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Abstract Clustering is a prevalent analytical means to analyze single cell RNA sequencing

(scRNA-seq) data but the rapidly expanding data volume can make this process computationally

challenging. New methods for both accurate and efficient clustering are of pressing need. Here

we proposed Spearman subsampling-clustering-classification (SSCC), a new clustering framework

based on random projection and feature construction, for large-scale scRNA-seq data. SSCC

greatly improves clustering accuracy, robustness, and computational efficacy for various state-of-

the-art algorithms benchmarked on multiple real datasets. On a dataset with 68,578 human blood

cells, SSCC achieved 20% improvement for clustering accuracy and 50-fold acceleration, but only

consumed 66% memory usage, compared to the widelyused software package SC3. Compared to

k-means, the accuracy improvement of SSCC can reach 3-fold. An R implementation of SSCC

is available at https://github.com/Japrin/sscClust.
Introduction

Single cell RNA sequencing (scRNA-seq) has revolutionized
transcriptomic studies by revealing the heterogeneity of indi-
vidual cells with high resolution [1–6]. Clustering has become
a routine analytical means to identify cell types, depict their
functional states, and infer potential cellular dynamics

[4–10]. Multiple clustering algorithms have been developed,
including Seurat [11], SC3 [12], SIMLR [13], ZIFA [14], CIDR
[15], SNN-Cliq [16], and Corr [17]. These algorithms improve

the clustering accuracy of scRNA-seq data greatly but often
have high computational complexity, impeding the extension
of these elegant algorithms to large-scale scRNA-seq datasets.

With the rapid development of scRNA-seq technologies, the
throughput has increased from initially hundreds of cells to
tens of thousands of cells in one run nowadays [18]. Integrative
analyses of scRNA-seq datasets from multiple runs or even

across multiple studies further exacerbate the computational
nces and
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difficulties. Thus, algorithms that can cluster single cells both
efficiently and accurately are needed.

To handle multiple large-scale scRNA-seq datasets, ad hoc

computational strategies have been proposed by downsam-
pling or convoluting large datasets to small ones [12,19–21]
or by accelerating the computation with new software imple-

mentation [22]. Such strategies have reached variable levels
of success but have not adequately addressed the challenges.
Considering the importance of efficient and accurate clustering

tools for analyses of large-scale scRNA-seq data, here we
propose a new computational framework, the Spearman
subsampling-clustering-classification (SSCC), based on
machine learning techniques, including feature engineering

and random projection, to achieve both improved clustering
accuracy and efficacy. Benchmarking on various scRNA-seq
datasets demonstrates that compared to the current solutions,

SSCC can reduce the computational complexity from O(n2) to
O(n) while maintaining high clustering accuracy. Moreover,
flexibility of the new computational framework allows our

methods to be further extended and adapted to a wide range
of applications for scRNA-seq data analysis.

Method

Framework overview

Among the available solutions to handle large scRNA-seq
datasets, clustering with subsampling and classification

[12,19] has linear complexity, i.e., O(n). Such a framework gen-
erally consists of four steps (Figure 1A). (1) a gene expression
matrix is constructed by data preprocessing techniques includ-

ing gene and cell filtration and normalization; (2) cells are
divided into two subsets for clustering and classification sepa-
rately by subsampling; (3) the subsetted cells for clustering are
grouped into clusters using k-means [23], hierarchical cluster-

ing [24], density clustering [25], or algorithms developed spe-
cially for scRNA-seq; and (4) supervised algorithms such as
k-nearest neighbors [26], support vector machines (SVMs)

[27], or random forests [28] are used to predict the labels of
other cells based on the clustering results at the third step.
For simplicity, we referred this existing framework as

subsampling-clustering-classification (SCC). Because cluster-
ing is time-consuming and memory-exhaustive, limiting this
step to a small subset of cells through subsampling can greatly

reduce the computational cost from O(n2) to O(n) by leverag-
ing the efficiency of supervised machine learning algorithms.
However, classifiers built on the original gene expression data
of a small subset of cells may be flawed and biased due to noise

of the raw data and small number of cells, thus impairing the
accuracy of label assignment for the total cells.

