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Biological systems that build transport networks, such as trail-laying ants

and the slime mould Physarum, can be described in terms of reinforced

random walks. In a reinforced random walk, the route taken by ‘walking’

particles depends on the previous routes of other particles. Here, we present

a novel form of random walk in which the flow of particles provides this

reinforcement. Starting from an analogy between electrical networks and

random walks, we show how to include current reinforcement. We demon-

strate that current-reinforcement results in particles converging on the

optimal solution of shortest path transport problems, and avoids the self-

reinforcing loops seen in standard density-based reinforcement models.

We further develop a variant of the model that is biologically realistic, in

the sense that the particles can be identified as ants and their measured density

corresponds to those observed in maze-solving experiments on Argentine ants.

For network formation, we identify the importance of nonlinear current

reinforcement in producing networks that optimize both network maintenance

and travel times. Other than ant trail formation, these random walks are also

closely related to other biological systems, such as blood vessels and neuronal

networks, which involve the transport of materials or information. We argue

that current reinforcement is likely to be a common mechanism in a range of

systems where network construction is observed.
1. Introduction
Pheromone trail laying and following by ants is a key example of biological

problem-solving. As a recent example, Reid et al. [1] set up a ‘Towers of Hanoi’

maze for Argentine ants to solve. They put the ant nest at one end of the maze

and placed food at the other end. The ants solved this maze by forming a path

from their nest to the food source with the shortest length (figure 1a). When the

shortest path was blocked, they adapted to the new shortest path [1]. Similar

examples are seen in the acellular slime mould, Physarum polycephalum. Physarum
circulates nutrients and signals via a network of tubes. Several experiments have

shown that Physarum can find the shortest path connecting food sources, even

in complex mazes [2,3]. Figure 1b gives one such example where Physarum
solves the same Tower of Hanoi maze as the ants. At the beginning of the exper-

iment, the organism was placed through the whole maze, then the food sources

were added at either end. Tubes in the longer paths gradually die out and after

12 h, only tubes in the shortest path were left.

Ants and slime moulds solve other combinatorial optimization problems.

These include connecting multiple food sources or nests with shortest

length [4], solving the Steiner tree problem between three and four food

sources/nests [4,5], adapting the shortest path to a minimum-risk path when

exposed to a risky environment [3] and building efficient transportation

networks [6,7].
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(a)

(b)

Figure 1. Biological systems solve the ‘Tower of Hanoi’ maze. Each node
represents a configuration of a three-rod towers of Hanoi, each edge connects
possible move from different states of the discs. See Reid et al. [1] for the
detailed construction of the network. (a) Argentine ants solve the Tower of
Hanoi maze. Under the left end of the maze lies the nest, food is placed at
the right end of the maze. (b) Physarum solving the Tower of Hanoi maze.
Food sources are placed at both ends of the maze. Physarum is evenly spread
in the maze at the beginning of the experiment. The figure presents the result
12 h after the start of the experiment. We thank Chris Reid for providing these
photographs of his experiments.
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How does a biological system without global information

solve such problems? In physical appearance, the problem-

solving of ants and slime moulds is very different. There

are however strong similarities in terms of the underlying

algorithm used. There are direct parallels between the

growth of tubes in Physarum and the creation of pheromone

trails in ants. Both involve the random walk of nutrients

and ants, respectively. Furthermore, there is a process of

reinforcement whereby the more ants/nutrients that pass a

particular point the greater the concentration of phero-

mone/thickness of tubes. In short, they can both be

described as reinforced random walks.

Random walks are widespread in biology [8,9], and

reinforced random walks are widely used to model aggrega-

tion and pattern formation [10–12]. For example, Othmer &

Stevens [10] present several possible reinforcement schemes

for random walks of particles, with the aim of modelling cell

migration. They identify conditions for spatial aggregation of

particles, and look at how these depend on interactions

between a control substance and the particles that produce

this control substance. Similar models have been applied in

modelling tumour-induced angiogenesis [13] and to explain

the formation of human trail systems [14,15]. In these

reinforced random walk models, the control substance is

reinforced proportionally to the particles’ density [11].

