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Abstract: This study aimed to investigate the degree of regularity of surface electromyography
(sEMG) signals during muscle fatigue during dynamic contractions and muscle recovery after
cupping therapy. To the best of our knowledge, this is the first study assessing both muscle fatigue
and muscle recovery using a nonlinear method. Twelve healthy participants were recruited to
perform biceps curls at 75% of the 10 repetitions maximum under four conditions: immediately
and 24 h after cupping therapy (−300 mmHg pressure), as well as after sham control (no negative
pressure). Cupping therapy or sham control was assigned to each participant according to a pre-
determined counter-balanced order and applied to the participant’s biceps brachii for 5 min. The
degree of regularity of the sEMG signal during the first, second, and last 10 repetitions (Reps) of
biceps curls was quantified using a modified sample entropy (Ems) algorithm. When exercise was
performed immediately or 24 h after sham control, Ems of the sEMG signal showed a significant
decrease from the first to second 10 Reps; when exercise was performed immediately after cupping
therapy, Ems also showed a significant decrease from the first to second 10 Reps but its relative change
was significantly smaller compared to the condition of exercise immediately after sham control.
When exercise was performed 24 h after cupping therapy, Ems did not show a significant decrease,
while its relative change was significantly smaller compared to the condition of exercise 24 h after
sham control. These results indicated that the degree of regularity of sEMG signals quantified by
Ems is capable of assessing muscle fatigue and the effect of cupping therapy. Moreover, this measure
seems to be more sensitive to muscle fatigue and could yield more consistent results compared to the
traditional linear measures.

Keywords: muscle fatigue; muscle recovery; regularity degree; surface electromyography; sample entropy

1. Introduction

Muscle fatigue is described as the exercise-induced reduction in capacity to generate
force or power output [1]. It is caused not only from peripheral changes in muscles, but
also from an inadequate neural drive to the muscles [2]. At the central level, reduced
cell excitability within the cerebral motor cortex leads to decreases in the number of
recruited motor units and their discharge rate. At the peripheral level, metabolic and
structural changes in muscles result in an altered neuromuscular transmission of muscle
action potentials, as well as decreased contractile strength of the muscle fibers [3]. Various
interventions, such as cupping therapy and heating interventions, are used to improve
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muscle recovery from fatigue [4]. However, many studies have been conducted based on
subjective outcomes, such as perceived fatigue and soreness, and there is no consensus in
the literature regarding effective management of muscle fatigue [4].

Various methods have been proposed to assess muscle fatigue by measuring biochem-
ical or physiological changes in fatigued muscles. Surface electromyography (sEMG) can
be used to noninvasively monitor muscle fatigue in a real-time manner [5]. Its applicability
is based on the fact that myoelectric alterations can be revealed by the sEMG signal [6,7].
To date, indices that have been proposed to characterize sEMG signals for assessing mus-
cle fatigue can be grouped into two classes: linear and nonlinear indices [8]. The most
commonly used linear indices include root mean square (RMS), mean frequency (MNF),
median frequency (MDF), and spectral moment ratio (SMR) [5]. It has been well established
that a decrease in MNF or MDF and an increase in SMR indicate a shift of sEMG from
high to low frequencies, which is associated with decreased conduction velocity of action
potentials in fatigued muscles [9,10], Moreover, spectral indices (e.g., MNF and MDF)
exhibit more consistent variations compared to amplitude-based indices (e.g., RMS).

