receded, the 
transition ceased.[22] However, in fibrotic organs, the EMT 
continuously responded to inflammation, and result in 
organ destruction ultimately.[22] The third proposed subtype 
of  EMT is Type 3 EMT, which occurs in cancer cells 
that have previously undergone genetic and epigenetic 
alterations.[22] Through this transition, neoplastic cells may 
invade and metastasize via the circulation and finally lead 
to cancer progression and metastasis.[22]

MAIN LIVER CELL TYPES INVOLVED IN EMT

Hepatocyte and EMT
In fibrotic liver, the identified origin of  collagen‑producing 
cells includes activated HSCs, portal fibroblasts, and 
bone marrow‑derived myofibroblasts.[10] However, 
evidence from research suggested that hepatocytes could 
also acquire a fibroblastic phenotype through EMT in 
liver fibrosis.[16,17,23,24] Zeisberg et al.[23] found that upon 
stimulation with transforming growth factor β‑1 (TGF‑β1), 
adult mouse hepatocytes underwent changes phenotypically 
as well as functionally. In addition, using lineage‑tracing 
technique, they observed that hepatocytes‑derived cells 
demonstrated with fibroblast‑like morphology and with 
expression of  fibroblast‑specific protein 1 (FSP‑1), and 
this report provides the first in vivo evidence for hepatocyte 
EMT.[23] Similarly, other research also revealed that 
hepatocytes actively participate in fibrogenesis through 
TGF‑β‑dependent EMT.[17,25,26] Dooley et al.[17] confirmed 
a coexpression of  collagen and transferrin in liver samples 
from patients with HBV infection, indicating the possible 
occurrence of  EMT. They also found that specific 
inhibition of  TGF‑β signaling in hepatocyte‑derived cells 
can attenuate fibrogenic response. Lee et al.[27] demonstrated 
that apamin can inhibit TGF‑β1‑induced E‑cadherin loss 
and vimentin increase in vitro, and prevent CCL4‑induced 
liver fibrosis in vivo. This suggests that through suppressed 
TGF‑β1‑induced hepatocyte EMT, apamin can inhibit 

hepatic fibrogenesis. Kong et al.[28] found that cobalt 
chloride (CoCl2) can upregulate mesenchymal markers, 
including vimentin, N‑cadherin, and α‑smooth muscle 
actin (α‑SMA) and thus induce a mesenchymal cell 
phenotype in hepatocytes. They further confirmed that 
curcumin, a natural antifibrotic compound, can repress 
this process by decreasing TGF‑β receptor expression 
and inhibiting Smad2/3 expression and phosphorylation. 
Other studies[29,30] suggest that geniposide and celecoxib 
can inhibit hepatocytes EMT in liver fibrosis as well. 
These findings provided potential strategies to prevent 
liver fibrosis by targeting hepatocytes EMT. However, 
a recent study reported that mouse hepatocytes do 
not undergo EMT in liver fibrosis.[31] Using transgenic 
mice, Taura et al.[31] found that hepatocytes do assume a 
TGF‑β‑induced fibroblast‑like morphology, but failed to 
express mesenchymal markers including FSP‑1, α‑SMA, 
and vimentin.[31] They also confirmed that hepatocytes are 
not the origin of  type I collagen‑producing cells in liver 
fibrosis.[31] These results were quite different from the 
previous work performed by Zeisberg and his colleagues. 
Taura et al.[31] hold that β‑Gal staining in Zeisberg study 
may yield false‑positive results due to technical limitations. 
Although Taura and colleagues’ work effectively challenges 
the existence of  hepatocyte EMT, lineage tracing technique 
has its own pitfalls,[32] and it is still too early to exclude EMT 
in liver fibrosis completely.

