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Abstract

The pay-it-forward reciprocity is a type of cooperative behavior that people who have benefited from others return favors to
third parties other than the benefactors, thus pushing forward a cascade of kindness. The phenomenon of the pay-it-
forward reciprocity is ubiquitous, yet how it evolves to be part of human sociality has not been fully understood. We
develop an evolutionary dynamics model to investigate how network homophily influences the evolution of the pay-it-
forward reciprocity. Manipulating the extent to which actors carrying the same behavioral trait are linked in networks, the
computer simulation model shows that strong network homophily helps consolidate the adaptive advantage of
cooperation, yet introducing some heterophily to the formation of network helps advance cooperation’s scale further. Our
model enriches the literature of inclusive fitness theory by demonstrating the conditions under which cooperation or
reciprocity can be selected for in evolution when social interaction is not confined exclusively to relatives.
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Introduction

Reciprocity has long been recognized as an important

constituent of human sociality that functions to lubricate social

and economic exchange [1–2]. Reciprocity takes many forms

depending on the relationship between the beneficiary and the

benefactor. When a person does another a favor and receives a

benefit in return directly from the same person, it is called direct

reciprocity—in this case, reciprocal relationship is dyadic [3].

When the sender and the recipient of favors involve more than two

parties, reciprocity goes beyond a dyad and involves a group or a

network. This is referred to as indirect reciprocity [4] or

generalized exchange [5]. In this case, person A delivers a benefit

to person B and receives a benefit from a different person C.

Different theories attempt account for why indirect reciprocity can

be sustained. One line of arguments attributes C’s kindness made

to A to C’s gratitude toward a favor he received earlier from a

different third party. Indirect reciprocity operating in this manner

can be portrayed as a process whereby one helps another, who in

turn helps yet a different person, forming a pay-it-forward cascade

[6–8]. In the biological literature, this kind of indirect reciprocity is

also termed upstream reciprocity [9] or generalized reciprocity

[10–11].

Our daily life is full of examples of the pay-it-forward

reciprocity. For example, people hold the door for those coming

afterwards in public places [12]. One reason to why the norm is

held is that people walking ahead of us hold the door for us first,

and in return we reciprocate by acting the same to people

following us. In charity donation, a real story shows that family

members of a father who benefits from organ donation of a

stranger are eager to sign up as prospective organ donors, in the

hope that they can be of someone else’s help in the future [13].

Experimental studies convey a similar message that subjects are

more willing to help if they have been helped before [14]. Finally,

as a fictional yet quite illuminating example, the movie ‘‘Pay it

Forward’’ portraits how kindness as a campaign can initiate from a

naı̈ve child to the whole community [15].

Given the ubiquity of the pay-it-forward phenomenon, an

important question to be addressed is how it evolves to be part of

human sociality. Explaining the evolution of reciprocity is

challenging as a reciprocator does not seem to fare better than

an opportunist who receive favors without reciprocating. The

difference in welfare would make opportunism more advanta-

geous, thus eliminating the survival of reciprocity. It leads us to

wonder when reciprocity would triumph over self-interest.

Investigating the circumstances under which indirect reciprocity

evolves has become a core research endeavor in evolutionary

biology [4,16–17].

In stark contrast to direct reciprocity where interaction is limited

to a dyad, the pay-it-forward reciprocity is conducted in a web of

social interactions, which typically can be represented by network.

In the network, a tie designates the flow of benefit from one node

to the other. Cooperation unfolds in networks when a cooperator

initiates providing favors to his network neighbors and the

recipients of favor reciprocate by acting similarly to their network

neighbors, pushing forward the reciprocity cascade. The problem

is that reciprocity could not continue as long as there is any

defector in the chain of the pay-it-forward process. Hence, how

cooperators and defectors are spatially distributed in networks is

critical to how far reciprocity cascading spreads.

Boyd and Richerson [18] is arguably the first study to discuss

the pay-it-forward reciprocity. Their model considers a ring
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structure and shows that reciprocity (termed the upstream tit-for-

tat in their paper) is possible to emerge only when group size is

small. Nowak and Roch [9] conceptually distinguish two forms of

indirect reciprocity and derive the mathematical condition for the

pay-it-forward behavior (called upstream reciprocity in their

paper) to evolve. A major finding of their mathematical model

shows that upstream reciprocity provides a beneficial condition for

cooperation to evolve if coupled with direct reciprocity. In [9,18],

a special ring structure is under investigation. A recent simulation

study [19] extends the model to different networks beyond a ring.