The use of linear indices of sEMG for assessing muscle fatigue is based on the assump-
tion that sEMG can be conceived as a Gaussian random process [9]. However, there is
evidence that sEMG is nonlinear in nature and expresses deterministic chaos [11,12]. The
complex sEMG patterns change with muscle activation conditions [13]. In this context,
nonlinear time-series analyses were introduced to assess complexity features of sEMG.
A common finding of the reported studies was that muscle fatigue results in a loss of
complexity of the sEMG signal [9]. However, most of the complexity measures require
very large datasets to attain reliable results [9]. To address this problem, a number of
studies employed sample entropy (Es) and fuzzy approximate entropy (E f ) to quantify the
complexity of sEMG signals [14–17], because these two indices have been demonstrated
to be largely independent of the data length [14,18]. However, these studies focused on
analyzing sEMG signals during isometric muscle contractions [14–16]. In particular, it was
reported that E f showed a decreasing trend similar to that of MNF with the development
of muscle fatigue [14]. In summary, although some nonlinear methods seem to be efficient
in detecting alterations of sEMG signals related to muscle fatigue, it is unclear how changes
in nonlinear features of sEMG signals differ from changes in linear features with muscle
fatigue during dynamic contractions, as well as during muscle recovery.

In this study, we employed a nonlinear method, modified sample entropy (Ems)
algorithm [19], to quantify the degree of regularity of sEMG signals for assessing muscle
fatigue and recovery from fatigue after cupping therapy. To the best of our knowledge, this
is the first study assessing both muscle fatigue and recovery using a nonlinear method.
We hypothesized that Ems would be capable of revealing alterations of sEMG with the
development of muscle fatigue and muscle recovery after cupping therapy and would be
more sensitive to changes in sEMG compared to the traditional linear indices.

2. Methods

This study was approved by the institutional review board of The University of
Illinois at Urbana-Champaign (#20423). This was a study within a larger research project
on assessing the effectiveness of cupping therapy on improving blood flow [20,21]. The
complexity analysis of the sEMG signal has not been reported elsewhere.

2.1. Participants

Twelve healthy adults (6 males and 6 females) were recruited. Their demographic
data were (mean ± standard deviation): age 27.5 ± 6.3 years and body mass index
22.3 ± 2.6 kg/m2. The exclusion criteria included diagnosed ischemic heart diseases, hy-
pertension (SBP ≥ 140 mmHg or DBP ≥ 90 mmHg), vascular disease, diabetes mellitus, or
neuromuscular disorders. Participants who experienced adverse reactions to exercise or
cupping therapy were also excluded. Informed written consent was obtained from each
participant prior to any tests.
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2.2. Study Design

A repeated-measures design was adopted in this study, consisting of five successive
visits (Figure 1). During the second visit, half of the subjects received cupping therapy,
and the other half received sham control according to a pre-determined order; during the
fourth visit, each subject received another intervention. The counter-balanced order was
aimed to reduce the carry-over effect of the interventions. This design allowed researchers
to examine myoelectric manifestations of muscle fatigue during biceps curls in each subject
under four conditions: immediately, and 24 h after cupping therapy, as well as after sham
control. Cupping therapy was implemented by applying a negative pressure of 300 mmHg
to the biceps brachii for 5 min using a cup with an inner diameter of 45 mm and a rim width
of 4 mm, while sham control involved placing the cup without pressure on the same site for
5 min [22,23]. The choices of the amount of negative pressure, cup size, and duration of the
interventions were based on previous studies [22,23]. To minimize the influence of physical
activities in daily life, all subjects performed biceps curls using their non-dominant arm in
a sitting position on a bench.
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Figure 1. Study design and experimental procedure of this study. 10 RM, ten-repetition maximum.

2.3. Experimental Procedure

The first visit was aimed to determine the ten-repetition maximum (10 RM). After a
5-min warm-up (biceps curls without load) followed by a 3-min rest, the subject performed
biceps curls using dumbbells with different weights during several trials [24]. In the first
trial, the initial weight was adjusted according to the subject’s estimation. If the subject
could complete more (or less) than 10 Reps, the weight would be increase (or decrease) in
the next trial. This process was repeated until the subject could complete exactly 10 Reps.