Here we proposed a new computational framework for

clustering large scRNA-seq data by adding a feature engineer-
ing/projecting step into SCC (Figure 1B). Similar to SCC, a
gene expression matrix is first constructed through gene and

cell filtrations and normalization (Step 1, Figure 1B), and is
then split randomly into two subsets for clustering and classi-
fication separately (Step 2; Figure 1B). Unlike SCC, which
directly uses the raw data of gene expression, our new frame-

work projects cells into a feature space (Step 3; Figure 1B)
for clustering (Step 4; Figure 1B) and classification (Step 5;
Figure 1B). As the new framework is characterized by a
subsampling-featuring-clustering-classification strategy, we
named it as SFCC. Specifically, we divide feature construction
into two steps: (1) feature extraction techniques are applied to

cells subject to clustering; and (2) according to the selection of
feature extraction methods, cells for classification are then pro-
jected into the built feature space. Many established techniques

in the machine learning field can be exploited in these two
steps. For example, principal component analysis (PCA) [29]
can be used to first construct features for cells undergoing clus-

tering while the resultant loading vectors can be used as linear
transformations to project cells for classification into the fea-
ture space. Selecting different algorithms in each step of the
SFCC framework would then form different pipelines for clus-

tering large-scale scRNA-seq datasets. To reduce the total
number of algorithmic combinations, here we focus on com-
paring the performance between various feature engineering

algorithms. We hold algorithms for gene and cell filtration,
normalization, subsampling, and classification as the algo-
rithms frequently used in practice. The existing SCC strategy

can be treated as a special case of SFCC in which the original
data space is the feature space.

Feature engineering techniques involved in this study

include distance-based methods (Euclidean and cosine),
correlation-based methods (Pearson [30] and Spearman [31]
correlations), and a neural network-based method (autoen-
coder) [32]. For distance and correlation based methods, the

distance/correlation matrix for cells subject to clustering is
directly used as their features, and the distance/correlation
matrix between cells subject to classification and clustering

were used to construct features for cells undergoing classifica-
tion. For autoencoder, the gene expression data of cells for
clustering are used to train a neural network model first and

then all cells are projected into a feature space through the
encoding function of the trained model. To obtain evaluation
results independent of clustering algorithms, we use silhouette

values [33] to examine the global performance of these feature
engineering methods. Upon the global evaluation, we then
select the most effective method, SSCC, the SFCC with Spear-
man correlation as the feature construction method, to do fur-

ther evaluations.

scRNA-seq datasets used in this study

We used seven scRNA-seq datasets to evaluate the clustering
performance in feature space. These include the Kolodziejczyk
dataset [34], Pollen dataset [8], Usoskin dataset [9], Zeisel data-

set [10], Zheng dataset [5], PBMC 68 k dataset [18], and
Macosko dataset [19]. Detailed descriptions of these datasets
are listed below.

The Kolodziejczyk dataset [34] contains 704 cells with three

clusters, which were obtained from mouse embryonic stem
cells under different culture conditions. About 10,000 genes
were profiled with high sequencing depth (average 9,000,000

reads per cell, >80% of reads mapped to the Mus musculus
genome GRCm38 with >60% to exons) using the Fluidigm
C1 system and applying the SMARTer Kit to obtain cDNA

and the Nextera XT Kit for Illumina library preparation.
The Pollen dataset [8] contains 249 cells with 11 clusters,

which were obtained from skin cells, pluripotent stem cells,

blood cells, neural cells, etc. Either low or high sequencing
depth based on the C1 Single-Cell Auto Prep Integrated



A  SCC

B  SFCC

Figure 1 Two computational frameworks for rapid clustering large-scale scRNA-seq datasets

A. The original computational framework proposed in SC3 (referred to SCC) consists of four main steps: (1) constructing the gene

expression matrix; (2) dividing the matrix into two parts through cell subsampling; (3) clustering the subsampled cells; and (4) classifying

the unsampled cells into clusters. B. The new computational framework proposed in this study (referred to SFCC). A feature construction

step is added before clustering and classification. The whole framework comprises five steps: (1) constructing the gene expression matrix;

(2) dividing the matrix into two parts through cell subsampling; (3) projecting the subsampled/unsampled cells into feature space; (4)

clustering the subsampled cells in the feature space; (5) classifying the unsampled cells into clusters in the feature space. scRNA-seq, single

cell RNA-sequencing; SC3, single-cell consensus clustering; SCC, subsampling-clustering-classification; SFCC, subsampling-featuring-

clustering-classification.
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Fluidic Circuit, the SMARTer Ultra Low RNA Kit, and the
Nextera XT DNA Sample Preparation Kit was used to depict

the gene expression profiles of individual cells (�50,000 reads
per cell).

