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Abstract: Risk factors for type 2 diabetes mellitus (T2DM) consist of a combination of an unhealthy,
imbalanced diet and genetic factors that may interact with each other. Single nucleotide polymor-
phism (SNP) in the prospero homeobox 1 (PROX1) gene is a strong genetic susceptibility factor for
this metabolic disorder and impaired β-cell function. As the role of this gene in T2DM development
remains unclear, novel approaches are needed to advance the understanding of the mechanisms
of T2DM development. Therefore, in this study, for the first time, postprandial changes in plasma
metabolites were analysed by GC–MS in nondiabetic men with different PROX1 genotypes up to
5 years prior to prediabetes appearance. Eighteen contestants (12 with high risk (HR) and 6 with
low risk (LR) genotype) participated in high-carbohydrate (HC) and normo-carbohydrate (NC) meal-
challenge tests. Our study concluded that both meal-challenge tests provoked changes in 15 plasma
metabolites (amino acids, carbohydrates, fatty acids and others) in HR, but not LR genotype carriers.
Postprandial changes in the levels of some of the detected metabolites may be a source of potential
specific early disturbances possibly associated with the future development of T2DM. Thus, accurate
determination of these metabolites can be important for the early diagnosis of this metabolic disease.

Keywords: NC/HC-meal intake; PROX1; plasma; GC–MS; metabolomics; prediabetes; T2DM;
carbohydrates; amino acids; fatty acids

1. Introduction

Type 2 diabetes mellitus (T2DM) is a complex polygenic disorder [1] characterised by
the incapability of pancreatic β-ells to increase insulin secretion to compensate for insulin
resistance (IR) in peripheral tissues [2]. According to the latest epidemiological studies,
the prevalence of people with T2DM worldwide was 463 million in 2019, and this number
is expected to increase to 592 million by 2035 [3] and 629 million by 2045 [2]. However,
rapid implementation of appropriate prevention and treatment strategies is challenging
due to problems with the diagnosis of T2DM in its early stages. The main reason is that the
symptoms of T2DM are not obvious or only partially manifested at the beginning of the
disease [4]. Additionally, conventional clinical and blood biomarkers, such as BMI, fasting
blood glucose or HbA1c levels, are well-established predictors but remain imperfect and
provide limited insight regarding underlying pathophysiology [5].
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It was confirmed that risk factors for T2DM consist of a combination of an imbalanced
diet, sedentary lifestyle and genetic factors that may interact with each other [1]. A
proper diet and systematic physical activity are essential lifestyle determinants of potential
T2DM development. However, the role of these modifiable factors in the prevention of
T2DM strongly depends on genetic susceptibility. Therefore, an indication of T2DM risk
subgroups with genetic characteristics known to promote disease development, especially
sensitive to specific foods, nutrients or physical activity, may help design and implement
individualised and targeted intervention and/or prevention strategies [6]. We have been
progressing our understanding of the genetic susceptibility to T2DM, including single-
nucleotide polymorphisms (SNPs) of particular genes. Several genes have been identified
that may be associated with T2DM; among these, the prospero homeobox 1 (PROX1) is
considered an important gene for T2DM risk due to its function regulating glucose-induced
insulin secretion [7]. Already, in the year 2005, Harvey et al. [8] reported an animal model
in which PROX1 heterozygous adult mice became obese and had higher serum insulin
levels and hepatic lipid accumulation. In the study conducted by Kretowski et al. [9],
it was reported that people who possess this variant are more glucose intolerant and
have more visceral fat than people lacking it. It was also indicated that mechanisms by
which the PROX1 gene affects the susceptibility to T2DM seem to be more complex [9].
Thus, identifying individuals with high risk for T2DM and elucidating the underlying
mechanisms is crucial for developing effective strategies to prevent this disease [5].

The surge in the prevalence of T2DM during the past several decades cannot be
explained by only genetic factor alone. It was confirmed that inappropriate diet combined
with a genetic predisposition might be a factor accelerating specific changes in the metabolic
profile of people susceptible to T2DM. However, reproducible data supporting gene–diet
interaction are still sparse, and little knowledge about gene–diet interactions has been
applied in public health practice. Thus far, only a few studies have indicated interactions
between specific dietary components and individual genetic variants [1,10,11]. Yet, some
findings have been replicated, and it is unclear whether the importance of overall dietary
habits, including T2DM-related food intake, differs depending on the overall genetic
profile [1]. Our recent study [11] was the first to study the influence of PROX1 gene–diet
interaction on the plasma metabolome of healthy genetic risk carriers. In this study, liquid
chromatography quadrupole time-of-flight mass spectrometry (LCQTOF-MS) was used
to evaluate postprandial changes in plasma metabolites during the high-carbohydrate
(HC) and normo-carbohydrate (NC) meal-challenge tests in nondiabetic men with different
polymorphisms in the PROX1 rs340874 gene. This study revealed that plasma metabolites
postprandially changing in the high-risk PROX1 genotype carriers belong to T2DM-related
metabolic pathways [11].