During the second and fourth visits, after a 5-min warm up followed by a 3-min rest,
the subject performed biceps curls at 75% of 10 RM at a tempo of 15 Reps per minute [25,26].
Each 10 Reps was separated by a 30-s rest. This process was repeated until task failure.
After this fatigue protocol, the subject received cupping therapy or sham control according
to the pre-determined order. Then, the subject completed the same fatigue protocol,
during which the sEMG signal from the biceps brachii was recorded at a sampling rate
of 1000 Hz using a bipolar electrode configuration (circular Ag-AgCl wet gel electrodes,
11-mm diameter, 11-mm inter-electrode distance) (EL507, Biopac System Inc., Goleta, CA,
USA). The electrodes were placed on the line between the media acromion and the cubital
fossa with the midpoint of the center to center-line at 1/3 of the way from the cubital
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fossa [27]. Prior to the electrode placement, the skin was shaved and cleaned with alcohol.
After data collection, the raw sEMG signal was processed using an adaptive algorithm [28]
to remove the power frequency interference without compromising the actual signal within
the interference frequency bands.

The third and fifth visits were aimed to examine the delayed effect of cupping ther-
apy on reducing muscle fatigue. After a 5-min warm up followed by a 3-min rest, the
subject performed the same fatigue protocol with the sEMG signal from the biceps brachii
being collected.

2.4. Data Analysis
2.4.1. Modified Sample Entropy

Sample entropy (Es) is a commonly used measure of the regularity (irregularity) degree
of a time series, defined as the negative natural logarithm of the conditional probability that
two m-point sequences within a tolerance r remain within the tolerance at the next point [18].
A smaller (lager) value of Es indicates a higher degree of regularity (irregularity). An
outstanding advantage of Es is its insensitivity to the data length and therefore suitable for
analyzing short datasets [18]. However, for temporally correlated data, Es is dependent on
the sampling rate [19]. Due to the fact that physiological time series are usually long-range
correlated, the dependence of Es on the sampling rate can lead to different interpretations
of a given physiological process in terms of “regularity” due to different sampling rates.
To address this problem, we modified the Es algorithm by introducing a lag between the
successive data points of the sequences to be compared, which could be estimated through
the auto mutual information function of the time series [19]. Here, we briefly present
the Ems algorithm below. For a time series of length N, {x(i), i = 1, . . . , N}, its m-point
sequences are defined as

xτ
m(i) = {x(i + kτ), 0 ≤ k ≤ m− 1}, 1 ≤ i ≤ N −mτ, (1)

where τ is a lag. The distance between two sequences xτ
m(i) and xτ

m(j) is defined as

d[xτ
m(i), xτ

m(j)] = max{|x(i + kτ)− x(j + kτ)|, 0 ≤ k ≤ m− 1}, 1 ≤ i, j ≤ N −mτ , |j− i|> τ. (2)

For a specific sequence xτ
m(i), suppose the total number of sequences xτ

m(j) satisfying
|j− i|> τ is ni and nm

i (r) of them satisfy d[xτ
m(i), xτ

m(j)] < r, where r is a tolerance, then
Cm

i (r) = nm
i (r)/ni represents the probability that any sequence xτ

m(j), |j− i|> τ , is within
the tolerance of xτ

m(i), and Cm(r) = ∑N−mτ
i=1 Cm

i /(N −mτ) represents the probability that
any two sequences xτ

m(i) and xτ
m(j), |j− i|> τ , are within the tolerance. Likewise, Cm+1(r)

represents the probability that any two (m + 1)-point sequences xτ
m+1(i) and xτ

m+1(j),
|j− i|> τ , are within the tolerance. In this way, Ems is defined as

Ems(m, r, τ) = limN→∞ − ln
Cm+1(r)

Cm(r)
, (3)

which is estimated by the statistic

Ems(m, r, τ, N) = − ln
Cm+1(r)

Cm(r)
(4)