Here, we focus on control substance reinforcement pro-

portional to the particles’ gradient. The main difference

between our approach and those cited earlier is that we

look at current or traffic flow reinforcement. We use an ana-

logy, first proposed by Tero et al. [6,16] in the form of the

Physarum solver, between current reinforcement and tube
growth. However, unlike the Physarum solver, which is a

system of linear equations in which the flow is calculated

globally by Kirchoff’s law, here we aim to derive a local

description of reinforcement in terms of particle motion.

We have several requirements in our derivation of a

current-reinforced random walk. First, the particles should

change and respond only to their local environment. Second,

we should be able to identify the variables in our model with

biologically meaningful entities such as ants and pheromone.

Third, our model should reproduce the results of the exper-

iments discussed above, both for shortest path problems and

for transport networks. We now develop our model in a

number of stages. We start §2 by describing an analogy

between random walks and electrical networks. We then intro-

duce current reinforcement, where particles reinforce the edges

they traverse. Through a series of examples, we develop a

biologically realistic description of how ants and Physarum
implement current reinforcement. This algorithm is shown

to converge to the shortest path between two points in a

network. In §3, we show how similar algorithms construct

optimized networks.
2. Shortest path problems
2.1. Random walks on networks
First, consider a random walk on a graph in which between

two nodes i and j, there is a resistance proportional to the

length of the connection lij. A particle enters the network at a

source s and prefers to move down edges with lower resistance.

Specifically, when the particle is on node i, with probability

1=lijP
ik[Ei

1=lik
; ð2:1Þ

it will move next to node j. Ei is the set of edges connected

to i. The particle continues to chose its travel path in this way

until it hits the sink t at which point it disappears. In their

classic synthesis, Doyle & Snell [17] provide a thorough discus-

sion of the relationship between such ‘random walks and

electric networks’. In this relationship, voltage can be thought

of as the probability a particle at node i arrives back at the

source before arriving at the sink and current is the expected

number of particles passing from i to j minus the number of

particles passing from j to i per unit time.

This random walk is just one of a number of microscopic

models that produce the macroscopic observations of current

and voltage [18,19]. Kelly [18] gave the following alternative

description, which naturally gives rise to a stochastic simu-

lation of a random walk. Consider a graph in which every

node is labelled as either occupied by one particle or

empty, i.e. with Ni [ f0,1g. On each time step of the simu-

lation one edge in the network is chosen at random to be

updated. The probability to choose edge ij is

1=lijP
e[E 1=le þ 2n

; ð2:2Þ

where E is (unlike Ei in equation (2.1)) the set of all edges in

the graph. The source node s becomes occupied at a fixed rate

n, which is also equal to the rate at which particles at the sink

node t disappear. For all other edges, the resistance of an

edge gives the rate at which it is updated. The particles on

the nodes of the chosen edge are then swapped, so that if i
is empty and j is occupied, then j becomes empty and



s

Ni = 9

|Nj – Ni| = 5

Nj = 4

lij = 1
ji

t

Figure 2. Illustration of the stacked-particle flow model in a network. s represents the source where the external particles flow in the network, t represents the sink
where particles disappear. As an example, in the present state, node i has nine particles and node j has four, the length of edge ij is one, then according to
equation (2.4), at present the flow rate through i to j is �Iij ¼ ðNi � NjÞ=lij ¼ ð9� 4Þ=1 ¼ 5. (Online version in colour.)
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i becomes occupied. If both nodes are occupied (or empty),

then their status is unaltered, i.e. flow occurs only when

one is empty and one is occupied. The mean flow rate on

edge ij is thus proportional to

Ni �Nj

lij
: ð2:3Þ

When the system evolves to equilibrium, the probability of

node i being occupied can be treated as the voltage on the node.

Figure 2 shows a network with m ‘stacked’ networks,

with Nik [ f0,1g particles on node i in the kth network. If

we run Kelly’s model independently and simultaneously on

each of these networks, then the summarized mean flow

rate on edge ij for each network is

�Iij ¼
X

k

Nik �N jk

lij
¼

Ni �Nj

lij
; ð2:4Þ

where Ni ¼
Pm

k¼1 Nik now denotes the total number of particles

stacked on node i. Because particles move independently,

the particles moving along edge ij during a small fixed time

interval Dt approximately follows a Poisson distribution

IijðtÞ � signð�IijÞ � Poiðj�Iij jDtÞ: ð2:5Þ

The direction of the movement is determined by the sign

of Ni 2 Nj. If Ni . Nj, then the flow goes from i to j, other-

wise it goes from j to i, i.e. Iij ¼ 2 Iji. Thus, in each time

step, the number of particles on each node is updated as

Niðtþ DtÞ ¼ NiðtÞ þ
X
e[Ei

IeðtÞ ð2:6Þ

where Ei is the set of edges connected to i as in equation (2.1).

