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Abstract 

Phylogeographic inference of the dispersal history of viral lineages offers key opportunities to tackle epidemiological questions about 
the spread of fast-evolving pathogens across human, animal and plant populations. In continuous space, i.e. when locations are spec-
ified by longitude and latitude, these reconstructions are however often limited by the availability or accessibility of precise sampling 
locations required for such spatially explicit analyses. We here review the different approaches that can be considered when genomic 
sequences are associated with a geographic area of sampling instead of precise coordinates. In particular, we describe and compare 
the approaches to define homogeneous and heterogeneous prior ranges of sampling coordinates.

Key words: virus; host species; continuous phylogeography; sampling precision; Bayesian inference; BEAST.

© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License 
(https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original 
work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

1. Introduction
Over the past decade, Bayesian phylogeographic inference meth-
ods have become popular approaches to reconstruct the dispersal 
history and dynamics of fast-evolving pathogens. Many exam-
ples exist for RNA viruses circulating in human (Faria et al. 2017; 
Zeller et al. 2021), animal (Torres et al. 2014; Duchatel, Bronsvoort, 
and Lycett 2019), and plant (Trovão et al. 2015; Kim et al. 2018) 
populations. Beyond descriptive epidemiological aspects, phylo-
geographic reconstructions have also been used to test hypotheses 
about the mode and tempo of viral spread. For instance, phylo-
geographic approaches have been used to test the importance of 
climatic, landscape, and host-related factors affecting bluetongue 
virus diffusion across Europe (Jacquot et al. 2017), rabies virus 
circulation in Tanzania (Brunker et al. 2018), and the dispersal 
dynamics of West Nile virus lineages in North America (Dellicour 
et al. 2020a). Recently, Guinat et al. also employed a phylogeo-
graphic approach to analyse several predictors of avian influenza 
H5N8 virus spread between poultry farms (Guinat et al. 2021).

The three most popular model-based phylogeographic
approaches include (1) discrete phylogeographic inference using 
a continuous-time Markov chain model (Lemey et al. 2009) 
and inferring lineage transition events among discrete sam-
pling locations, (2) inference using structured coalescent models

(De Maio et al. 2015; Müller, Rasmussen, and Stadler 2018) and 

(3) continuous phylogeographic approaches aiming to infer geo-

graphic coordinates at ancestral nodes (Lemey et al. 2010; Pybus 

et al. 2012, see Fig. 1 in Baele et al. 2018 for a visual compari-

son). These different methods are implemented in the software 

packages BEAST 1 (Suchard et al. 2018) and BEAST 2 (Bouckaert 

et al. 2019). The choice between a discrete or continuous phylo-

geographic approach depends on the sampling pattern and on the 

ecology of the studied organism (or on the epidemiology of the 

studied pathogen) but also on the question under investigation 
(Faria et al. 2011; Rasmussen and Grünwald 2021). For instance, 
the discrete approach may be preferred in situations where mul-
tiple sequences are available for a limited number of locations 
and/or if the sampling distribution can be readily discretized into a 
limited set of locations (Faria et al. 2011). However, the continuous 
approach can be more relevant when samples are continuously 
distributed across space or when diffusion occurs across a land-
scape in a wave-like manner, making it frequently used to track 
the spread of wildlife diseases (Rasmussen and Grünwald 2021).

Compared to the discrete model and structured coalescent 
models, the continuous model does not require an arbitrary 
grouping of sampling locations, nor does it have to assume 
that ancestors are located at (one of) the sampling locations 
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Figure 1. Illustration of the different procedures that can be used to define a homogeneous or heterogeneous prior range of sampling coordinates. To 
perform a continuous (i.e. spatially explicit) phylogeographic reconstruction of the dispersal history of a fast-evolving pathogen, geographic 
coordinates associated with the sampling location of each genomic sequence included in the analysis are required. However, precise sampling 
locations are frequently unknown, not available, or not accessible in the case of human cases protected by privacy data protection rules. When the 
small administrative area of origin is known (A), sampling coordinates can be integrated through a homogeneous prior range delineated by the 
polygon of this administrative area. On the contrary, when only the upper-level larger administrative area (e.g. province and state) is known (B), it 
becomes less relevant to consider the associated polygon to define the prior range of sampling coordinates. In the latter case, and in order to avoid 
having to discard the considered sample from the data set, external data can be used to define a heterogeneous prior range of sampling coordinates, 
which thus uses prior information to decrease the uncertainty associated with the geographic origin of the sample. Practically, two different types of 
external data can be considered: host species distribution (C) or, ideally, the spatial repartition of positive or outbreak cases recorded at the considered 
sampling time (D). In both cases, those external data are used to define the relative sampling probability assigned to a series of smaller polygon units. 
In all maps, the actual but unknown sampling point is indicated by a black dot. In Panels A and B, the centroid point of the small and larger 
administrative area of origin is displayed as an orange and blue cross, respectively.