Metabolomics has already allowed the identification of metabolites that can serve as
potential biomarkers for the diagnosis or treatment of T2DM [12]. The relationships be-
tween metabolites level and insulin resistance [13,14], prediabetes [15,16] and T2DM [4,17]
have been evaluated in several studies using mass spectrometry (MS) coupled with gas
(GC) or liquid (LC) chromatography. Thus far, metabolites such as aromatic amino acids
(AAAs), branched-chain amino acids (BCAAs), sugar metabolites and gluconeogenesis
substrates (including glucose and fructose), and finally, different lipid subclasses (such
as phospholipids, sphingomyelins, triglycerides and also specific lipids), identified using
high-throughput metabolomics, have been associated with T2DM or different stages of its
development. Considering metabolomics research, LC–MS and GC–MS are complementary
platforms [5], and reviewed literature indicate that many T2DM-related plasma or serum
metabolites can be measured using GC–MS [18–20]. Additionally, GC–MS is one of the
most efficient, reproducible and convenient methods for quantitative and comprehensive
metabolomics analysis due to its robustness, excellent separation capability, selectivity and
sensitivity [19].

Genetic susceptibility to type 2 diabetes includes single-nucleotide polymorphisms
(SNPs) of several genes. Prospero-related homeobox 1 (PROX1) plays pivotal roles in
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the embryonic formation of several organs and tissues, including liver, pancreas, eye,
lymphatic vessel, nerve and cardiac muscle in mice [1–4] and a meta-analysis of a genome-
wide association study revealed that the rs340874 SNP in the PROX1 gene is associated
with type 2 diabetes reported in an animal model in which PROX1 heterozygous adult
mice become obese and had higher serum insulin levels and hepatic lipid accumulation.

The present study is a continuation of the above-mentioned study of Adamska-
Patruno et al. [11]. To complement previous meal-challenge metabolomics results, in
the present work, metabolites were measured in samples from the same patients using
GC–MS. Of note, participants of this study were recruited from the cross-sectional study
called 1000 PLUS, which has been described in details previously [21]. We have recently
performed 5-years of follow-up visits with the individuals from the 1000 PLUS cohort [22].
Interestingly, half of the risk carriers from the present study participated in the follow-up
visit, and we observed that their parameters assessing glucose homeostasis (e.g., fasting
plasma glucose, HOMA-IR, HbA1c) have worsened, indicating the development of a
prediabetic state. Therefore, obtained results revealed novel meal-affected metabolites,
which may be connected with the process of T2DM development within the next 5 years.
Consequently, this study is of great importance, as it provides new insights into PROX1
gene–diet interactions and potential T2DM development.

2. Materials and Methods
2.1. Samples

The study was conducted on selected Polish-origin Caucasian volunteers recruited
to the meal-test study from the previously described [11,21] 1000 PLUS cohort. This trial
was registered at www.clinicaltrials.gov (accessed on 15 April 2021) as NCT03792685.
Taking into consideration the fact that investigated factors can be characterised by sexual
dimorphism [23], only male participants were included in the study group. Participants
(n = 18) were divided into 2 groups based on the PROX1 rs340874 genotypes: the homozy-
gous carriers of high-risk (HR) allele C (CC genotype, n = 12) and carriers of low-risk
(LR) allele T (TT genotypes, n = 6). When the meal-challenge study was conducted, all
participants did not suffer from T2DM, prediabetes or other disorders and did not receive
any treatment that might affect the results. Based on the daily physical activity measure
assessed with the use of self-administered questionnaires [24], all participants were clas-
sified as having moderate or high (the majority of the participants) physical activity. A
daily energy intake was also similar for all participants (1991.8 ± 529.7 kcal) with 20.4%
± 4.4% (19.4% ± 1.4% vs. 21.6% ± 4.3% for LR vs. HR, p = 0.4) of energy from protein,
33.6% ± 5.8% (33.9% ± 10.0% vs. 31.7% ± 5.3% for LR vs. HR, p = 0.9) from fat and 42.0%
± 6.3% (41.4% ± 6.2% vs. 42.7% ± 6.8% for LR vs. HR, p = 0.9) from carbohydrates. Five
years after the first examination, subjects from the 1000 PLUS cohort were called for a
follow-up visit [22]. Seven individuals from the risk carriers group responded to this
call, and for six of them, we observed worsening of selected clinical parameters assessing
glucose homeostasis (e.g., fasting plasma glucose, HOMA-IR, HbA1c), indicating the devel-
opment of prediabetic state manifested by increased (within the range of 100–125 mg/dL)
fasting plasma glucose (three individuals) or increased (within the range of 5.7–6.4%)
HbA1c value (two individuals) or insulin resistance (HOMA-IR = 4.6, one individual).

2.2. Regents

Pentadecanoic acid (99%), methyl stearate standards, HPLC grade methanol and
silylation-grade pyridine were purchased from Sigma-Aldrich (Steinheim, Germany).
Reagents for derivatisation (O-methoxyamine hydrochlorideand BSTFA:TMCS (N,O-Bis
(trimethylsilyl)trifluoroacetamide with 1% Trimethylchlorosilane), 99:1 (SylonBFT)) were
purchased from Sigma-Aldrich (Steinheim, Germany) and Supelco (Belle-fonte, PA, USA),
respectively. Two standard mixes for GC–MS, one containing grain fatty acid methyl esters
(C8:0–C22:1, n9) and another standard mix with a mixture of n-alkanes (C8–C40) and

www.clinicaltrials.gov
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analytical grade heptane, were purchased from Fluka Analytical (Sigma-Aldrich Chemie
GmbH, Steinheim, Germany).