The above models were proposed with different focuses: [18] is

concerned about group size; [9] investigates the effect of coupling

two forms of reciprocity, and [19] examines the effect of network

topology. It is noteworthy that although the abovementioned

models all address network effects to different extents, none of

them is concerned with the issue of how actors of different kinds

are linked in networks. Given a network, actors can be placed on

the network in different manners, and the spatial arrangement

could render unexpected advantages or disadvantages to the

survival of reciprocity in evolutionary dynamics. A recent study

that investigates the effect of interactive assortment shows that

generalized reciprocity (or the pay-it-forward reciprocity termed

here) is possible to evolve in groups when reciprocators interact

with the like more often than random chance [10]. In this paper,

we continue a similar research endeavor to study how network

homophily—the degree to which actors are linked with the like in

networks [20]—influences the evolution of the pay-it-forward

reciprocity. Our model differs from [10] by considering a larger

strategy space and local behavioral adaptation in networks. We

derive an interesting finding that strong network homophily helps

consolidate the adaptive advantage of cooperation, but some

heterophily helps promote cooperation to a higher scale.

Results

The Model
Nowak and Roch proposed a ‘‘helping game’’ to model the pay-

it-forward problem [9] (see below). We draw on this helping game

to construct an evolutionary dynamics model comprising three

components: a population of actors, social networks, and a rule

that governs actors’ behavioral adaptation.

Population. Two behavioral traits dissect the population into

four groups: the first trait (p) governs the behavior of initiating

helping, and the second trait (q) controls behavior of reciprocity.

With p = 1, actors deliver help, and do nothing with p = 0. When

q = 1, actors reciprocate and do nothing with q = 0. Four types of

actors or four different strategies are generated accordingly:

perfect cooperators (PC) for p = 1, q = 1, classical cooperators (CC)

for p = 1, q = 0, reciprocal cooperators (RC) for p = 0, q = 1, and

defectors (D) for p = 0, q = 0.

Adaptation of Behavior. Intermittently along the course of

evolutionary dynamics, actors update their behavior in reference

to their network neighbors. They search for the actor in their

network neighborhood (including themselves) with the highest

accumulated payoff and imitate his behavioral traits. If more than

one actor possesses the highest payoff, one of them is randomly

selected for imitation. This ‘‘learning-from-the-best’’ adaptation

rule is also termed ‘imitation updating’ [21]. For robustness

testing, we also consider other adaptation rules reported in the

following section.

Social Network. Actors are placed on a network with ties

linked to a subset of the population. The structure of links

determines the potential recipients of help. When updating

behavior, actors use the same network to look for targets for

imitation. In this paper, we consider a particular network

structure—the regular square lattice—as the baseline network.

The regular square lattice with periodic boundary condition (a

torus) has been intensively studied in biology. Research on the so-

called ‘‘spatial game theory’’ has showed that lattice structure helps

preserve cooperation in clusters against the invasion of defection

[22–24]. In a regular lattice, each node has the same number of ties

(nodal degree). Even though ties are possible to be rewired,

described as follows, so that the prefect uniformity in nodal degree

cannot maintain, difference in nodal degree is kept small over the

network. This helps us to tease out the effect of heterogeneity in

nodal degree on the evolution of reciprocity as was noted in [19].

Network Homophily. We set up a torus network component

of equal size for each group defined in Table 1. As a baseline, the

four tori are isolated from one another, representing full network

homophily, where actors of the same type are linked exclusively to

one another (illustrated in Figure 1 left panel). New networks are

generated to loosen up network homophily by rewiring some of

the intra-group ties to be inter-group ties (see Figure 1 right panel).

Through tie rewiring, we change the ecology of a node’s network

neighborhood without changing network density [25–26], thereby

eliminating the effect of network density on the evolution of

reciprocity. Tie rewiring is governed by a vector of probabilities

that sums up to 1. To be more specific, consider the four groups

defined in Table 1. For each torus component specific to group

i[fPC,CC,RC,Dg, each tie of the component is checked, and

with probability pi?j , the tie that at present connects a pair of

nodes in torus component i is reconnected to a member in torus j.

It follows that with probability pi?i the tie stays intact, and
PN4

j~N1

pi?j~1, where N~fPC,CC,RC,Dg. Note that each group

has its own set of probabilities governing the direction of tie

rewiring, independent of how ties are rewired in other groups.

We index every node in each baseline torus. When a tie is

prompted to rewire, it detaches one end of the tie and reconnects

the other to a node in a different group with the same index

number as the detached node (see Figure 2 for illustration). Which

node is detached and which is reconnected is a random choice. In

so doing, we minimize the impact of tie rewiring on causing large

difference in nodal degree.