(Dellicour et al. 2018). Furthermore, while the continuous phy-
logeographic approach is also impacted by heterogeneous sam-
pling efforts (Kalkauskas et al. 2021), sampling bias is known to 
notably impact discrete phylogeographic reconstructions (De Maio 
et al. 2015; Baele et al. 2017) by directly affecting transition rates 
inferred between discrete locations. The discrete phylogeographic 
approach does however allow for sampling uncertainty among a 
given set of discrete locations (Scotch et al. 2019), can be param-
eterized in terms of covariates (Lemey et al. 2014) and can be 
extended to model complex temporal (Bielejec et al. 2014; Dudas 
et al. 2017) or phylogenetic (Faria et al. 2013) scenarios.

For the reasons outlined above, the continuous approach often 
offers a more realistic alternative to reconstruct the spread of 
viral lineages in space and time in addition to generating a more 
fine-grained reconstruction. This approach is however associated 
with at least two limitations. First, the continuous model is only 
adapted to dispersal processes that maintain some relationship 
with geographic distance. Second, it requires geographic coor-
dinates associated with the sampling location of each genomic 
sequence included in the analysis. In practice, this latter require-
ment can represent an important limitation because precise sam-
pling locations are frequently unknown, not available, or even not 
accessible in the case of human or veterinary cases protected by 
privacy data protection rules/laws. In public databases such as 
GenBank or GISAID, an important yet hardly estimable amount 
of genomic sequences are only associated with their country of 
sampling or a relatively broad administrative area of origin. When 
research teams aim to complement their new data sets with 
existing genomic data or to perform a meta-analysis, such a lack 

of sufficiently precise sampling metadata can prevent the inclu-
sion of valuable genetic data in their analysis. To circumvent this 
issue and maximize the number of publicly available genomic 
sequences that can be included in large molecular epidemiological 
studies employing continuous phylogeographic inference, several 
methodological approaches have been proposed. We here detail, 
discuss and compare those different possibilities.

2. Standard approaches
When the reported administrative area of origin is relatively small 
(Fig. 1A), several relevant options can be considered. First, sam-
pling coordinates could be approximated by the centroid point of 
the administrative polygon. The fictive example depicted in Fig. 1A 
illustrates that this may be a sensible approximation when the 
actual (unknown) sampling point is by chance not so distant from 
this centroid point. However, considering a centroid point is not 
necessarily the most adequate option for several reasons: (1) for 
some administrative areas, the centroid point can sometimes fall 
outside the border of the administrative polygon; (2) assigning 
precise coordinates of a fixed point ignores the inherent uncer-
tainty associated with the sampling location of the considered 
genome sequence; (3) the relaxed random walk (RRW) model of 
diffusion used to perform continuous phylogeographic inference 
does not allow different sequences to be associated with identical 
geographic coordinates. If this is the case, a restricted amount of 
noise is frequently added to slightly differentiate identical sam-
pling coordinates. In practice, such noise is added using a ‘jitter’ 
option that uniformly picks such noise from a user-defined square 



area around the sampling point, a square that could problemat-
ically include areas falling outside the administrative polygon of 
the origin or even non-accessible areas (e.g. water areas in case 
of zoonoses impacting terrestrial species). For these different rea-
sons, the so-called ‘jitter’ option should ideally be avoided when 
sampled sequences are only associated with an administrative 
area of origin (Dellicour et al. 2018).

3. The homogeneous prior approach
An alternative to centroid locations consists of drawing random 
sampling points within the administrative polygon (Dellicour et al. 
2018) or, ideally, using the polygon to define a prior range of pos-
sible sampling coordinates and estimate the sampling location 
through Bayesian phylogeographic inference (Fig. 1A). Defining 
such a homogeneous spatial range of values has initially been 
proposed by Bouckaert and colleagues to trace the origins and 
expansion of the Indo-European languages (Bouckaert et al. 2012). 
For this purpose, they used the RRW diffusion model to model 
the language evolution from a data set made of basic vocabu-
lary terms and geographic range assignments for more than 100 
different languages. To account for the fact that languages are 
spoken in geographic areas, they extended the RRW model by 
allowing the specification of a geographic range (here associated 
with each language) rather than a point location to explicitly con-
sider the uncertainty around the location assignment. With this 
novel approach, they found decisive support for an agricultural 
expansion from Anatolia beginning 8,000 to 9,500 years ago but 
also illustrated that phylogeographic reconstructions based on 
a diffusion model can find applications in other fields such as 
linguistics and anthropology.