The performance of Ems has been tested extensively in our previous studies using a
simulated time series as well as skin blood-flow data [19,29–31]. The results showed that Ems
is independent of the sampling rate [19], largely independent of N [31], and relative consistent
for varying values of m and r [19,29,31]. When using multiple values of τ, Ems is actually a
multiscale entropy measure [29,30]. Here, we further demonstrate that for sEMG signals, Ems
also does not depend on the sampling rate but Es and E f do (Figure 2) and that Ems shows
relative consistency for varying values of m and r (Figure 3B,C). When using multiple values
of τ, Ems initially rises with τ increasing from 1 to 2, then reaches a plateau for larger values
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of τ (Figure 3D). This implies that it may be unnecessary to quantify the degree of regularity
of the sEMG signals at multiple scales.
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Figure 2. Illustration of the independence of Ems and dependence of Es and E f on the sampling rate
( fs ). (A) A segment of a sEMG signal sampled at 1000 Hz during a repetition of biceps curls. (B) The
downsampled signal segment by a factor of 2 ( fs = 500 Hz). (C) The lags determined by the first min-
ima of the auto mutual information (MI) functions are τ = 2 and τ = 1 when fs = 1000 Hz and fs = 500,
respectively. (D) Ems yields almost identical values for the signal segments sampled at 1000 and
500 Hz but Es and E f do not, where the parameters m = 2 and r = (0.1–0.3) × SD are used. Note that
when fs = 500 Hz, Ems retrieves Es.
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Figure 3. Relative consistency of Ems(m, r, τ, N) for varying values of m, r, and τ. (A) Two segments
of a sEMG signal corresponding to a repetition of the first 10 Reps (s1 ) and a repetition of the second
10 Reps (s2 ), respectively. (B) Ems of s1 is larger than that of s2 for m = 2 to 8, where r = 0.25 × SD
(standard deviation of the signal segment) and τ = 2. (C) Ems of s1 is larger than that of s2 for
r = 0.1 × SD to 0.3 × SD, where m = 2 and τ = 2. (D) Ems of s1 is larger than that of s2 for multiple
values of τ, where m = 2, r = 0.25 × SD. Particularly, Ems initially rises with τ increasing from 1 to 2
and then reaches a plateau.
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2.4.2. Application of Ems to sEMG Data

To investigate whether Ems of the sEMG signal is capable of characterizing myoelectric
alterations of muscle fatigue during dynamic contractions and, therefore, whether this
measure could be used to assess the effect of cupping therapy, we applied Ems to the sEMG
signal during the first, second, and last 10 Reps of biceps curls, thereby computing its
relative change in Ems during the second and last 10 Reps. The method for computing
Ems of the sEMG signal during 10 Reps of biceps curls (referred to as a signal epoch)
is illustrated in Figure 4. After being filtered using a 4rd order Butterworth band pass
filter (20–450 Hz) [9,32], 10 segments were extracted from the signal epoch, each of which
corresponded to a repetition of exercise (Figure 4B). Given the tempo of exercise being 15
Reps per minute, all signal segments lasted less than 4 s. Such a duration is comparable to
those adopted by previous studies in spectral analysis or entropy computation [8,10,14].
Then, Ems was computed for each segment. Their mean reflects the overall degree of
regularity of the signal epoch. The relative change in Ems of the second (last) epoch was
defined as [(Ems − E(1)

ms )/E(1)
ms ]× 100%, where E(1)

ms is the entropy value of the first epoch.
In the computation of Ems of all signal segments, the parameters m = 2, r = 0.25 × SD, and
τ = 2 were used according to the previous studies [9] and our testing results.
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Figure 4. (A) A sEMG signal recorded from the biceps brachii of a subject who performed biceps
curls at 75% of 10 RM. (B) Ten segments were extracted from the sEMG signal during 10 Reps of
biceps curls (referred to as an epoch), each of which corresponded to a repetition. The boundary
points of the segments were obtained by inspecting the plateau intervals of the root mean square
(RMS) values of the signal computed using a 0.1-s (100-point) moving window with a step of 0.02 s.