2.3. Working Solution and Standards

Individual stock solutions of 4-nitrobenzoic acid (4-NBA) and methyl stearate (IS)
were prepared in methanol and stored at −20 ◦C. These solutions were used to prepare an
intermediate solution of each compound which were stored at 4 ◦C during the working
week and appropriately diluted on the day of the analysis.

2.4. Ethics

The study procedures were conducted in accordance with all of the ethical stan-
dards of human experimentation and with the Declaration of Helsinki. The study protocol
was approved by the local Ethics Committee (Medical University of Bialystok, Poland, R-I-
002/35/2009), and before any study procedures, all the participants signed informed consent.

2.5. Meal Challenge Tests

The volunteers were studied twice, within an interval of 2 to 3 weeks, in random
order. Participants were instructed to avoid coffee, alcohol and excessive physical exercise
on the day before each test and to maintain their regular lifestyle throughout the study.
After fasting blood collection, participants received a standardised HC-meal (300 mL,
Nutridrink Juice Style, Fat Free, Nutricia, Poland), which provided 450 kcal (89% of energy
from carbohydrate—around 100 g, 11% from protein—around 12 g and 0% from fat, or
an NC-meal (360 mL, Cubitan, Nutricia, Poland), providing 450 kcal (45% of energy from
carbohydrate—around 50 g, 30% from protein-around 34 g and 25% from fat—around 13 g,
choline 69 mg/100 mL). The blood for metabolomics analyses was collected at fasting state
and 30, 60 and 120 min after meal intake.

2.6. Metabolomics Analysis

Metabolite extraction was performed as described by Dudzik et al. [25] with a small
modification. Plasma (40 µL) was deproteinised with 120 µL of 25 ppm 4-NBA in cold
acetonitrile (1:3, −20 ◦C), followed by two-step derivatisation: (i) methoximation with
O-methoxyamine hydrochloride in pyridine (15 mg/mL, room temperature, 16 h) followed
by (ii) silylation with BSTFA containing 1% TMCS (70 ◦C, 1 h). Metabolic fingerprinting
(MF) was performed using an HP 6890 Series GC system equipped with an HP 6890
autosampler and a Mass Selective Detector 5973 (Agilent Technologies, Palo Alto, CA,
USA). 1 µL of the derivatised plasma sample with IS was injected onto a DB-5MS capillary
GC column (30 m × 0.25 mm × 0.25 µm) using helium as carrier gas at a constant gas flow
of 1.0 mL/min. The injector temperature was set at 250 ◦C and the split ratio to 1:10. The
temperature gradient program started at 60 ◦C held for 1 min, followed by a subsequent
increase in temperature to 320 ◦C at a rate of 10 ◦C/min. The GC–MS transfer line, filament
source and the quadrupole temperature were set at 280, 230 and 150 ◦C, respectively. The
electron ionisation (EI) source was set at 70 eV, and the mass spectrometer was operated in
full scan mode, applying a mass range from m/z 50 to 600 at a scan rate of 1.38 scan/s.

2.7. Quality Control Samples

To determine the reproducibility of plasma sample preparation and the stability of
the analytical platform used, several QC samples were prepared by mixing equal volumes
of all analysed samples. Subsequently, preparation of the QC samples was performed
using the same procedures as was described above. QC runs were performed prior to the
analysis of all plasma samples until system equilibration was achieved.

2.8. GC–MS Data Treatment

Total ion chromatograms (TICs) obtained after the analysis were inspected based on
both, quality of the chromatograms and internal standard signals. At first, samples were
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processed with Mass Hunter Workstation GC/MS Translator software (version B.04.01) in
order to make them compatible with the Mass Hunter Quantitative data analysis (version
B.08.00). The resulting data files were exported to Agilent Mass Hunter Unknowns Analysis
Tool (version 7.0) for the deconvolution process and metabolites’ identification based on
GC–MS raw data. In order to obtain a chemical identity of the compounds, the software
executed a search against two target libraries. Fiehn’s library (version 2013) was used
to compare retention time (RT) and spectra extracted during the deconvolution against
each compound included in the library. For the non-identified compounds, a mixture of
n-alkanes, that was analysed at the beginning of the analytical run was used as a reference
for retention time and retention index (RI) comparison with a commercial NIST (National
Institute of Standards and Technology) spectral library (version 2.2, 2019). Metabolites
with spectrum score higher than 80% and concordant RI based on the alkanes scale were
putatively identified using the NIST library. Data obtained by the Unknown Analysis Tool
were aligned using Mass Profiler Professional B.12.1 (Agilent Technologies, Santa Clara,
CA, USA). Then, Agilent Mass Hunter Quantitative Analysis (version B.08.00) was used
for the assignment of the target and qualifiers ions and peak area integration. Prior to the
statistical analysis, sample areas were normalised by methyl stearate abundance in order to
minimise the response variability coming from the instrument. Finally, data were filtered
based on the coefficient of signal variation (CV) in QC samples, considering values lower
than 30% as acceptable.

2.9. Pathway Analysis with MetaboAnalyst

Metabolic pathway analysis was performed to identify clusters of metabolites related
to key cellular signalling and metabolic networks, which may provide mechanistic insight
into the underlying biology of differentially expressed metabolites. For this purpose,
MetaboAnalyst 5.0 (http://www.metaboanalyst.ca, accessed on 5 June 2021) was used,
and pathway analysis was performed for statistically significant metabolites detected in
this and our previous [11] study. To increase the specificity of the results, Homo sapiens
organism was selected in the KEGG database.