In the context of a biogeographic analysis estimating ances-
tral areas of the plant genus Centipeda in Australia, Nylinder 
et al. subsequently proposed to apply a similar methodological 
approach accommodating shaped areas for tip locations (Nylinder 
et al. 2014). Specifically, each Centipeda species was assigned to 
a homogeneous prior range of spatial coordinates defined by its 
extant distribution. Their results shed light on how the evolution-
ary history of this plant genus was associated with the temporal 
increase of aridity since the Pliocene and indicate that Centipeda
occurrences in western Australia resulted from a recent dispersal 
rather than an ancient vicariance. This study opened the per-
spective of biogeographic analyses of taxonomic groups for which 
the current species ranges cannot easily be delineated as discrete
areas.

Since these two initial applications, which are actually out-
side the field of molecular epidemiology, homogeneous prior 
ranges of sampling coordinates have also been used for phylogeo-
graphic analyses of viruses such as the porcine deltacoronavirus 
(PDCoV) in China (He et al. 2020). In this study, the authors per-
formed discrete as well as continuous phylogeographic analyses 
to reconstruct the dispersal history of PDCoV lineages across the 
Chinese territory. The continuous phylogeographic analysis was 
based on an alignment of newly sequenced and publicly avail-
able genomic sequences that were not associated with sampling 
coordinates or a sufficiently precise sampling location from which 
geographic coordinates could have been retrieved. The authors 
therefore employed the homogeneous prior approach to define 
ranges of sampling coordinates delineated by the administrative 
polygon of origin of each genomic sequence. Their resulting phy-
logeographic reconstruction highlighted frequent long-distance 
dispersal events that could have involved human-mediated trans-
mission events.

More recently, the RRW diffusion model coupled with the 
specification of homogeneous prior ranges of trait values has 
been introduced for the ancestral inference of the climatic niche
(as defined by the occupied two-dimensional temperature and 
precipitation niche space) of a group of bird species (Quintero, 
Suchard, and Jetz 2022). As introduced by the authors, one cur-
rent challenge lies in developing analytical approaches that allow 
linking species niche characterization with describing their evo-
lution. In their study, they analysed the evolution of the two-
dimensional temperature and precipitation niche space occupied 
by different bird species. Their findings include the confirmation 
that extant birds coevolved from warm climatic niches into colder 
and drier environments. This recent study further opens the door 
for enhanced integrations between ecological niche modelling and 
evolutionary analyses, leading to methodological approaches that 
could further help understanding the impact of past climate and 
land-use changes on the ecological niche evolution of target living 
organisms (endangered species, invasive species, pathogens, etc.).

4. The heterogeneous prior approach
While the homogeneous prior range of geographic coordinates 
constitutes an interesting approach in the case of relatively small 
administrative polygons, it progressively loses its relevance when 
dealing with larger administrative sampling areas. As illustrated 
in Fig. 1B, sampling points drawn from such a large prior range 
can potentially fall quite far from the actual (unknown) sam-
pling location. In the context of (viral) phylogeographic analyses, 
integrating sampling coordinates from too large polygons could 
result in a non-negligible amount of uncertainty that could in turn 
impact the precision associated with the phylogeographic recon-
struction. To mitigate this issue, Dellicour et al. recently proposed 
to extend the homogeneous prior feature to a heterogeneous one 
(Dellicour et al. 2020b). In practice, they allowed specifying sev-
eral non-overlapping sub-polygons, where each sub-polygon can 
be associated with a different sampling probability, the sum of 
which is constrained to 1 (Dellicour et al. 2020b). Implemented in 
the software package BEAST 1.10 (Suchard et al. 2018) alongside 
the homogeneous prior approach (Bouckaert et al. 2012; Nylinder 
et al. 2014), each series of sub-polygons assigned to a sampled 
sequence can be defined in a distinct external Keyhole Markup 
Language file. The advantage of this feature lies in the possibil-
ity to constrain the overall prior range and hence to reduce the 
sampling uncertainty.