To get an insight into the role of nonlinearity of sEMG during the development of
muscle fatigue, and into the influence of cupping therapy on nonlinearity of sEMG, we
performed the following experiments. For each segment of the sEMG signal during the
first and second 10 Reps, we computed Ems for 30 phase-randomized surrogate time series.
Then, the Ems values were averaged across 30 surrogate time series and across 10 segments.
The difference in Ems between the sEMG signal and surrogate time series, denoted as ∆Ems,
reflects the nonlinearity of the signal.

2.4.3. Linear Analysis of sEMG Data

To compare the sensitivity of Ems in detecting myoelectric alterations of muscle fatigue
with that of linear measures, we also computed MNF, MDF, and SMR and their relative
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changes for the same signal epochs from which Ems and its relative change were computed.
In the computation of SMR, the higher order of the spectral moments was selected as 5 [8].

2.4.4. Statistical Analysis

One-way ANOVA with paired t-tests were performed to examine the differences in
Ems, MNF, MDF, and SMR of the sEMG signal between the first, second, and last 10 Reps of
biceps curls during the same visit. The differences in the relative changes in these measures
between sham control and cupping therapy, as well as between the second and last 10 Reps
were examined using t-tests. Prior to implementing the above tests, the normality of the
results was checked using Shapiro–Wilk tests. All statistical analyses were performed using
the SPSS (Version 26, Chicago, IL, USA).

3. Results

All subjects performed biceps curls with their non-dominant arms using loads, i.e., 75%
of 10 RM, of 5.7 ± 1.8 kg (mean ± standard deviation). The numbers of 10 Reps for exercise
immediately and 24 h after the interventions were 7.3 ± 2.9 and 4.6 ± 1.4, respectively.

Figure 5A,B show Ems of the sEMG signals during the first, second, and last 10 Reps.
When exercise was performed either immediately or 24 h after sham control, Ems showed
a significant decrease from the first to second 10 Reps (p < 0.01). When exercise was
performed after cupping therapy, the immediate effect was distinctly different from the
delayed effect. In the later case, the decrease in Ems from the first to second 10 Reps was
smaller than that in the former case.
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Figure 5. (A,B) Ems of the sEMG signals during the first, second and last 10 Reps of biceps curls. When
exercise was performed immediately after sham control, the ANOVA yielded F = 4.77 and p = 0.0152;
when exercise was performed immediately after cupping therapy, the ANOVA yielded F = 3.66 and
p = 0.0367; when exercise was performed 24 h after sham control, the ANOVA yielded F = 5.72 and
p = 0.0073; when exercise was performed 24 h after cupping, the ANOVA yielded F = 0.55 and p = 0.5803.
(C,D) Relative changes of Ems during the second and last 10 Reps. The results are represented as
mean ± standard error. ***, p < 0.001; **, p < 0.01; *, p < 0.05.
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Figure 5C,D compare the relative change in Ems during the first and last 10 Reps
between sham control and cupping therapy. In the case of the immediate effect, during
the second 10 Reps but not last 10 Reps, the relative change in Ems after cupping was
significantly smaller than that after sham control (p < 0.05) (Figure 5C); in the case of
delayed effect, during both second and last 10 Reps, the relative change in Ems after
cupping was significantly smaller than that after sham control (p < 0.05) (Figure 5D).