The Usoskin dataset [9] contains 622 mouse neuronal cells

with four clusters, i.e., peptidergic nociceptor-containing, non-
peptidergic nociceptor-containing, neurofilament-containing,
and tyrosine hydroxylase-containing cells. The neuronal cells

were picked with a robotic cell-picking setup and positioned
in wells of 96-well plates before RNA-seq (1,140,000 reads
and 3574 genes per cell).

The Zeisel dataset [10] contains 3005 cells from the mouse

brain with nine major subtypes. The gene expression levels
were estimated by counting the number of unique molecular
identifiers (UMIs) obtained by Drop-seq.

The Zheng dataset [5] contains 5063 T cells from five
patients with hepatocellular carcinoma. Nine subtypes of sam-
ples were prepared according to the tissue types and cell types,

and then subject to Smart-seq2 for gene expression profiling
(�1,290,000 uniquely mapped read pairs per cell).
The PBMC 68 k dataset [18] contains 68,578 peripheral
blood mononuclear cells (PBMCs) of a healthy human subject.

This cell population includes eleven major immune cell types.
Gene expression was profiled using the 10� Genomics Gem-
Code platform, and 30UMI counts were used to quantify gene

expression levels with their customized computational pipeline.
The Macoskco dataset [19] contains 49,300 mouse retina

cells without known distinct clusters. The gene expression

levels were estimated by counting the number of UMIs
obtained by Drop-seq. Cells were further clustered into 39 sub-
types by the authors based on the Seurat algorithm.

Data preprocessing

The first four datasets (i.e., the Kolodziejczyk, Pollen, Uso-
skin, and Zeisel datasets) have been widely used for evaluating

clustering algorithms, of which the preprocessed data have
been included in the SIMLR software package for test use
(https://github.com/BatzoglouLabSU/SIMLR). We down-

loaded these four datasets from the Matlab subdirectory of

https://github.com/BatzoglouLabSU/SIMLR
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the SIMLR package, and then selected the top 5000 most
informative genes (with both the average and the standard
deviation of log2-transformed expression values >1) for subse-

quent analysis. If the number of genes in a dataset was smaller
than 5000, then all the genes in the dataset were retained for
further analysis. For the Zheng dataset, one patient (P0508)

was selected for comparison of different clustering algorithms,
which had 1020 T cells with eight subtypes defined by the tis-
sue sources and the cell surface markers. Genes with both

the average and the standard deviation of log2-transformed
expression values >1 were retained and then the transcripts
per million (TPM) values were used for clustering evaluation.
For the PBMC 68 k dataset, the preprocessing pipeline

described in the original report [18] was used to prepare data
for clustering (https://github.com/10XGenomics/single-cell-
3prime-paper). For the Macoskco dataset, the UMI counts

were used for evaluation without gene filter.

Consistency between true labels and the original as well as the

projected data

The silhouette value [33] is used to measure the consistency
between the true labels and the original as well as the projected

data. Given a dataset with n samples and a clustering scheme,
a silhouette value is calculated for each sample. For a sample i,
its silhouette value si is calculated according to the following
formula:

si ¼ bi � ai
maxfai; big ð1Þ

where ai is the average dissimilarity of sample i to samples in

its own cluster andbi is the lowest average dissimilarity of sam-
ple i to any other cluster of which sample i is not a member.
The values of si range from �1 to 1. A value close to 1 means

that sample i is well matched to its cluster, whereas a value
close to �1 means that sample i would be more appropriate
if it is classified into its neighboring cluster. For each feature

construction method, the median silhouette value of all the
cells after projection was used to evaluate its consistency with
the true cluster labels. The fraction of cells that have silhouette
values increased after projection compared to the original data

(i.e., the fraction of cells above the diagonal in Figure 2) was
also used to evaluate the feature construction methods.

Clustering accuracy/consistency evaluation

Normalized mutual information (NMI) [35] was used to eval-
uate the accuracy of various clustering results. Given two clus-

tering schemes A ¼ fA1; � � � ;ARg and B ¼ fB1; � � � ;Bsg, the
overlap between A and B can be represented through the con-
tingency table C (also named as confusion matrix) of size

R� S, where Cij denotes the number of cells that are shared

by clusters Ai and Bj. Then the normalized mutual information

NMIðA;BÞ of the two clustering schemes A and B is defined as

follows.