2.10. Statistical Analysis

Statistical analysis was performed for NC- and HC-meal independently. Due to
the small number of contestants in each group, non-parametric tests were chosen. The
Wilcoxon signed-rank test was performed to study the differences between metabolites
level in dependent samples (the level of the metabolite in 30′, 60′ and 120′ after meal intake
compared to their fasting level), whereas the Mann–Whitney U test was used to test the
differences between the level of metabolites in the fasting state of HR- and LR-genotype
groups. Statistical analysis was performed using the R software environment (version 4.0.0,
https://www.R-project.org/, accessed on 15 February 2021).

3. Results
3.1. Baseline Characteristics

The baseline characteristics of the studied population are presented in Table 1. The
groups were well matched without any between-group differences in age, anthropometric
measurements (body mass index (BMI), body fat and fat-free mass content), fasting glucose
and insulin level, as well as HOMA-IR, HOMA-B and glycated haemoglobin (HbA1c).

http://www.metaboanalyst.ca
https://www.R-project.org/
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Table 1. Baseline characteristics of the study groups.

LR Genotype Carriers HR Genotype Carriers p

Age (years) 35.8 ± 6.9 35.2 ± 9.0 0.88
Weight (kg) 91.8 ± 22.2 93.6 ± 23.5 0.89

Body mass index (BMI) (kg/m2) 28.1 ± 5.4 29.1 ± 7.8 0.79
Body fat content (%) 23.6 ± 7.7 23.8 ± 9.6 0.96

Fat-free mass (%) 76.29 ± 10.1 74.3 ± 9.0 0.88
Waist (cm) 105.5 ± 21.5 107.4 ± 21.3 0.94
Hip (cm) 108.0 ± 10.0 104.4± 15.6 0.79

WHR 0.97 ± 0.11 1.03 ± 0.16 0.66
Fasting glucose concentration

(mg/dl) 84.7 ± 5.1 86.2 ± 7.6 0.65

Fasting insulin activity (IU/mL) 9.7 ± 7.5 10.4 ± 8.7 0.87
HOMA-IR 2.1 ± 1.8 2.2 ± 1.9 0.89
HOMA-B 150.2 ± 81.4 188.2 ± 156.3 0.53

HbA1c 5.2 ± 0.3 5.2 ± 0.5 0.77

3.2. Metabolomics Results

A GC–MS-based approach was applied for plasma metabolomics analysis of plasma
samples from 18 patients. Considering the fact that the run time per sample is 37.5 min,
samples were analysed in two analytical batches, according to the type of meal taken (NC-
and HC-meal).

First, 525 and 624 raw peaks after the NC-meal and HC-meal were observed in GC–MS
data, respectively. After data pretreatment (deconvolution, alignment, data normalisation
and filtering), 125 entities were obtained. Finally, 58 metabolites with CVs below 30% in the
QC samples of HC- or NC-meal analyses were annotated. In total, 15 significantly different
(p < 0.05) metabolites were identified (Figure 1). Similarly to our previous study [11], at the
fasting state, we did not observe any significant differences in metabolites’ levels between
studied groups. Whilst postprandially, the HR genotype carriers presented differences
in the level of 11 and 5 metabolites after HC- and NC-meal intake, respectively. In the
case of LR genotype carriers, we have not observed any metabolites significantly changing
postprandially. In the case of LR genotype carriers, we did not observed any metabolites
significantly changing postprandially. Metabolites significant in the PROX1 low- (LR)
and high-risk (HR) genotype men after HC-meal and NC-meal intake are presented in
Tables 2 and 3, respectively.
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Figure 1. Total ion chromatogram (TIC) of plasma profile obtained by GC–MS with marked statistically significant metabolites.
1. Alanine, 2. Histidine, 3. Creatinine, 4. Norleucine, 5. Galactosamine, 6. Galactose, 7. Allose, 8. Fructose, 9. Glyceric acid, 10.
Palmitic acid, 11. 5-Keto-D-gluconate, 12. Gluconic acid, 13. Tyramine, 14. Uric acid, 15. α-Hydroxybutyric acid.
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Table 2. The percentage differences in postprandial plasma metabolite levels after HC-meal intake in the PROX1 low- (LR)
and high-risk (HR) genotype men. Metabolites that showed statistical significance after Wilcoxon signed-rank test. Mass
found in the Human Metabolome Database (HMDB) (http://www.hmdb.caaccessed, on 20 April 2021); RT, retention time
expressed in minutes; p value; * p value for between-groups comparison (Mann–Whitney U test); CV, coefficient of variation
of the metabolites in the QC samples; FC, fold change in the comparison. Eight individuals from the HR group participated
in HC-meal.