Cholangiocyte and EMT
Cholangiocyte, another cell type which has been proposed, 
contributes to liver fibrosis through EMT.[24] Omenetti 
et al.[33] provided direct evidence of  the contribution 
of  cholangiocyte EMT to liver fibrosis. In their study, 
the investigators found that cholangiocytes isolated 
from rats with biliary fibrosis induced by bile duct 
ligation (BDL) expressed high level of  FSP‑1 and low level 
of  aquaporin‑1 and cytokeratin 7/9 (Krt7/9). In addition, 
they demonstrated that an immature cholangiocyte line 
cocultured with myofibroblastic HSCs (MF‑HSC), or 
treated with activated HSC conditioned medium, was 
induced to undergo complete EMT by silencing epithelial 
gene expression, inducing mesenchymal gene expression 
and acquiring a migratory phenotype. Moreover, they 
confirmed that inhibiting Hedgehog (Hh) signaling 
pathway can block EMT in the cholangiocytes under 
MF‑HSC conditioned medium treatment.[33,34] Several 
other studies found cholangiocytes from rats with biliary 
fibrosis or human tissues coexpressed epithelial and 
mesenchymal markers.[35‑37] In biliary atresia, evidence also 
support that biliary epithelial cells may directly contribute to 
fibrogenesis via EMT.[38,39] Diaz et al.[40] provided histological 
evidence, suggesting that EMT occurs in biliary atresia. In 
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consistence with this, Xiao et al.[39] showed that Krt7 and 
α‑SMA colocalized to the intrahepatic biliary epithelial cells 
in patients with biliary atresia. Besides, they demonstrated 
that EMT in primary human intrahepatic biliary epithelial 
cells was induced by TGF‑β and confirmed that the 
process can be inhibited significantly by miR‑200b.[39] 
Seemingly, there is solid evidence that cholangiocytes can 
contribute to fibrosis via EMT. However, the authenticity 
of  cholangiocyte EMT was seriously challenged recently. 
Using cell fate tracing technique, Scholten et al.[41] 
revealed that no EMT of  cholangiocytes was identified 
by genetic labeling that contributes to liver fibrosis in 
mice. Actually, the investigators detected no coexpression 
of  myofibroblast marker and cholangiocyte marker in 
both biliary and panlobular fibrosis.[41] In addition, they 
also showed that no epithelial or liver progenitor marker 
was coexpressed by genetically labeled HSCs in response 
to liver injury.[41] Consistent with this, Chu et al.[42] also 
found no cholangiocytes undergone EMT in murine 
models of  hepatic fibrosis. Although they observed 
that cultured primary cholangiocytes can undergo 
EMT (i.e., loss of  cell–cell contacts and acquisition of  
fibroblast‑like morphology) after TGF‑β1 treatment, but 
in the mouse BDL and CCL4 models, the investigators 
found that cholangiocytes do not undergo EMT in vivo.[42] 
Moreover, they further demonstrated that EMT does not 
occur in cholangiocyte precursors (oval cells). However, 
further studies are still needed to confirm whether 
cholangiocyte EMT contributes to liver fibrosis.

Hepatic stellate cell and MET
HSC is the best studied fibrogenic mesenchymal cell in 
the liver. Now HSCs, as the main source of  ECM, have 
been corroborated to be the dominant contributors to liver 
fibrosis independent of  its etiology.[10,43,44] The concept 
that HSCs are able to undergo MET is intriguing. Sicklick 
et al.[45] analyzed the expression profile of  primary HSC, 
HSC cell lines, and hepatic epithelial progenitors and 
found that epithelial progenitors express HSC markers. 
Furthermore, epithelial progenitor microRNAs were also 
expressed by HSC cell lines.[45] In addition, HSCs that 
express progenitor cell markers were confirmed with the 
potential to differentiate into hepatocytes when cultured 
under certain condition.[46] Yovchev et al.[47] revealed that 
oval cells coexpressed epithelial and mesenchymal markers, 
and transplantation of  these hepatic progenitor cells 
could repopulate injured livers. Choi et al.[48] even found 
that transition of  quiescent HSCs between epithelial 
and mesenchymal fates were regulated by Hh signaling 
pathway. Loss of  E‑cadherin is a characteristic behavior of  
EMT.[49] Cho et al.[50] reported that E‑cadherin is capable of  
inhibiting TGF‑β1 gene induction in HSCs by suppressing 

RHoA‑dependent Smad3 phosphorylation and preventing 
liver fibrosis. But Scholten et al.,[41] using cell fate tracing 
technique, found no epithelial markers coexpressed 
by HSCs in response to fibrogenic liver injury in mice. 
However, Conigliaro et al.[51] lately reported that hepatocytes 
and HSCs may arise from common progenitor isolated 
from embryonic livers. Their study also showed that these 
progenitor cells were able to transdifferentiate into both 
hepatocytes and HSCs in vitro and in vivo.[51] Interestingly, 
Yang et al.[52] found that HSCs can secrete type I collagen 
to trigger EMT of  hepatoma cells. Zhao et al.[53] found that 
microRNA‑21 (miR‑21) can simultaneously promote HSC 
activation and hepatocyte EMT in liver fibrosis. They also 
confirmed that miR‑155 can modulate similar process.[54] 
Collectively, there seems to be plenty of  evidence indicating 
that HSCs can undergo MET during hepatic fibrogenesis. 
But more recently, Lua et al.[55] demonstrated that HSCs 
are not capable of  differentiating into either hepatocytes 
or cholangiocytes in mouse. Using cell lineage tracing 
technique, they found that mesodermal mesenchymal 
cells, including HSCs and portal fibroblasts, comprise a 
major source of  MFs and do not undergo MET during 
fibrogenesis.[55] In addition, they even found that no HSCs 
contributed to oval cells via MET.[55] This was supported 
by research from Troeger et al.[56] Troeger et al. employed 
single‑cell polymerase chain reaction and genetic cell fate 
tracking to investigate whether HSC deactivation represents 
an alternative mechanism for liver fibrosis resolution. They 
found that HSC activation gradually decreased during 
fibrosis reversal and no HSC contributed to hepatocytes 
and cholangiocytes via MET.[56] Together, these data 
provided fairly good evidence that refutes the notion 
that HSCs undergo MET to yield either hepatocytes or 
cholangiocytes. The contradictory conclusion from Yang 
and colleagues’ report may result from the inappropriate 
engagement of  HSC marker.