In order to define the sampling probability associated with each 
sub-polygon, one can resort to external data such as the host dis-
tribution (Fig. 1C) or, ideally, a distribution of positive cases or 
outbreaks recorded at the time of sampling (Fig. 1D). In the for-
mer case, the sampling probability assigned to each sub-polygon 
can be defined according to the ratio between the estimated host 
counts in that sub-polygon and the estimated host counts for the 
entire polygon of origin (Fig. 1C). When only a species density layer 
is available, density values should ideally be summed rather than 
averaged across grid cells, at least if the objective is to define sam-
pling probabilities according to the relative host presence and not 
density. However, when available, a distribution of positive cases 
or outbreaks recorded at the sampling time should be favoured to 
define the sampling probabilities assigned to each sub-polygon. 
Indeed, while the number of hosts estimated in each location 
reflects the relative potential for infections and thus to sample 
the pathogen, confirmed cases or outbreaks further certify that 
such infections were at least recorded in the considered areas. 
Similar to the situation where they are defined according to the 



host species distribution, sampling probabilities can then be esti-
mated proportionally to the number of positive cases or outbreaks 
recorded in each sub-polygon (Fig. 1D).

5. Limitations
Both the homogeneous and heterogeneous prior approaches are 
only applicable when the sampled sequences are associated with 
a well-delimited geographic area of origin, such as, for instance, an 
administrative polygon within which we can confidently assume 
that the sequence was sampled. In other words, if the registered 
administrative area can not be trusted as the actual polygon in 
which the sequence was sampled, none of those approaches are 
relevant. This can, for instance, be the case when the adminis-
trative area misleadingly corresponds to the location where the 
sample was conserved and/or analysed. Furthermore, selecting 
one of the two approaches is described above as a choice depend-
ing on the relative size of the known geographic area of origin. 
Yet, the notion of ‘large administrative area’ is of course sub-
jective and it depends on the nature and epidemiology of the 
pathogen under investigation. For instance, one might consider 
the dispersal capacity of the pathogen in defining if a known geo-
graphic area of origin is more or less large, i.e. if a homogeneous 
or rather a heterogeneous prior approach should be selected to 
define/constrain the sampling uncertainty. Finally, in the con-
text of the heterogeneous prior approach, using a collection of 
sub-polygons corresponding to smaller administrative areas each 
associated with a distinct sampling probability is not necessarily 
relevant in regard to the external variable used to define those 
probabilities. For example, when a host population count/den-
sity raster (i.e. geo-referenced grid of population density values) 
is used to define a heterogeneous prior range, directly consider-
ing each raster cell as a distinct square polygon might be more 
relevant than pooling host count/density values within a series of 
sub-polygons corresponding to administrative areas. In practice, 
the considered raster should then initially be converted into a set 
of square polygons each associated with a host count value and 
that will subsequently be subsampled to define heterogeneous 
prior ranges.

6. Conclusion
Defining heterogeneous prior ranges of sampling coordinates 
according to external data, such as the presence of host species 
or the distribution of confirmed infectious cases, has the poten-
tial to decrease the sampling uncertainty associated with an 
initially large administrative area of origin. In some cases, such 
an approach could increase the number of available genomic 
sequences that can be included in a continuous phylogeographic 
analysis without integrating too much uncertainty in the infer-
ence of ancestral locations. Even so, accessibility to sufficiently 
precise sampling locations remains a notable practical challenge 
for performing large-scale phylogeographic investigations involv-
ing publicly available genomic sequences. Indeed, an important 
proportion of publicly available genomic data does not include 
metadata on sampling location that could be exploited to define 
a precise sampling point, a homogeneous or heterogeneous prior 
range of sampling coordinates. Aiming for a more systematic inte-
gration (or even a required integration prior to submission) of 
precise sampling metadata could potentially increase the scope 
of epidemiological studies that could benefit from large-scale 
spatially explicit phylogeographic analyses.

7. Resources
The homogeneous and heterogeneous sampling prior approaches
are both implemented in the software package BEAST 1.10
(Suchard et al. 2018). A detailed protocol on how to prepare and 
conduct a continuous phylogeographic analysis is available at
https://doi.org/10.1093/molbev/msab031 (Dellicour et al. 2021)
and has also been described on the BEAST community website
using a yellow fever virus study case as an example: https://beast.
community/workshop_continuous_diffusion_yfv (Faria et al.
2018). An example of how to prepare a continuous phylo-
geographic analysis using the homogeneous or heterogeneous 
sampling prior approach can be found at https://github.com/sdel-
licour/h5n1_mekong (Dellicour et al. 2020b).
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