Compound Mass
(DB)

Molecular
Formula

RT
(min)

Time after
Meal

HR-HC-Meal LR-HC-Meal CV
(%) * p Value

HMDB Code
p Value FC p Value FC

Amino acids, peptides and analogues

Histidine 155.1546 C6H9N3O2 17.20 0′–60′ 0.04 1.90 0.19 1.52 27 0.02 HMDB001770′–120′ 0.02 2.20 0.19 1.30 1.00

Creatinine 113.1179 C4H7N3O 13.60 0′–30′ 0.04 0.70 0.63 0.89 22 0.43 HMDB00562

Carbohydrates and carbohydrate conjugates

Galactosamine 221.2078 C8H15NO6 17.40
0′–30′ 0.008 1.61 0.13 1.50

9
0.66

HMDB008030′–60′ 0.008 1.91 0.19 1.49 0.54
0′–120′ 0.008 1.89 0.31 1.27 0.43

Galactose 180.1559 C6H12O6 17.30
0′–30′ 0.008 1.61 0.19 1.45

10
0.54

HMDB001430′–60′ 0.008 1.89 0.31 1.43 0.66
0′–120′ 0.008 1.95 0.44 1.22 0.43

Allose 180.1559 C6H12O6 17.54
0′–30′ 0.008 2.89 0.44 1.46

9
0.66

HMDB011510′–60′ 0.008 2.04 0.44 1.50 0.54
0′–120′ 0.008 1.92 0.63 0.53

Fructose 180.1559 C6H12O6 17.00
0′–30′ 0.008 1.82 0.63 1.29

13
0.13

HMDB006600′–60′ 0.02 1.60 0.44 1.44 0.33
0′–120′ 0.008 1.78 0.86 1.40 0.54

Hydroxy acids and derivative

5-Keto-gluconate 194.1394 C6H10O7 17.53
0′–30′ 0.008 1.66 0.13 1.51

9
0.43

HMDB117310′–60′ 0.008 2.02 0.31 1.49 0.54
0′–120′ 0.008 1.92 0.31 1.28 0.43

α-Hydroxybutyric acid 104.1045 C4H8O3 7.70 0′–60′ 0.008 1.21 0.44 1.15 10 0.66 HMDB000080′–120′ 0.008 1.33 0.81 1.05 0.54

Fatty acids and conjugates

Palmitic acid 256.424 C16H32O2 18.85 0′–60′ 0.02 1.42 0.19 0.39 22 0.54 HMDB00220

Phenethylamines

Tyramine 137.179 C8H11NO 17.60
0′–30′ 0.008 1.66 0.81 1.03

11
0.03

HMDB003060′–60′ 0.008 2.97 0.81 1.02 0.05
0′–120′ 0.008 1.95 1.00 0.87 0.08

Purines and purine derivatives

Uric acid 168.1103 C5H4N4O3 19.30 0′–120′ 0.04 0.53 0.58 1.25 27 0.54 HMDB00289

Table 3. The percentage differences in postprandial plasma metabolite levels after NC-meal intake in the PROX1 low- (LR)
and high-risk (HR) genotype men. Metabolites that showed statistical significance after Wilcoxon signed-rank test. Mass
found in the Human Metabolome Database (HMDB) (http://www.hmdb.ca/accessed, on 20 April 2021); RT, retention time
expressed in minutes; p value; * p value for between-groups comparison (Mann–Whitney U test); CV, coefficient of variation
of the metabolites in the QC samples; FC, fold change in the comparison. Ten individuals from the HR group participated in
NC-meal (six common with HC-meal).

Compound Mass
(DB)

Molecular
Formula

RT
(min)

Time after
Meal

HR-NC-Meal LR-NC-Meal CV
(%)

* p Value
Groups HMDB Code

p Value FC p Value FC

Amino acids, peptides and analogues

Alanine 146.1876 C6H14N2O2 7.4 0′–60′ 0.04 2.00 0.13 1.26 25 0.91 HMDB001610′–120′ 0.02 3.70 0.88 1.21 0.01

Norleucine 131.173 C6H13NO2 8.53 0′–30′ 0.006 2.30 0.88 0.95 24 0.11 HMDB016450′–60′ 0.04 2.27 0.25 1.75 0.60

Carbohydrates and carbohydrate conjugates

Gluconic acid 196.1553 C6H12O7 17.62 0′–60′ 0.04 1.88 0.63 1.17 14 0.11 HMDB006250′–120′ 0.01 3.47 0.13 2.42 0.17

Glyceric acid 106.0773 C3H6O4 9.80 0′–120′ 0.002 1.77 0.13 1.73 10 0.02 HMDB00139

Fatty acids and conjugates

Palmitic acid 256.424 C16H32O2 18.85 0′–60′ 0.01 1.62 0.13 0.62 29 0.91 HMDB00220

http://www.hmdb.caaccessed
http://www.hmdb.ca/accessed
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Pathway mapping using MetaboAnalyst 5.0 showed that significant metabolites iden-
tified in the present study using GC–MS (Figure 2, panel A) and in the previous study [11]
using LC-QTOF-MS (Figure 2, panel B) belong to different metabolic pathways. It proves
that both analytical platforms provide complementary results. Pathway analysis based
on GC–MS data revealed several pathways, including glycerolipid metabolism, histidine
metabolism, pentose phosphate pathway or amino sugar and nucleotide sugar metabolism,
where disturbance may lead to T2DM development. Metabolic pathways pointed based on
LC–MS data are also important in the development of T2DM. Detailed information about
all performed pathway analyses are provided in Figure 2, Tables 4 and 5.
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Table 4. Metabolic pathways corresponding to significant metabolites identified in plasma samples with GC–MS.