NMIðA;BÞ ¼
�2

PR
i¼1

PS
j¼1Cijlog

Cij�n

Ci��C�j

� �

PR
i¼1Ci�log

Ci�
n

� �þPS
j¼1C�jlog

C�j

n

� � ð2Þ

where n is the number of total cells, Ci� is the number of cells

assigned to cluster i in the clustering scheme A and C�j is the
number of cells assigned to cluster j in the clustering scheme

B. If A is identical to B, NMIðA;BÞ ¼ 1. If A and B are com-

pletely different, NMIðA;BÞ ¼ 0. When true cluster labels were

available, the NMI values between true cluster labels and
various clustering results were used to evaluate the clustering

accuracy. When true cluster labels were not available,
NMI was used to evaluate clustering consistency between
different subsampling rates in this study. Besides NMI, we also
used Rand index and adjusted Rand index to evaluate

clustering accuracy and consistency, and obtained similar
observations.
Clustering and classification algorithms

Many clustering algorithms are available. We selected five
widelyused clustering algorithms in this study to evaluate the

impacts of Spearman correlation-based feature construction
method. These five algorithms include three general clustering
algorithms which were designed initially not for scRNA-seq
data, i.e., affinity propagation (AP) [36], k-means [23], and

k-medoids [37], and two algorithms that were specially
designed for clustering of scRNA-seq data, i.e., SC3 [12] and
SIMLR [13]. k-means and k-medoids are pure clustering algo-

rithms that partition samples into groups while AP, SC3, and
SIMLR inherently include feature construction techniques. All
these clustering algorithms were evaluated on five small-scale

datasets (the Kolodziejczyk, Pollen, Usoskin, Zeisel, and
Zheng datasets), while only SC3 was evaluated on the PBMC
68 k dataset and only k-means was evaluated on the Macoskco

dataset for simplicity. Parameters (ks = 10:12, gene_
filter = FALSE, biology = FALSE, svm_max = 5000) were
used for SC3 (default), whereas parameters (ks = 11, gene_
filter = FALSE, biology = FALSE, svm_max = 200) were

used for SC3 + SSCC. On the Macoskco dataset, �5% and
10% cells were randomly picked out for clustering analyses.
We used the k-nearest neighbor algorithm for classifying

unsubsampled cells, which is robust to parameter selection.
Results

Feature construction can greatly improve the consistency of cell

features and the reference cell labels

First we evaluated whether feature extraction methods can
improve clustering results of scRNA-seq data. We calculated

the silhouette values to evaluate the consistency between cell
features extracted using various methods and the reference
labels. Silhouette values are frequently used to indicate

whether a sample is properly clustered. But here we can use sil-
houette values to reversely indicate whether the extracted fea-
tures are properly consistent with the reference cell labels. By

comparing with silhouette values of the original scRNA-seq
data, we observed that most of the evaluated feature-
extracting methods can improve the silhouette values for many
cells in multiple datasets (Figure 2). For the Kolodziejczyk [34]

and Pollen [8] datasets, all the five feature-extraction methods
improved the silhouette values compared with the original
data. For the Usoskin [9] dataset, all methods showed signifi-

cantly better performance except Euclidean and cosine. For
the Zeisel [10] dataset, only Spearman correlation resulted in

https://github.com/10XGenomics/single-cell-3prime-paper
https://github.com/10XGenomics/single-cell-3prime-paper
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Figure 2 Consistency with true cluster labels between engineered features and the original data of five datasets

In each plot, each dot represents a cell. Silhouette values calculated using true cluster labels and the original data are shown on X axis,

whereas silhouette values calculated using true cluster labels and the engineered features are shown on Y axis. Silhouette value at 1

represents perfect match between labels and features, whereas silhouette value at �1 indicates that the cell might be mis-clustered. The

percentage in the plotting area of each plot indicates the fraction of cells above the diagonals. The five datasets tested are the

Kolodziejczyk dataset [34], Pollen dataset [8], Usoskin dataset [9], Zeisel dataset [10], and Zheng dataset [5].
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improvement for >80% cells compared with the original data,

while other feature extraction methods except Euclidean
resulted in little improvement. Euclidean resulted in even
worse results for the Zeisel dataset, indicating low robustness.