The Helping Game. We model the evolutionary dynamics of

the helping game embedded in networks. In each round, actors

first decide whether to deliver help. Actors with p = 1 incur a cost c

and randomly pick one network neighbor as the beneficiary of

help worth b. Actors with q = 1 reciprocate the favors, if any,

received from network neighbors. They compute how many times

they were helped in the previous round and repay the same

amount of help to a random set of network neighbors (sampling

with replacement). Initiating and reciprocating favors are

synchronous in each round so actors reciprocate favors received

in the previous round. At the end of every s round, each actor

searches for actor in his network neighborhood (including oneself)

who has the highest accumulated payoff. He inherits this most

Table 1. The Four Types of Actors in the Helping Game.

Return help received?

Yes No

Initiate providing help? Yes Perfect Cooperator Classical Cooperator

No Reciprocal Cooperator Defector

doi:10.1371/journal.pone.0029188.t001

Network Homophily and Reciprocity
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‘‘successful’’ actor’s behavior traits. The simulation is terminated

when no occurrence of behavioral imitation persists continuously

for y rounds or repetitive cycles are found. Once the simulation

stops, we record the share of each type of actor (or strategy) in the

population.

Evolutionary Dynamics of Two Groups
Before we discuss the results of the four groups defined in

Table 1, it is beneficial to gain some preliminary insights through

studying the evolution of two groups (strategies) pair-wisely across

the four groups. We simulate a population of two groups with

equal share (1/2). Each group adopts a unique strategy. The

probability of tie rewiring in one group is p1 and p2 in the other.

Manipulating p1 and p2 from 0 to 1, we examine the share of each

strategy at the end of the evolution.

Perfect Cooperator vs. Defector. Defectors dominate

prefect cooperators in most networks investigated. It makes sense

because defectors receive benefits without reciprocating while

perfect cooperators pay the cost of providing favors to others.

Evolutionary theory shows that cooperators can survive when they

interact assortatively with one another [27] or form clusters in

networks [22]. Our simulation result confirms the finding: as is

shown in Figure 3 (upper-left panel), perfect cooperators end up

with a share higher than one-half when they are cohesive to one

another, i.e., they do not experience too much tie rewiring and

instead keep most of their ties linked to themselves. A few

‘‘bridging’’ ties to other groups help cooperators to increase

popularity. Increasing inter-group ties is beneficial only when the

degree of network homophily is high—after some critical point,

more inter-group ties can no longer benefit the selection of

cooperators in evolution.

Perfect Cooperator vs. Classical Cooperator. The

competition between perfect cooperators and classical

cooperators is similar to that between perfect cooperator and

defectors. Like defectors, classical cooperators never reciprocate so

perfect cooperators are disadvantaged when interacting with

classical cooperators. In Figure 3 (upper right panel), perfect

cooperators dominate the population when both groups do not

experience much tie rewiring, leaving only a few inter-group ties

linked in between.

Perfect Cooperator vs. Reciprocal Cooperator. Perfect

cooperators have relatively higher popularity when interacting

with reciprocal cooperators. This is due to the fact that reciprocal

cooperators respond to prefect cooperators’ favors, and therefore

perfect cooperators are not as disadvantaged as when they face

the other two types of actors. Similarly, perfect cooperators

dominate when they are cohesive, but different from the two

cases above, it does not require that reciprocal cooperators be

cohesive as well.

Classical Cooperator vs. Reciprocal Cooperator. Figure 3

(lower right panel) shows that classical cooperators dominate

reciprocal cooperators most of the time. Because classical

cooperators initiate helping and reciprocal cooperators respond,

the two groups seem to be equally advantageous. Scrutiny of the

simulation result shows that indeed on average the two groups

perform equally well, but the variation in payoff is larger among

classical cooperators than among reciprocal cooperators. It implies

that actors with the highest fitness level are more likely to be classical

cooperators. Since the current model uses a learning-from-the-local-

best adaptation rule, classical cooperators are more likely to be the

target for imitation. Reciprocal cooperators, on the other hand,

dominate when they are cohesive while classical cooperators are

not.

Other Relationships. Defectors completely dominate

classical cooperators as the latter benefit the former without

receiving anything in return. Unlike perfect cooperators, classical

cooperators do not return favors to one another, failing to

accumulate sufficient payoffs through reciprocation to outperform

the advantages of defectors derived from exploitation on

cooperators. No action takes place in a world comprising

defectors and reciprocal cooperators only as in this case no one

initiates helping and triggers reciprocation.