Pathway Name No. of Metabolites
in the Pathway

No. of Metabolites
Detected in Plasma p-Value Pathway Impact

Pentose phosphate pathway 22 2 0.018 0.047
Amino sugar and nucleotide sugar metabolism 37 2 0.048 0.000
Aminoacyl-tRNA biosynthesis 48 2 >0.05 0.000
Glycerolipid metabolism 16 1 >0.05 0.093
Histidine metabolism 16 1 >0.05 0.221
Selenocompound metabolism 20 1 >0.05 0.000
beta-Alanine metabolism 21 1 >0.05 0.000
Propanoate metabolism 23 1 >0.05 0.000
Galactose metabolism 27 1 >0.05 0.053
Alanine, aspartate and glutamate metabolism 28 1 >0.05 0.000
Glyoxylate and dicarboxylate metabolism 32 1 >0.05 0.080
Glycine, serine and threonine metabolism 33 1 >0.05 0.024
Biosynthesis of unsaturated fatty acids 36 1 >0.05 0.000
Fatty acid elongation 39 1 >0.05 0.000
Fatty acid degradation 39 1 >0.05 0.000
Tyrosine metabolism 42 1 >0.05 0.024
Fatty acid biosynthesis 47 1 >0.05 0.014
Purine metabolism 65 1 >0.05 0.000
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Table 5. Metabolic pathways corresponding to significant metabolites identified in plasma samples with LC–MS.

Pathway Name No. of Metabolites
in the Pathway

No. of Metabolites
Detected in the Plasma p-Value Pathway Impact

Linoleic acid metabolism 5 1 0.022 1.000
Taurine and hypotaurine metabolism 8 1 0.036 0
Arginine biosynthesis 14 1 0.062 0.061
Glutathione metabolism 28 1 0.120 0
Biosynthesis of unsaturated fatty acids 36 1 0.152 0
Glycerophospholipid metabolism 36 1 0.152 0.017
Arachidonic acid metabolism 36 1 0.152 0.076
Arginine and proline metabolism 38 1 0.160 0.111
Primary bile acid biosynthesis 46 1 0.190 0.008

The graphics contain all the matched pathways arranged by log(p) values (from
pathway enrichment analysis) on the y-axis, and pathway impact values (from pathway
topology analysis) on the x-axis. The node colour is related to the pathway p-value, and
the node radius is determined based on the pathway impact value. The dots symbolise
modulated pathways (one dot—one biochemical pathway). Their localisation is dependent
on the impact of a pathway in the whole analysis and its statistical significance. The
pathway impact is the impact value calculated from pathway topology analysis. The
total/maximum importance of each pathway is 1.

4. Discussion

The pathogenesis of T2DM is complex [2], and is characterised by the following
triad: genetic predisposition, environmental factors and acquired organ dysfunction. The
genetic predisposition to T2DM accompanied by such environmental factors as diet and
sedentary lifestyle, along with β-cell dysfunction, IR and hepatic glucose production, leads
to prediabetes and T2DM [1].

Meta-analyses of genome-wide association studies have confirmed that the rs340874
single-nucleotide polymorphism in the PROX1 gene is associated with fasting glycemia
and T2DM [26]. However, the mechanism of this link is not fully established [9]. Genetic
predisposition–diet interaction is considered as one of the components of this mecha-
nism [27]. We have previously investigated the effect of the meal-challenge test on the
plasma metabolome of individuals with a different genetic predisposition to T2DM in
the PROX1 gene using LC-QTOF-MS [11]. However, to the best of our knowledge, how
PROX1 SNPs is related to the postprandial changes of plasma metabolites has not yet been
investigated by GC–MS, an analytical platform complementary to LC–MS in metabolomics
studies [28].

Therefore, we selected this technique to measure plasma metabolites at fasting and
postprandial state to explore the impact of the rs340874 SNPs in the PROX1 gene on human
metabolism. Metabolites detected in the present study were found to be associated with
several metabolic pathways (Figure 2), which have already been linked to prediabetes
and T2DM [16]. Furthermore, these significant metabolites belong to different chemical
classes, i.e., amino acids, carbohydrates, hydroxy acids and others (Figure 3), and using
such division are described below.

Carbohydrates are one of the three macronutrients in the human diet, along with
protein and fat. As the role of dietary carbohydrates in the development and maintenance
of T2DM receives now increasing attention [29], the participants of this study underwent an
HC-meal challenge test. The progress of T2DM is often explained by excessive consumption
of high-carbohydrates and high-calorie diets [30]. There is a lot of systematic reviews and
meta-analyses describing the effect of low carbohydrate diet [29,30] in comparison to
normal or high carbohydrate diet [11,27,31] in patients with T2DM, but only some of
these studies described the post-meal changes in patients with a genetic predisposition to
T2DM [1,11,27].
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According to the literature review, among compounds involved in carbohydrate
metabolism, the levels of malic acid, glucose, mannose, fructose, inositol, sorbitol, xylose,
gluconic acid, glucuronic acid and fumaric acid were increased [32–34], whereas the
levels of pyruvic acid, deoxygalactose, glycerol-3-phosphate and 1,5-anhydroglucitol were
decreased in T2DM [28,32,35]. The levels of other metabolites such as citric acid, lactic
acid, acetic acid and deoxyglucose were increased in some studies [36,37] and decreased in
others [32,36]. Some of the metabolites mentioned above were also found significant in the
presented study. After NC-meal intake, we observed changes in two metabolites involved
in carbohydrates metabolism, whereas after HC-meal intake, we found significantly higher
levels of four metabolites in the HR men (Table 2).