MAIN SIGNALING PATHWAYS IMPLICATED IN 
EMT

Hedgehog Signaling Pathway and EMT
Signaling pathways involved in EMT have been explored 
substantially, and one of  the well‑documented pathways 
is Hh signaling. The Hh pathway plays crucial role 
in organogenesis and tissue remodeling.[57,58] Recent 
studies suggest that activation of  Hh pathway appears 
to be implicated in fibrogenesis through regulation of  
EMT.[33‑35,48,59‑61] Omenetti et al.[35] showed that in rodent 
model induced by BDL, Hh signaling was activated to 
guide remodeling of  the biliary epithelia and stroma after 
cholestatic injury. They further revealed that enhanced 
EMT responses to BDL were related to excessive 
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activation of  Hh pathway, which promotes biliary fibrosis 
progression.[33] Syn et al.[59] found that in nonalcoholic 
fatty liver disease (NAFLD), sonic Hh suppressed 
expression of  epithelial genes and EMT inhibitors but 
induced mesenchymal genes in cultured progenitors of  
ductular cell. In mouse models of  NAFLD, they also 
found that activation of  Hh pathway was followed by 
EMT, expansion of  myofibroblastic populations, and liver 
fibrosis.[59] In addition, researchers found that Hh pathway 
functions critically in transition of  quiescent HSCs into 
myofibroblastic HSCs, and enables quiescent HSC to transit 
between epithelial and mesenchymal fates.[48] Omenetti 
et al.[34] demonstrated that Hh signaling was excessively 
activated in biliary atresia and resulted in biliary EMT, which 
may lead to biliary dysmorphogenesis and finally fibrosis. 
Interestingly, Yu et al.[62] recently reported that patched1, 
a negative regulator of  Hh pathway, was downregulated 
during liver fibrosis. They further confirmed that decreased 
expression of  patched1 was associated with its DNA 
hypermethylation. Slvianolic acid B can induce miR‑152 
to target DNA methyltransferase 1 and demethylate 
patched1; thus prevent liver fibrosis by inhibiting Hh 
signaling‑induced EMT.[62] Although these data provide 
evidence that Hh signaling pathway can regulate EMT, 
given the questioned existence of  EMT of  hepatocytes or 
cholangiocytes, its contribution to liver fibrosis remains a 
subject of  some debate. However, it is indisputable that 
Hh signaling can coordinate epithelial–mesenchymal 
interactions to regulate repair and regeneration and 
maintain tissue homeostasis.[63]

TGF‑β Signaling Pathway and EMT
TGF‑β has been commonly recognized as a critical factor 
stimulating collagen and ECM production in HSCs during 
hepatic fibrogenesis.[64] Kaimori et al.[25] reported that 
TGF‑β1 is capable of  mediating EMT in hepatocytes in vitro. 
They found that administration of  TGF‑β1 significantly 
increased α1 collagen mRNA expression and type I collagen 
deposition, which were defined as the characteristic of  
EMT state.[25] They also showed that in the EMT state, 
TGF‑β1 induced snail‑1 and activated Smad2/3 pathway 
in hepatocytes, while silencing Smad4 inhibited EMT.[25] 
Similarly, Kojima et al.[26] reported that in mature hepatocytes, 
EMTs were induced by TGF‑β‑mediated downregulation of  
claudin‑1. Furthermore, studies revealed that hepatocytes 
actively participated in fibrogenesis after EMT induced by 
TGF‑β, whereas specific ablation of  TGF‑β signaling by 
Smad7 in hepatocytes effectively slacked the fibrogenic 
response.[17] Rygiel et al.[36] also showed that EMT in response 
to TGF‑β contributes to portal tract fibrogenesis. Recently, 
Kong et al.[28] confirmed that curcumin can inhibit EMT in 
hepatocytes by interfering with TGF‑β/Smad signaling. 