Figures 6–8 show the results of MNF, MDF, and SMR of the sEMG signals during the
first, second, and last 10 Reps and their relative changes. When exercise was performed im-
mediately after either sham control or cupping therapy, SMR showed a significant increase
from the first to last 10 Reps (p < 0.05) and from the second to last 10 Reps (Figure 8A),
whereas MNF and MDF did not show any significant change (Figures 6A and 7A). When
exercise was performed 24 h after sham control or cupping therapy, the three indices
showed similar changes between two interventions (Figures 6B, 7B and 8B). The relative
changes of the three indices did not show a significant difference between sham control
and cupping therapy.
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When exercise was performed immediately after sham control, ANOVA yielded F = 0.42 and p = 
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Figure 6. (A,B) MNF of the sEMG signals during the first, second and last 10 Reps of biceps curls.
When exercise was performed immediately after sham control, the ANOVA yielded F = 0.99 and
p = 0.3909; when exercise was performed immediately after cupping, the ANOVA yielded F = 0.92
and p = 0.4169; when exercise was performed 24 h after sham control, the ANOVA yielded F = 3.77
and p = 0.0361; when exercise was performed 24 h after cupping, the ANOVA yielded F = 4.4 and
p = 0.0235. (C,D) Relative changes of MNF during the second and last 10 Reps. The results are
represented as mean ± standard error. **, p < 0.01; *, p < 0.05.
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Figure 7. (A,B) MDF of the sEMG signals during the first, second and last 10 Reps of biceps
curls. When exercise was performed immediately after sham control, ANOVA yielded F = 0.42 and
p = 0.6628; when exercise was performed immediately after cupping, ANOVA yielded F = 0.62 and
p = 0.5493; when exercise was performed 24 h after sham control, ANOVA yielded F = 3.46 and
p = 0.0431; when exercise was performed 24 h after cupping, ANOVA yielded F = 3.87 and p = 0.0332.
(C,D) Relative changes of MDF during the second and last 10 Reps. The results are represented as
mean ± standard error. **, p < 0.01; *, p < 0.05.
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Figure 8. (A,B) SMR of the sEMG signals during the first, second and last 10 Reps of biceps curls.
When exercise was performed immediately after sham control, the ANOVA yielded F = 3.95 and
p = 0.0313; when exercise was performed immediately after cupping, the ANOVA yielded F = 3.42
and p = 0.0473; when exercise was performed 24 h after sham control, the ANOVA yielded F = 3.36
and p = 0.0499; when exercise was performed 24 h after cupping, the ANOVA yielded F = 4.34 and
p = 0.0264. (C,D) Relative changes of SMR during the second and last 10 Reps. The results are
represented as mean ± standard error. **, p < 0.01; *, p < 0.05.
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4. Discussion

This study indicates that the degree of regularity of sEMG signals quantified by Ems
is capable of assessing muscle fatigue during dynamic contractions, as well as muscle
recovery after cupping therapy. Moreover, Ems seems to be more sensitive to myoelectric
alterations of muscle fatigue compared to the traditional linear indices.

In this study, the methodological selection was motivated by the following considera-
tions. The underlying mechanisms of sEMG generation have been found to be nonlinear or
even chaotic in nature [33], manifesting as complex patterns of the sEMG signal, which can
be influenced by many factors such as muscle fatigue [9]. There is evidence that muscle
fatigue usually leads to a loss of complexity of the sEMG signal [34]. This means that
complexity analysis is a promising tool in assessing muscle fatigue during a motor task.
However, complexity analysis methods generally require very large datasets to yield reli-
able estimations. In this study, since the amplitudes of sEMG signals during the intervals
between two successive repetitions were almost zero (Figure 3B), it may be unsuitable to
directly apply any linear or nonlinear measures to the sEMG signal across 10 Reps because
of its high non-stationarity. To address this problem, we considered the signal segments
during each repetition (Figure 4). Since the duration of a repetition was approximately
4 s, given the exercise tempo of 15 Reps per minute, the length of a signal segment was
approximately 4000. Such a length requires the selected measure to be robust to short time
series. As demonstrated earlier and in our previous studies [19], Ems is insensitive to record
length, independent of sampling rates, and relatively consistent for varying parameters.
Therefore, we employed Ems to quantify the degree of regularity of sEMG signals.

Our results showed that when biceps curls were performed either immediately or
24 h after sham control, Ems of the sEMG signal underwent a significant decrease from
the first to second set of exercise (Figure 5). This means that a significant enhancement
of regularity of the sEMG signal occurred during the second 10 Reps. According to the
literature, a feature of central fatigue is a shift of the recruitment of motor units toward a
more synchronized pattern [9]. Hence, our results suggested that the significant decrease
in Ems of the sEMG signal was a myoelectric manifestation of muscle fatigue.