Figure 1. Networks before and after ties are rewired. Left panel: Four isolated tori, each characterized by a nodal shape. Right panel: Slight
tie-rewiring to neighboring groups generates some inter-group ties.
doi:10.1371/journal.pone.0029188.g001
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Evolutionary Dynamics of Four Groups
We now discuss the model of four groups. Recall we introduce a

set of probabilities, amounting to 1, to govern the direction of tie

rewiring for each group (structured as a torus component) and

thereby generate new networks with different degrees of network

homophily. Our goal is to investigate what probability set results in

high share of each group in evolution. Exhausting the union of

four sets of probabilities, one for each group, is in essence

implausible. For example, suppose we divide the probability space

from 0 to 1 in 10 intervals (0, 0.1, 0.2,…,1). For each group

(strategy) i, under the constraint that
PN4

j~N1

pi?j~1, there are 275

possible probability sets. Then for four groups, the total number of

possible probability sets would be 2754~5:71|109. In light of the

challenge, we use genetic algorithm to save the computational

burden [28].

The operation of genetic algorithm can be briefly described as

follows. Let matrix P, a 4 by 4 matrix, collects the four sets of

probabilities that govern tie rewiring. Each row represents the

probability set for a group. The algorithm starts with a sample

pool of P. Without loss of generality, we consider the following

probability sets as the initial condition: {0.25, 0.25, 0.25, 0.25},

{0.5, 0.5, 0, 0}, {0, 0, 0.5, 0.5} and {0, 0.5, 0.5, 0}, which

represent, respectively, uniform, right-skewed, left-skewed, and

central-peaked distributions. Each group can be assigned one of

the four probability sets so the total number of matrix P considered

for the first generation is 44 = 256. Each matrix P in the pool

generates a network, and we run the evolutionary model of the

helping game on the network. We then check how well a network

performs with respect to the popularity of the kind of strategy

investigated. In reference to the performance record, the next

generation of P would be produced over the following steps: (1)

Randomly select two P matrices from the pool (with replacement)

with probability in proportion to their performances (2) For the

two selected matrices, denoted Pi and Pj, randomly choose two

rows from one matrix to pair up with the alternative two rows

chosen from the other matrix. A new matrix P is thus formed by

inheriting half of Pi and half of Pj (3). Allow mutation to occur to

the new matrix by randomly selecting one row and one element to

uplift it by 0.1. Choose a different element of the same row to

reduce it by 0.1. Mutation follows the constraint that that

probability of rewiring be not over 1 or below 0.

When genetic algorithm is run, average performance of the pool

of P would improve as generations accumulate. In each

generation, we target the P that performs the best with respect

to the popularity of each strategy. We run the genetic algorithm

for 100 generations, before which the share of each strategy is

found to converge to a fixed level. For each strategy, we select the

best ten matrices P and report their means and standard deviations

in Table 2. For better illustration of the data, representative

networks generated by following these rewiring principles are

shown in Figure 4.

The simulation results suggest that the population of perfect

cooperators can grow as high as roughly 70% in networks that

have the following properties: (1) perfect cooperators are cohesive

to one another, leaving only a few ties linked to reciprocal

cooperators; (2) reciprocal cooperators are cohesive, and (3)

classical cooperators are highly linked with reciprocal cooperators.

The first fact is consistent with the two-group case studied earlier:

reciprocal cooperators are perfect cooperators’ best partner as

perfect cooperators are more advantaged when facing reciprocal

cooperators than the other two types of actors. The second and the

third facts, consistent with earlier findings as well (Figure 3), ensure

that reciprocal cooperators be sustained in early stages of the

evolution. This is important as survival of reciprocal cooperators is

important to the expansion of perfect cooperators as they are a

bridging group to convert the other two types of actors into perfect

cooperators. The simulation data (not reported) shows that

reciprocal cooperators are the first group in time to be converted

to perfect cooperators, followed by classical cooperators and

defectors. The proportion of conversion of each group follows the

same order.

The share of reciprocal cooperators can be as high as 78% if (1)

they are cohesive to one another; and (2) perfect and classical

cooperators, but not defectors, are strongly attached to them. Both

classical and perfect cooperators are help initiators. Upon

receiving the benefits from the two types of actors, if most of

reciprocal cooperators’ ties are directed to themselves, they

reciprocate by doing favors to one another, which invokes further

rounds of reciprocity, and the virtuous circle provides an

advantage in adaptive fitness to reciprocal cooperators [29,10].

Classical cooperators can take a proportion as high as 93% if all

actors are highly linked to them. A similar condition applies to the

prosperity of defectors with one exception— to gain popularity, it

is required that defectors not link to one another. This makes sense

as the encounter of two defectors does not benefit the adaptive

value of each other.