For the Zheng [5] dataset, most methods failed except the
Spearman correlation method. The Spearman correlation-
based feature extraction method consistently improved the

accordance between cell features and labels on all the five data-
sets. Considering the robustness of Spearman’s correlation-
based method and the great improvement of silhouette values

of single cells, we evaluated the accuracy, robustness, and effi-
cacy of SSCC in the next section.
Clustering accuracy of the total cells is enhanced in feature space

when subsampling is applied

While subsampling can greatly boost the efficiency of cluster-
ing of large scRNA-seq data, it often compromises the cluster-
ing accuracy. We observed that the improvements of silhouette

scores by SSCC were robust to subsampling fluctuations
(Figure 3). For all the five datasets evaluated, the silhouette
values of Spearman correlation-based features were almost
unchanged with subsampling rates (Figure 3). These data sug-

gest that features constructed using SSCC at low subsampling



Figure 3 Silhouette values between Spearman correlation features and true cluster labels are independent of subsampling rates in five

datasets

Spearman correlation features were constructed at various subsampling rates of the original data in the five datasets. In each plot, each dot

represents a cell. Silhouette values of Spearman correlation features constructed with 100% cells are shown on X axis, whereas silhouette

values of Spearman correlation features constructed with 10%, 20%, 30%, 40%, and 50% cells in each dataset are shown on Y axis.

Pearson correlation between X and Y axes was calculated, where the correlation coefficient (r) is provided in the upper triangle and the

corresponding P value is provided in the lower triangle of each plot.
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rates may contain information approximate to that with total
cell populations.

We further evaluated whether the improved silhouette val-
ues can be translated into clustering accuracy. By evaluating
five clustering algorithms including k-means, k-medoids, AP,

SC3, and SIMLR, we observed that compared to SCC, SSCC
can significantly improve the clustering accuracy in terms of
NMI, for all the five clustering algorithms on all the bench-
mark datasets tested (Figure 4). The accuracy improvements
measured by DNMI range from 0.12 to 0.60 for the Kolod-

ziejczyk dataset, 0.04 to 0.19 for the Pollen dataset, 0.14 to
0.37 for the Usoskin dataset, 0.02 to 0.28 for the Zeisel dataset,
and 0.10 to 0.28 for the Zheng dataset, depending on the algo-

rithms and subsampling rates chosen. Other accuracy metrics
including Rand index, adjusted Rand index, and adjusted
mutual information reveal the same trends (data not shown),
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NMI, normalized mutual information; SSCC, Spearman subsampling-clustering-classification; AP, affinity propagation.
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suggesting that SSCC can greatly enhance the power of multi-

ple clustering algorithms when subsampling is used.

Clustering consistency between different subsampling runs is also

greatly improved with SSCC

In practice, the reference cell labels are generally unknown.
The confidence of clustering results is often evaluated by the
consistency between different algorithms. Due to the subsam-

pling fluctuations, clustering results based on SCC are incon-
sistent among different subsampling operations. However, in
the new framework of SSCC, the consistency was much

improved for all evaluated clustering algorithms on all datasets
(Figure 5). For the Kolodziejczyk dataset, all the five clustering
algorithms had consistency >0.5 (measured by NMI) in SSCC

while the corresponding consistency in SCC was much smaller.
For the Pollen dataset, SSCC still showed better performance
than SCC although both frameworks had high clustering con-
sistency. Similar trends were observed on the Usoskin, Zeisel,

and Zheng datasets.
Application of SSCC to large scRNA-seq datasets with or without

reference cell labels

Besides the aforementioned five scRNA-seq datasets, we fur-
ther tested SSCC on two additional large scRNA-seq datasets.
One is the PBMC 68 k dataset [18], which contains 10�
Genomics-based expression data for 68,578 blood cells from
a healthy donor. The other is the Macoskco dataset [19], which
contains 49,300 mouse retina cells lacking of experimentally

determined cell labels. The large cell numbers generally pro-
hibit classic scRNA-seq clustering algorithms running on a
desktop computer, thus providing two realistic examples to
demonstrate the performance of SCC and SSCC.