It should be noticed that after sham control, changes in Ems (Figure 5) were roughly
consistent with but different from changes in MNF, MDF, and SMR (Figures 6–8). For
instance, from the first to second 10 Reps, Ems showed a significant decrease in both condi-
tions, i.e., exercise performed immediately and 24 h after sham control (Figure 5), whereas
MDF and SMR showed only slight changes in both conditions (Figures 7 and 8), and MNF
showed a significant change in the later condition but not in the former condition (Figure 6).
This observation suggested that Ems was more sensitive to myoelectric alterations of mus-
cle fatigue and yielded more consistent results compared to MNF, MDF, and SMR. One
possible reason for such a discrepancy was that Ems and the spectral indices reflect different
aspects of the electromyographic properties. On one hand, fatigue causes a shift of motor
unit recruitment toward a more synchronized pattern, which, in turn, results in more
regular structures of the sEMG signal [35,36]. On the other hand, fatigue causes a decrease
in conduction velocity of action potentials, which leads to a relative shift in the energy of
muscle contractions from high to low frequencies [9].

Our results also showed that during the last 10 Reps, the immediate effect of cupping
therapy on relative change in Ems did not significantly differ from that of sham control
(Figure 5C), whereas the delayed effect of cupping therapy was manifested as a significant
smaller relative change in Ems compared to sham control (Figure 5D). If one assumes
that Sample Entropy is more sensitive to myoelectric alterations of muscle fatigue than
MNF, MDF, and SMR also after cupping therapy, our results suggest that the delayed
effect of cupping on reducing muscle fatigue was superior to the immediate effect. One
possible reason may be that muscle fatigue caused by biceps curls could not be completely
removed immediately after cupping therapy. It is well known that exercise produces
intramuscular H+ and leads to an accumulation of H+ within the muscle, which can
eventually cause muscle fatigue [9]. Cupping therapy can increase tissue blood-flow by
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eliciting vasodilation and petechiae [37] and, thus, may increase clearance of H+. However,
the recovery of elevated muscle pH caused by intensive exercise to the pre-exercise level
may take one hour or longer time [38]. In this study, cupping therapy lasted for 5 min.
Such a duration may not be adequate to remove H+ completely. On the other hand, the
superiority of the delayed effect of cupping therapy may be associated with a delayed
inflammatory response. In this study, biceps curls involved eccentric muscle contractions,
which can exert large mechanical stress on the myofibrils and induce muscle damage and,
therefore, trigger inflammation [39]. Additionally, cupping therapy can lead to capillary
rupture and ecchymosis and induce inflammatory response [40]. Hence, cupping therapy
could aggravate the inflammation caused by intensive exercise. This may partially explain
the superiority of delayed effect of cupping therapy.

To get an insight into the role of nonlinearity of sEMG during the development of
muscle fatigue and into the influence of cupping therapy on nonlinearity of sEMG, we
performed the following experiments. For each segment of the sEMG signal during the
first and second 10 Reps, we computed Ems for 30 phase-randomized surrogate time series.
Then, the Ems values were averaged across 30 surrogate time series and across 10 segments.
The difference in Ems between the sEMG signal and surrogate time series, denoted as ∆Ems,
reflects the nonlinearity of the signal. Figure 9 shown the statistical results of ∆Ems during
the first and second 10 Reps in all subjects. By comparing Figures 5 and 9, it could be
deduced that immediately or 24 h after sham control or immediately after cupping therapy,
the significant decrease in Ems of the sEMG signal from the first to second 10 Reps was
largely attributed to a loss of nonlinearity of the signal.

Entropy 2021, 23, x FOR PEER REVIEW 12 of 14 
 

 

after cupping therapy, the significant decrease in msE  of the sEMG signal from the first 
to second 10 Reps was largely attributed to a loss of nonlinearity of the signal. 