Schizandrin and propolis have also been shown to inhibit 
fibrosis and EMT induced by TGF‑β.[65,66] Transmembrane 
4 L6 family member 5 (TM4SF5) is a transmembrane 
glycoprotein which can induce EMT and is highly expressed 
in hepatocellular carcinoma.[67] Investigators found that 
expression of  TM4SF5 in hepatocytes can be induced by 
TGF‑β1 and epidermal growth factor receptor (EGFR) 
signaling pathways.[67] Increased TM4SF5 expression was 
found in CCl4‑mediated liver fibrosis mouse model and 
correlated with α‑SMA expression, collagen I deposition, 
and TGF‑β1 and EGFR signaling activation.[68] Interestingly, 
as a kinase inhibitor drug approved for the treatment 
of  cancer, sorafenib was confirmed to be capable of  
inhibiting TGF‑β‑mediated EMT in hepatocytes and 
fibrosis.[67,69] Collectively, TGF‑β and its related proteins 
are major inducers of  EMT. However, contrary to the 
popular notion that TGF‑β is a main contributor to 
liver fibrosis,[70] Mu et al.[71] showed that epithelial TGF‑β 
signaling does not promote liver fibrosis, but inhibits 
cholangiocytes proliferation to prevent cholangiocarcinoma 
development.[71] Therefore, further studies are needed to 
clarify whether TGF‑β‑induced EMT plays a role in liver 
fibrosis.

Extracellular Signal‑Regulated Kinase Signaling 
Pathway and EMT
Extracellular signal‑regulated kinases (ERKs), namely 
the classical mitogen‑activated protein (MAP) kinases, 
are serine/threonine kinases that play crucial roles in the 
modulation of  cell growth and differentiation.[72] Evidence 
suggests that ERK signaling contributes to repression of  
EMT.[73,74] Arnoux et al.[7] reported that Erk5 controls the 
expression of  slug, which involves the basal keratinocyte 
activation, spreading, and migration and contributes to 
re‑epithelialization during cutaneous wound healing. Thum 
et al.[75] showed that increased ERK–MAP kinase activity 
promotes interstitial fibrosis and cardiac function and 
this process can be inhibited by miR‑21. In liver fibrosis, 
Zhong et al.[76] found that reduced ERK1 expression 
suppressed HSCs proliferation and their expression 
of  fibrosis‑related genes in vitro; specific inhibition of  
ERK1 significantly weakens ECM deposition in fibrotic 
liver. They also found that myofibroblasts derived from 
hepatocytes and cholangiocytes were reduced markedly by 
selective inhibition of  ERK1.[76] Dai et al.[53] reported that 
miRNA‑21 was significantly higher in cirrhotic patients and 
rats, and sprouty 2 (SPRY2) and hepatocyte nuclear factor 
4α (HNF4α) were identified as effective targets of  miR‑21. 
By targeting SPRY2 and HNF4α, miR‑21 simultaneously 
stimulates ERK1 signaling in HSCs and induces hepatocytes 
EMT.[53] In another report, they found that miR‑155, on 
the contrary, simultaneously suppresses EMT process and 
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ERK1 signaling, attenuates HSC activation, and prevents 
hepatic fibrosis.[54] These studies showed that inhibition of  
ERK signaling contributes to prevention of  liver fibrosis, 
and EMT may be involved in this process.

Future perspectives
As a solid organ, the liver has a striking ability to adapt to 
damage through tissue repair, but excessive accumulation 
of  ECM proteins during this wound healing response will 
lead to liver fibrosis; this highlights the significance of  the 
balance of  this process. Nevertheless, the complicated 
mechanisms underlying hepatic fibrogenesis have not 
been fully elucidated. The past decades have witnessed 
enormous progress in our understanding of  hepatic 
fibrosis, and the discovery of  EMT/MET provides us 
with new insights into its pathogenesis. However, in the 
light of  conflicting evidence that refutes the role of  EMT/
MET in liver fibrosis, perhaps our enthusiasm should be 
curbed. Yet despite this, the role of  EMT in hepatocellular 
carcinoma (HCC) has been identified recently. Although 
EMT has been proved not indispensable for breast cancer 
and pancreatic cancer metastasis,[77,78] its contribution to 
HCC metastasis and invasion has been confirmed and thus 
may serve as a prognosis predictor.[79‑82] In addition, studies 
have revealed that EMT could induce chemoresistance in 
some types of  cancer.[77,78] Therefore, a comprehensive 
understanding of  EMT is urgently needed and will 
enable the development of  novel diagnostic and effective 
therapeutic strategies to prevent HCC progression and 
improve patients’ prognosis.
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