For the PBMC 68 k dataset, we compared SSCC with SCC
using SC3 [12] as the clustering algorithm. The SC3 software
package inherently applies an SCC strategy to handle large

scRNA-seq datasets. By default, if a dataset has more than
5000 cells, the SCC strategy will be triggered, with 5000 cells
randomly subsampled for SC3 clustering and the other cells

for classification by SVM. We applied SC3 to the PBMC
68 k dataset on a desktop computer with 8 GB memory and
3 GHz 4-core CPU and repeated ten times. The average clus-
tering accuracy of SC3 in terms of NMI was 0.48, the calcula-

tion took 99 min on average, and the maximum memory usage
exceeded 5.6 GB (Figure 6A). With the SSCC strategy, the
average clustering accuracy reached 0.59, representing �21%

increase over SC3 with the default parameters. It is of note that
the computation time was dramatically reduced to 2.2 min on
average, representing a 50-fold acceleration. Meanwhile, the

maximum memory usage of SC3 + SSCC was 3.7 GB, saving
>33% compared to that of SC3 with the default parameters.
Compared to dropClust [20], a clustering algorithm specialized
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Figure 5 Comparison of clustering consistency between SSCC and SCC for five datasets
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consistency (measured by NMI) of clustering between using 10% cells and that using 50% cells with SSCC is shown on Y axis.

Subsamplings were repeated for ten times and each subsampling result was processed using five clustering algorithms shown on the left.
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for large scRNA-seq datasets, SC3 + SSCC also demon-
strated superior performance in terms of clustering accuracy,
speed, and memory usage (Figure 6A).

For the Macoskco dataset, using k-means as the clustering

algorithm and k-nearest neighbors for classification, the SCC
strategy resulted in great average silhouette difference (0.29)
between two subsampling schemes (�0.80 with 5% cells and

�0.51 with 10% cells), whereas the difference using SSCC
became negligible (0.01). The NMI values between the two
subsampling schemes were 0.60 and 0.69 when using SCC

and SSCC, respectively. Pearson correlation coefficients of sil-
houette values between the two subsampling schemes were
increased from 0.47 to 0.58 when switching from SCC to SSCC
(Figure 6B).

All these metrics demonstrate that SSCC can not only
greatly improve the clustering efficiency and accuracy for
large-scale scRNA-seq datasets, but also can greatly improve

the consistency.

Discussion

The availability of large-scale scRNA-seq data raises urgent
need for efficient and accurate clustering tools. Currently a
few scRNA-seq data analysis packages have been proposed
to address this challenge. Of these tools, SC3 [12], Seurat
[11], and dropClust [20] adopt a SCC strategy, bigScale [21]
employs a convolution strategy to merge similar single cells
into mega cells by a greedy-searching algorithm, and SCANPY

[22] used Python as the programming language to accelerate
the clustering process. Although these strategies greatly boost
the efficiency of large scRNA-seq data analysis, there exists

much room for further improvement. Particularly the SCC
strategy suffers from biases introduced by subsampling which
may greatly decrease the clustering accuracy and robustness,

although it can reduce the computational complexity from O
(n2) to O(n). Here we introduce feature engineering and pro-
jecting techniques into the SCC framework and propose SFCC
as an alternative. Specially, with Spearman correlations as the

feature engineering and projecting methods, we formulate a
framework named as SSCC, which can significantly improve
clustering accuracy and consistency for many general and spe-

ciallydesigned clustering algorithms. Evaluations on real
scRNA-seq datasets, which cover a wide range of scRNA-
seq technologies, sequencing depths, and organisms, demon-

strate the robustness of the superior performance of SSCC.
Therefore, SSCC is expected to be a useful computational
framework that can further unleash the great power of

scRNA-seq in the future.
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Figure 6 Clustering performance evaluation of SSCC on two extremely large scRNA-seq datasets

A. Performance comparison between SC3 (default), dropClust, and SC3 + SSCC on the PBMC 68 k dataset [18] in terms of clustering

accuracy, running time and maximum memory required. In total 5000 cells were subsampled for SC3 (default), while 200 cells were

subsampled for SC3 + SSCC. B. Consistency comparison between SSCC (on the right) and SCC (on the left) evaluated on 49,300 mouse

retina cells in the Macosko dataset [19]. Silhouette values of two clustering schemes (using 2000 cells and 4930 cells, separately) were

plotted and then Pearson correlation coefficients were calculated. The 39 cell clusters were colored according to cluster labels based on

�10% cells and original expression data.
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