In the present study, 30, 60 and 120 min after HC-meal intake, the HR-genotype
carriers presented significantly higher plasma levels for galactose, fructose, D-allose and
galactosamine (GlycA). Galactose is a C-4 epimer of glucose and can be rapidly converted
to glucose through the Leloir pathway [38]. Postprandially increased galactose metabolism
may lead to a long-term, gradual increase in plasma glucose and may contribute to IR [39].
Human studies have shown that in addition to galactose, fructose may contribute nega-
tively to blood glucose homeostasis by causing IR in the liver [40]. It was confirmed in
another study that this six-carbon sugar, when ingested in a high amount, increases the
risk of T2DM and other metabolic diseases [41]. Fructose, once ingested, can be oxidised,
converted to glucose or lactic acid or enter de novo lipogenesis. These metabolic pathways
could lead to the development of metabolic disorders. After ingestion of large amounts
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of fructose, an increased level of hepatic acetyl CoA leads to increased production of
very-low-density lipoprotein and triglycerides, associated with T2DM. GlycA can be a
predictor of the future development of T2DM [42], but conclusive data on the relation of
GlycA with IR or insulin secretion are missing [43]. Connelly et al. [44] also concluded that
further research is needed to understand the inflammatory pathophysiology of T2DM and
the ability of GlycA to improve prediction models for T2DM. Low-grade inflammation is
known to trigger the development of IR and loss of β-cell function, and both are proposed
to be involved in the pathogenesis of T2DM (reviewed here [45,46]).

A recent study shows that fructose-mediated generation of uric acid causes mitochon-
drial oxidative stress that stimulates fat accumulation independent of excessive caloric
intake [40]. Research into the relationship between uric acid and T2DM is the most con-
troversial. A lot of studies confirmed that uric acid was related to an increased risk of
T2DM [47,48]. On the other hand, in the study of Li et al. [49], who followed up 4412 non-
diabetic patients for around 5 years to study serum urate changes in glucose metabolism,
high concentrations of uric acid were not found to be related to an increased risk of T2DM.
As shown in Figure 3, we observed a significantly lower uric acid level after HC-meal
intake in HR-men.

The metabolism of carbohydrates and fats are closely connected. Plasma FFAs can be
synthesised endogenously from excess carbohydrates in the process of de novo lipogenesis.
This process is upregulated by insulin in the blood and downregulated by high levels of
such hormones as adrenaline and glucagon. Fatty acids involved in this pathway have been
recently characterised as a cause [50,51] and a consequence [52] of IR and T2DM. Moreover,
it is well known that T2DM and lipid disorders (involving FFAs [53]) are closely associated.

However, different kinds of FFAs have different or even opposite effects on IR and
T2DM. For example, saturated fatty acids (SFA) worsen insulin sensitivity and increase
the risk of T2DM, but polyunsaturated fatty acids (PUFA), particularly n-3 fatty acids,
improve IR [2] and are potentially protective against T2DM [54]. It should be kept in mind
that plasma FFAs concentrations reflect their intake and balance between de novo FFA
synthesis, storage as TAGs and their lipolysis. During digestion, TAGs are hydrolysed into
mono- and diglycerides and FFAs [2].

In the study of Koska et al. [55], it was confirmed that high caloric diets enriched
with saturated fatty acids (SFA) or carbohydrates induced whole-body IR in both normal
and impaired glucose tolerant subjects. The metabolic response to SFAs can be associated
with the induction of serine-phosphorylation through activation of specific serine kinases,
resulting in decreased activity of insulin-regulated glucose transporter-4 (GLUT-4) and
consequent lower glucose uptake [56]. SFAs can also affect insulin sensitivity by altering
the membrane lipid composition, leading to the disorientation of membrane glucose
transporter molecules [57].

In our study, HR genotype carriers presented a significantly higher level of palmitic
acid (PA) 60 min after both meals. Literature data indicate that impaired insulin secretion,
impaired insulin sensitivity and glucose intolerance are strongly associated with elevated
plasma levels of saturated FFAs (including palmitic and stearic acid) [3,5,58]. The elevated
level of plasma PA may contribute to hyperinsulinemia and consequently the development
of IR. It has also been reported that IR could be induced by the increase of circulating
FFAs, which inhibit glucose transport and phosphorylation activity and down-regulate
glycogen synthesis and glucose oxidation in muscle [59]. In the prospective multi-ethnic
cohort study [60], the associations of metabolic perturbations in fatty acid metabolism with
a 5-year risk of incident type 2 diabetes, before and after adjusting for insulin sensitivity
and IR, were investigated. The researchers found out that PA had the strongest association
with the risk of T2DM. Our results also support this observation, as plasma PA level
was found to be postprandially increased in HR gene risk carriers up to 5 years prior
to T2DM onset. Excessive fatty acid oxidation elevates the intramitochondrial acetyl
CoA/CoA and NADH/NAD+ ratios and inhibits pyruvate oxidation [61]. Thus, lactate
accumulation may occur. This inefficient fat oxidation may cause an increased level of
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alpha-hydroxybutyric acid (α-HB). This metabolite is a byproduct of α ketobutyric acid
synthesis, a product of amino acid catabolism (threonine and methionine) and glutathione
anabolism (cysteine formation pathway) in hepatic tissue. α-HB was previously identified
as a marker [16,62,63] and predictor [64,65] of T2DM. In the present study, we also observed
a significantly higher level of this metabolite in HR-genotype carriers 60 and 120 min after
HC-meal. Consequently, an accurate determination of PA and α-HB can be essential for
the early diagnosis of T2DM development, which is an important finding of this study.