Figure 2. Illustration of the rule of rewiring ties. Upper panel:
Square shaped nodes represent one group (strategy) while circle
shaped nodes represent another. All actors are indexed consecutively in
their original torus components. The figure shows the joint network
neighborhoods of actor 1 and 2; nodes and edges beyond the joint
neighborhoods are omitted. Lower panel: If the tie of square 1-square
2 is prompted to rewire to the circle group, one of the end nodes, here
node 2, is detached from the tie, and the other node, node 1, is
reconnected to circle node 2.
doi:10.1371/journal.pone.0029188.g002

Network Homophily and Reciprocity

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e29188



In sum, a selection of optimal tie-rewiring probability sets

screened by genetic algorithm over a hundred generations shows

that the prosperity of the four types of actors each requires

somewhat different conditions. For classical cooperators, the key

lies in attraction of ties from all types of actors, including

themselves. The same principle applies to reciprocal cooperators,

except that defectors must be shunned in this case. Similarly,

defectors prosper by having a dense network with all other types of

actors, but not themselves. In contrast, perfect cooperators need to

be isolated in structure, and their expansion is channeled through

a few bridging ties with reciprocal cooperators. Group cohesive-

ness, i.e., ties with same group members, is required for prosperity

of each type of actor except for defectors. Only classical

cooperators can prosper with a dense network with defectors.

Finally, it is noteworthy that prosperity of one type of actor is

determined in part by how other types of actors are structured—

manifesting the property of interdependency in complex systems.

Notes on Robustness of the Results and Limitations of
the Model

The simulation results reported in Table 2 attempt to illustrate

the general conditions beneficial to the popularity of each type of

strategy. Using genetic algorithm, we attempt to locate the

probability sets, wrapped up in matrix P, that would maximize the

share of each strategy in the population. As a typical optimization

problem, we cannot be sure that the optimal matrix P is unique,

nor is there any perfect algorithm that guarantees all the optimal

solutions be located. In light of these facts, one should treat the

numeric information reported in Table 2 as a general trend rather

than a unique optimal condition. Nevertheless, the consistency in

results between the four-group and the two-group cases, wherein

full probability space is considered, confirms the merit of using

genetic algorithm for search of optimal solutions.

The simulation results presented here are built on a set of

parameters whose values are subject to modifications. We run

more simulations reported below to see how the results change

when some of the modeling assumptions are relaxed, parameter

values are adjusted, or alternative solutions are considered.

Regarding b (benefit of help) and c (cost of helping). It is

well established in mathematical/evolutionary biology that the

benefit-cost ratio (b/c) of helping is critical to the selection of

cooperation. A simple rule, derived originally from Hamilton [30],

predicts that cooperators are more likely to survive if the benefit-

cost ratio is large, other conditions being equal. We manipulate the

magnitude of b, leaving other conditions fixed in the simulation

model, to test how the benefit-cost ratio influences the results. For

Figure 3. The evolutionary advantages of different kinds of actors. Upper left panel: The evolutionary advantages of perfect cooperators
over defectors. The contour plot quantifies the average share of perfect cooperators over 100 cases. Share below 0.5 is in white color, representing
inferiority when competing with defectors. The two axes mark rewiring probabilities with an increment of 0.025. Upper right panel: The
evolutionary advantages of perfect cooperators over classical cooperators. Share below 0.5 is in white color, representing inferiority when
competing with classical cooperators. Lower left panel: The evolutionary advantages of perfect cooperators over reciprocal cooperators. Share
below 0.5 is in white color, representing inferiority when competing with reciprocal cooperators. Lower right panel: The evolutionary advantages
of reciprocal cooperators over classical cooperators. Share below 0.5 is in white color, representing inferiority when competing with classical
cooperators.
doi:10.1371/journal.pone.0029188.g003
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each type of strategy (Table 1), we adopt the corresponding

optimal network-tie-rewiring probability matrix (Table 2) as the

network generation principle. We then replicate five-hundred

random cases of the pay-it-forward game dynamics. The online

supporting material (Figure S1, Figure S2, Figure S3 and Figure

S4) reports the average share of each strategy over different values

of b. Clearly, increasing b leads to higher proportions of perfect

and reciprocal cooperators in the population. The effect, however,

is not as pronounced on the growth of defectors and classical

cooperators.

Regarding network density. In the current model, we

consider a regular square lattice network with the Neumann

neighborhood (a torus) as the default network (before tie rewiring

takes place). In the Neumann neighborhood, each actor has four

network neighbors. When a torus is projected on a (two-

dimensional) plane, each actor is neighboring others who have

one-unit of distance moving on the two coordinates. We can

increase network density by allowing actors to link to others

further away on the plane. Widening the neighborhood radius

from one (Neumann neighborhood) to four increases the number

of neighbors per actor from 4 to 24 (full network in the current

model setting with N = 100). We run more simulations, changing

network density in this manner, to see how network density

influences the results. The online supporting material (Figure S1,

Figure S2, Figure S3 and Figure S4) shows that increasing network

density does not impede, but instead benefits the selection of

perfect and reciprocal cooperators. The finding is opposite to the

general rule discussed in network-reciprocity modeling [4]:

cooperation thrives if b/c.k, where k represents average number

of network neighbors per actor. The discrepancy in the effect of

network density is due to the difference in modeling assumption: in

modeling cooperation game on graphs (or network reciprocity

defined in [4]), an actor interacts with each of his network

neighbors, while in the pay-it-forward game studied in earlier work

[9,19] and here, a helper randomly picks one network neighbor as

the recipient of help. It is easy to see that increasing network

density inflicts heavier burden on cooperators in the former case as

a cooperator needs incur the cost of helping for each neighbor.

While costly in the network reciprocity game, higher network

density renders more opportunities to receive favors from others in

the pay-it-forward game studied here. Reciprocating these favors,

albeit costly, form a virtuous circle by reinforcing the evolutionary

advantages of cooperators when they are structured cohesively in

networks. It explains why there is a difference in the effect of

network density between the two models of the evolution of

cooperation.

Regarding the adaptation rule. Throughout the paper thus

far, we use a deterministic learning-from-the-local-best adaptation

rule. Its empirical validity recently has received some support from

behavioral experiments [31].Certainly this is not the only

adaptation rule available for consideration. To see whether

adaptation rules make a difference in results, we run more

simulations, each of which adopts a unique adaptation process

currently studied in the literature, leaving other conditions same as

specified in the method section. We refer to a recent study [32]

that summarizes a great variety of combinations of adaptation

rules and update dynamics. Three adaptation rules considered

here are: Best Imitation—a deterministic adaptation rule that

imitates the strategy of the most successful neighbor in fitness (the

default model of the paper); Fermi function—a stochastic

adaptation rule that transforms exponentially the difference in

fitness to the probability of strategy imitation, and Linear

Probability Payoff Difference—a stochastic adaptation rule that

transforms linearly the difference in fitness to the probability of

strategy imitation. Moreover, two update dynamics are

investigated: synchronous updating—in each round, all actors

first play the pay-it-forward game, followed by strategy adaptation,

and asynchronous updating—actors take turns playing the game

and updating strategies. The online supporting material (Table S1,

Table S2, Table S3 and Table S4) shows how each strategy

Table 2. Means and standard deviations (in parentheses) of the ten optimal matrices P for each type of actor.

Matrices P that achieve the maximum share of:

D
(average share = 0.99)

RC
(average share = 0.78)

CC
(average share = 0.93)

PC
(average share = 0.70)

PDRD 0.06 (0.08) 0.69 (0.08) 0.11 (0.06) 0.25 (0.10)

PDRRC 0.37 (0.10) 0.14 (0.07) 0.11 (0.08) 0.51 (0.19)

PDRCC 0.31 (0.10) 0.10 (0.05) 0.74 (0.06) 0.24 (0.16)

PDRPC 0.26 (0.13) 0.07 (0.04) 0.04 (0.02) 0 (0)

PRCRD 0.68 (0.11) 0.02 (0.04) 0.01 (0.03) 0.06 (0.07)

PRCRRC 0.30 (0.11) 0.73 (0.08) 0.11 (0.06) 0.83 (0.08)

PRCRCC 0 (0) 0.10 (0.05) 0.84 (0.07) 0.11 (0.11)

PRCRPC 0.02 (0.04) 0.15 (0.11) 0.04 (0.05) 0 (0)

PCCRD 0.66 (0.11) 0.18 (0.04) 0.04 (0.05) 0.09 (0.06)

PCCRRC 0.11 (0.14) 0.76 (0.07) 0.12 (0.09) 0.70 (0.08)

PCCRCC 0.10 (0.07) 0.06 (0.07) 0.68 (0.06) 0.21 (0.07)

PCCRPC 0.13 (0.10) 0 (0) 0.16 (0.07) 0 (0)

PPCRD 0.62 (0.19) 0.00 (0) 0.00 (0) 0 (0)

PPCRRC 0.07 (0.05) 0.83 (0.08) 0.08 (0.09) 0.10 (0)

PPCRCC 0.06 (0.06) 0.00 (0) 0.74 (0.11) 0 (0)

PPCRPC 0.25 (0.21) 0.17 (0.08) 0.18 (0.06) 0.90 (0)

doi:10.1371/journal.pone.0029188.t002
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performs in different combinations of adaptation rules and update

dynamics. The tables report average share of each strategy in

networks generated by following their optimal tie-rewiring

probability sets respectively reported in Table 2. In general,

asynchronous updating is more beneficial than synchronous

updating to the increase of each strategy. Among the adaptation

rules considered here, Fermi function works the best, followed by

best imitation and linear probability function. Thus, the result

presented earlier in the paper, considering a deterministic best

imitation rule, represents a modest estimation of the evolutionary

result.