 

Figure 9. Difference in msE  between the sEMG signal during the first and second 10 Reps and 
surrogate data. The results are represented as mean ± standard error. *, p < 0.05 (paired t-test). For 
each segment of the sEMG signal during the first and second 10 Reps, msE  was computed for 30 

phase-randomized surrogate time series. Then, the msE  values were averaged across 30 surrogate 
time series and across 10 segments. (A) Immediate effect. (B) Delayed effect. 

This study had several limitations. First, the load of biceps curls was selected as 75% 
of 10 RM based on the consideration of exercise safety and the assumption that such a 
load could cause significant changes in sEMG features. Future studies may need to exam-
ine changes in sEMG features under other exercise loads such as 60–75% of 10 RM, 1 RM, 
and 5 RM. Second, cupping therapy was conducted immediately after intensive exercise. 
Future studies may need to identify the optimal time-point of cupping therapy for reduc-
ing exercise-induced muscle fatigue. Last, it is unclear whether cupping therapy may 
change the skin condition for affecting sEMG signals. In our previous studies, cupping 
therapy has been demonstrated to reduce muscle stiffness assessed by elastographic ul-
trasound [20] and improve skin blood-flow assessed by laser Doppler flowmetry [21,23]. 
Under these conditions, the amplitude of sEMG signals may be changed. However, spec-
tral analysis and entropy based analysis of muscular fatigue may not be significantly af-
fected by the alterations of the EMG amplitudes. The change of median frequency and 
complexity of sEMG signal reflect the spectral component and nonlinear complexity that 
may not be significantly correlated to the skin condition altered after cupping therapy. 
Nevertheless, future studies may examine the effect of skin condition on the complexity 
of sEMG signals. 

5. Conclusions 
The present study indicated that the degree of regularity of sEMG signals quantified 

by msE  is capable of detecting myoelectric alterations of muscle fatigue and, therefore, 
can be used to assess muscle fatigue during dynamic contractions and the effect of cup-
ping therapy. Moreover, this measure showed a higher sensitivity to muscle fatigue and 
yielded more consistent results compared to the traditional linear measures such as MNF, 
MDF, and SMR. 
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30 phase-randomized surrogate time series. Then, the Ems values were averaged across 30 surrogate
time series and across 10 segments. (A) Immediate effect. (B) Delayed effect.

This study had several limitations. First, the load of biceps curls was selected as 75%
of 10 RM based on the consideration of exercise safety and the assumption that such a load
could cause significant changes in sEMG features. Future studies may need to examine
changes in sEMG features under other exercise loads such as 60–75% of 10 RM, 1 RM,
and 5 RM. Second, cupping therapy was conducted immediately after intensive exercise.
Future studies may need to identify the optimal time-point of cupping therapy for reducing
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exercise-induced muscle fatigue. Last, it is unclear whether cupping therapy may change
the skin condition for affecting sEMG signals. In our previous studies, cupping therapy has
been demonstrated to reduce muscle stiffness assessed by elastographic ultrasound [20]
and improve skin blood-flow assessed by laser Doppler flowmetry [21,23]. Under these
conditions, the amplitude of sEMG signals may be changed. However, spectral analysis
and entropy based analysis of muscular fatigue may not be significantly affected by the
alterations of the EMG amplitudes. The change of median frequency and complexity of
sEMG signal reflect the spectral component and nonlinear complexity that may not be
significantly correlated to the skin condition altered after cupping therapy. Nevertheless,
future studies may examine the effect of skin condition on the complexity of sEMG signals.

5. Conclusions

The present study indicated that the degree of regularity of sEMG signals quantified
by Ems is capable of detecting myoelectric alterations of muscle fatigue and, therefore, can
be used to assess muscle fatigue during dynamic contractions and the effect of cupping
therapy. Moreover, this measure showed a higher sensitivity to muscle fatigue and yielded
more consistent results compared to the traditional linear measures such as MNF, MDF,
and SMR.
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