Amino acids (AAs) are crucial biological compounds that play a key metabolic and
physiological role in all living organisms [66]. It was confirmed that these metabolites are
useful diagnostic markers because they are considerably altered in prediabetes state and
continue to increase during T2DM progression [67]. The Framingham Offspring Study has
shown that elevated AAs were able to predict an increased risk of T2DM up to 12 years
prior to disease onset [68]. A less consistent finding is the association of prediabetes or
T2DM with higher levels of lysine [69–71], histidine [69] or proline [14,34,70,72].

Our study supported the observations of the relationship between amino acid levels
and the risk of T2DM. We noticed higher plasma level of alanine (Ala) and norleucine in
HR-genotype carriers after NC-meal. Additionally, we have observed an increased level
of histidine in HR-genotype carriers after HC-meal. As mentioned above, accumulation
of these metabolites after meal intake may lead to activation of pathways involved in
T2DM development.

Alanine is a proteinogenic amino acid which level was found elevated in HR-men
in 60 and 120 min after NC-meal intake. It is synthesised from pyruvate and amino acids
(mainly BCAAs) primarily in skeletal muscle and intestines and is used for gluconeogenesis
in the liver [73]. Therefore, postprandially increased level of Ala in plasma may enhance
gluconeogenesis and contribute to fasting hyperglycemia development.

After HC-meal intake, the HR-genotype carriers presented a significantly higher
plasma level of histidine and a lower postprandial level of creatinine. Although plasma
histidine is an appetite-controlling factor, it also provokes a brain signal to the liver that
decreases the expression of gluconeogenic enzymes—most notably glucose-6-phosphatase–
and thereby reduces hepatic glucose output. On the other hand, a small Japanese prospec-
tive study reached the conclusion that higher dietary intake of BCAAs was a predictor of a
lower risk of T2DM. Therefore, arguably, the true dietary determinant of risk might be the
histidine ratio to BCAAs or total neutral amino acids. In the diet or in plasma, such a ratio
might predict risk better than either histidine or BCAAs per se. On the other hand, studies
describe the positive of histidine in preventing T2DM [74].

Many published articles confirm our results for creatinine. For example, in 2009,
Harita et al. [75] confirmed that low serum creatinine levels were associated with an
increased risk of type 2 diabetes mellitus and dysglycemia. This was also confirmed in the
recent studies conducted by Takeuchi et al. [76] and Chutani and Pande [77]. Creatinine
is produced after the pyrophosphate cleavage of phosphocreatine to produce energy for
muscle activity. Therefore, a lower serum creatinine level might reflect a lower volume of
skeletal muscle which means fewer target sites for insulin. In addition, it may partially
explain the pathogenesis of T2DM associated with lower serum creatinine. Consequently,
an accurate determination of these metabolites can be essential for the early diagnosis of
prediabetes or T2DM.

Among other significant metabolites, we observed elevated tyramine level 30 and
60 min after HC-meal in HR-men. This compound is derived from tyrosine and has a
good effect on human health. Intake of tyramine might bring a benefit, especially when
glucotoxicity or lipotoxicity need to be reduced, i.e., in diabetic and obese condition [78].
In 2003 Visentin et al. [79] reported that tyramine stimulates in vitro glucose transport in
adipocytes, cardiomyocytes and skeletal muscle and improves in vivo glucose utilisation
in rats. Carpene et al. [78] observed that after 12 weeks of tyramine supplementation,
non-fasting blood glucose was decreased, but the supplementation did not modify glucose
tolerance or fasting glucose level, insulin or circulating lipids.
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Our study had several strengths and limitations. One of the strengths was the use
of a well-established GC–MS platform, which allowed us to discover novel metabolites,
previously not detected using LC-QTOF-MS. A major limitation of our study is a relatively
small sample size, but as it was mentioned in our previous studies performed on the same
group of patients, it is difficult to find healthy risk genotypes carriers since the general
CC genotype frequency is around 6% [9,11]. Furthermore, due to the long and laborious
protocols of the meal challenge test, it is also challenging to recruit volunteers willing to
participate in this type of study.

5. Conclusions and Future Prospects

Plasma GC–MS profiling provided an efficient way of depicting metabolic perturba-
tions observed in HR-genotype carriers after meals intake. Considering the fact that several
of the studied HR-genotype carriers became prediabetic within 5 years, the presented
results are of high importance. Alterations in the level of several metabolites can be an
early metabolic disturbance predicting early stages of T2DM development, and even some
of them, such as α-HB, gluconic acid and PA, can be early predictors of the PROX1-related
risk of T2DM in healthy people. The obtained result may also help to establish diet recom-
mendations for individuals carrying the T2DM-risk allele in the PROX1 gene. However,
further investigations are required to design an optimal diet. To evaluate the clinical utility
of altered metabolites as potential markers of genetic predisposition to T2DM, a targeted
method for the determination of significant metabolites should be developed and applied
in a large cohort of patients to measure fasting and postprandial plasma samples.
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