There could be a difference, however, between learning-from-

the-local-best and learning-from-the-global-best adaptation rule.

Actors under the former rule learn from the most successful one in

their local network neighborhoods, while under the latter rule,

they target the most successful one in the whole population.

Learning from the local best is a less radical selection rule in

evolutionary dynamics, and it helps preserve cooperation in

locality. As we can imagine, if actors possess local vision only, a

cluster of cooperators would learn from each other and remain

cooperators despite the fact that a few defectors on the skirt of the

cluster might fare better by exploiting cooperators positioned on

the periphery of the cluster. However, under certain circumstances

local adaptation is not beneficial to the selection of cooperation. It

has been shown that when adaptation is made locally, altruism not

only benefits a rival’s fitness, but also increases his evolutionary

advantages in taking over the neighborhoods which they both

compete for [33–35]. To modify Hamilton’s rule to this case, we

Figure 4. Graphic illustration of the optimal networks. Upper left panel: A representative network generated by following the optimal
rewiring strategy selected by genetic algorithm to maximize the popularity of prefect cooperators. Clockwise from the tiptop of the layout: the first
quadrant are nodes of defectors, followed by the second quadrant of reciprocal cooperators, the third quadrant of classical cooperators and finally
the fourth quadrant of perfect cooperators. Upper right panel: A representative network generated by following the optimal rewiring strategy
selected by genetic algorithm to maximize the popularity of reciprocal cooperators. The layout of nodes is same as above. Lower left panel: A
representative network generated by following the optimal rewiring strategy selected by genetic algorithm to maximize the popularity of classical
cooperators. The layout of nodes is same as above. Lower right panel: A representative network generated by following the optimal rewiring
strategy selected by genetic algorithm to maximize the popularity of defectors. The layout of nodes is same as above.
doi:10.1371/journal.pone.0029188.g004
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need to consider the extra cost of altruism associated with

increasing the competiveness of neighboring rivals [35]. Without

loss of generality, the current paper assumes that actors have local

vision both in playing the cooperation game and behavioral

adaptation. It is rather rare to see actors have a local vision in one

thing, yet a global one in the other.

Other issues. Varying population size is not expected to

change the results as long as the share of each strategy stays fixed

in the initial condition. Note that in the current model we start

with four isolated tori—one for each strategy—before ties are

rewired. Each strategy, instead of clustering in one torus, could

begin with a bunch of tori of smaller sizes. For this inquiry, we run

three separate simulations with the same N = 576. In one

simulation, each strategy starts structured in 16 tori of size 9; in

another simulation, each strategy is in 4 tori of size 36, and in the

last simulation, each strategy is in 1 torus of size 144. We run 500

cases for each condition. The results show a weak effect of group

size: the share of a strategy increases slightly when it starts with a

smaller number of tori of larger sizes. For example, for perfect

cooperators, the share is 0.59 in the first condition, 0.66 in the

second and 0.68 in the third.

Other technical details that control the simulation process, such

as the interval of behavioral updating (s) and the continuum of no

imitation occurring (y) used to stop the simulation, do not make

differences to the results.

Discussion

Anecdotes about daily-life activities and research findings from

laboratory experiments have confirmed the universality of the

pay-it-forward reciprocity in human nature. What is less clear is

how this kind of prosocial behavior comes into being given its

inferiority in adaptive value than self-interested acts. More than

two decades ago, Boyd and Richerson [18] drew a pessimistic

conclusion based on their evolutionary model that the pay-it-

forward reciprocity is not possible to emerge except in small

groups. Yet, a recent study [10] shows that generalized

reciprocity is possible to emerge so long as assortative interaction

is implemented. In this article, we argue that the pay-it-forward

reciprocity could prevail in large populations structured by

networks under certain spatial arrangements. Following the

framework of [9], we develop an evolutionary model and

examine how network homophily influences the evolution of the

pay-it-forward reciprocity. The simulation results carry two main

messages: first, actors who inherit the behavioral trait of

reciprocity need to be cohesive to one another in order to resist

the invasion of defectors or non-reciprocal cooperators. Howev-

er, contacts with non-reciprocator groups, albeit slightly, is

important to further increasing the popularity of reciprocity. The

first principle helps consolidate the adaptive advantage of

cooperators, while the second principle helps market cooperation

to defectors or non-reciprocators. These two principles taken

together imply that moderate heterogeneity in the demographic

composition of network neighborhood is beneficial to the

emergence of cooperation. This insight is consistent with

modeling work on cooperation along a ring structure [36],

collective action dynamics [37], the evolution of social norms

[38], and empirical finding of the spread of contraceptive use in

social networks [39].

The first principle that cohesion is necessary for reciprocators

to be adaptive is in line with the previous research on inclusive

fitness that stems from the original work on kin selection [31].

According to the theory of kin selection, altruistic behavior is

adaptive when rb-c.0, where c is the cost, b is the benefit, and r is

the relatedness of the two actors. This simple inequality means

that higher levels of cooperation are attained when r or b is higher

while c is lower. This simple rule has been shown to explain

altruistic behavior in a wide range of social conditions [40]. Two

possible mechanisms through which a high r could arise between

individuals are kin discrimination and limited dispersal [41]. Kin

discrimination means that an individual can distinguish between

relatives and non-relatives and preferentially direct cooperation

towards relatives. Limited dispersal means that offspring are born

and live around parents [30]. As an unintended consequence,

relatedness becomes higher among interacting individuals. It

means that even if individuals engage in altruistic behavior

indiscriminately, their targets are likely to be their relatives. Our

model echoes the limited dispersal argument of inclusive fitness

theory although the inclusive fitness costs and benefits of

cooperation in viscous population can cancel out, unless the

scales of interaction and selection are different [33–35]. This is

because the more likely cooperators interact with one another,

despite higher benefits being achieved, the less likely defectors

outside the clusters of cooperators can be reached and adapted to

cooperation. Our model shows that adequate interaction with a

different kind of actors does not impede, but instead benefits the

increase of cooperation. It is not only because contacts with

heterogeneous others help propagate the adaptive advantages of

cooperation to non-cooperators, but also because the evolution-

ary advantages of cooperation stem in part from cohesive

interactions across two different, yet mutually beneficial types of

actors, such as perfect cooperators and reciprocal cooperators in

the pay-it-forward game. Our model thus enriches inclusive

fitness theory by demonstrating some conditions under which

interaction with non-relatives can be beneficial for cooperators to

be adaptive.

Network homophily—the tendency of agents to form social

relationships with those with similar attributes or backgrounds—is

a universal phenomenon in various domains, ranging from the

formation of friendship in high schools [42] to partner choice in

marriage [43]. It is unclear why humans possess a strong

propensity to associate with the like, but in the study on group

cooperation and coordination, research shows that homophily

helps reduce communication cost and signify group identity,

thereby facilitating cooperation within groups [44]. The benefit of

increasing group welfare can explain in part why homophily

becomes a strong psychological principle guiding the formation of

social relationships. However, cooperation induced by group

homophily is limited to same-group members. Larger-scale

cooperation, such as combating global warming, would inevitably

require alliances that go beyond local group boundaries. As is

pointed out in this article, the ingredient of moderate heteroge-

neity added to a homophilous environment sometimes does not

hamper, but instead benefits the propagation of cooperation,

although how heterogeneous is seen as optimal depends on the

social context in question.

The current study hopes to stimulate more empirical research

on the network foundation for the emergence of the pay-it-forward

reciprocity. As is emphasized in this article, not only is the

typology of networks, but also the spatial distribution of

heterogeneous actors is critical to how far the conduct of

reciprocity spreads. To empirically test the idea, one can, for

example, categorize subjects based on their prosociality propensity

[45] and then manipulate the spatial distribution of these subjects

in network settings conducted either in the laboratory or in the

field. Feedback from the empirical research and new models

modified according to it will enhance our understanding of how

human morality emerges.
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Materials and Methods

List of Parameter Values (for the simulation results
reported in the context)

Population size (N) = 100

Benefit of help (b) = 5

Cost of helping (c) = 3

Simulation is stopped if no imitation occurs for (y) = 200 rounds

Behaviors are consider for adaptation for every (s) = 5 rounds

Number of replications for each rewiring probability set: 50

The pseudo-code of the simulation model can be found in the

online supporting material (File S1).

Supporting Information

Figure S1 Average share of defectors over different
levels of b and network density.
(DOC)

Figure S2 Average share of reciprocal cooperators over
different levels of b and network density.
(DOC)

Figure S3 Average share of classical cooperators over
different levels of b and network density.
(DOC)

Figure S4 Average share of perfect cooperators over
different levels of b and network density.

(DOC)

Table S1 Average share of defectors in different
combinations of update dynamics and adaptation rules.
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Table S2 Average share of reciprocal cooperators in
different combinations of update dynamics and adapta-
tion rules.
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Table S3 Average share of classical cooperators in
different combinations of update dynamics and adapta-
tion rules.
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Table S4 Average share of perfect cooperators in
different combinations of update dynamics and adapta-
tion rules.

(DOC)
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