The source of the network has an input current so that the

number of particles at s is replenished with a rate, �Is, while

the sink has an output current rate �It. Ni 2 Nj is the voltage

or potential difference and equation (2.4) is equivalent to

Ohm’s law.

Figure 3a gives an example of the equilibrium state of �Iij

and Ni on the Tower of Hanoi network. The particles do a

random walk throughout the network. Flow of particles

occurs everywhere on the network, although it is stronger

on the edges corresponding to the shortest path.
2.2. Current-reinforced random walks
So far we have discussed several microscopic descriptions of

electric networks, but in these cases, the particles are not

aware of or responding to the voltage and current they are

generating. We now keep the microscopic movement of par-

ticles as in the last description above, but allow the particles

to modify the conductivity of the network they move in.

Unlike the previous scheme, where the conductivity for

each edge is equal to one through time, now the conduc-

tivity of the edges is evolving as the particles move around.

Let Dij(t) denote the conductivity of an edge in the network at

time t, then by Ohm’s law the mean flow rate on each edge

becomes

�Iij ¼ ðNi �NjÞ
Dij

lij
: ð2:7Þ

Still, the current of each edge is a Poisson-distributed

random number as in equation (2.5). The absolute value of

Iij(t) is the number of particles moving along the edge

during Dt, and the sign of Iij(t) denotes the direction of the

moving. The input and output external currents are fixed to
�Is and �It at the source and sink, respectively. Numbers of par-

ticles on the nodes are updated the same way as shown in

equation (2.6). In terms of ants, Dij can be thought of phero-

mone concentration and Ni as number of ants. Table 1 gives

interpretations of the model parameters and variables in

terms of electrical networks, of ant trails and in terms of

the biology of the slime mould Physarum.

To introduce reinforcement, we update the conductivity Dij

in response to the current after the moving of the particle as

Dijðtþ DtÞ ¼ DijðtÞ þ qjIijðtÞj � lDijðtÞDt; ð2:8Þ

where constant q represents the reinforcement intensity caused

by per unit flow, and l denotes the decreasing rate for the con-

ductivity. Equation (2.8) implies that at each step the

conductivity of each edge decreases slightly, but the edges

with current have their conductivity increased. These rules

define our current-reinforced random walk.

Figure 3b,c shows two different time points in the time

evolution of the above algorithm on the Towers of Hanoi net-

work. At first, the particles spread over the whole network,

and then the shortest path is formed and reinforced. Finally,

at equilibrium, the flow converges to the shortest path. In



(a) (b)

(c) (d)

(e) ( f )

Figure 3. Simulations of different microscopic models on the Tower of Hanoi maze. In each plot, the pink dot on the left end of the maze is the source, and the dot on
the right end of the maze is the sink. The thickness of the black line represents the average flow going through the network in the previous time unit. The sizes of the
nodes are proportional to the number of particles on each node with an upper truncation. In the simulations, we set external flow rate b ¼�Is ¼ ��It ¼ 1000 per unit
time for all models. (a) Random walk, Dt ¼ 0.001; (b) current-reinforced random walk, near the start of the simulation, q ¼ 0.01, l ¼ 1, Dt ¼ 0.01, Dmin ¼ 0.001;
(c) current-reinforced random walk, in equilibrium; (d ) simple ant colony optimization, Dt ¼ 0.001, Dmin ¼ 0.001; (e) biologically realistic-reinforced random walk
near the start of the simulation, q ¼ 0.0001, l ¼ 0.001, Dt ¼ 0.1, Dmin ¼ 1025; ( f ) biologically realistic-reinforced random walk, in equilibrium. The MATLAB code
to generate these results is available at http://www2.math.uu.se/qi/Videos.html.

Table 1. Term interpretations for different systems.

parameter name electric network Physarum ant trails

lij length in space length in space length in space

Ni potential/voltage amount of nutrient number of ants

Iij current flow of nutrient flow of ants

Dij conductivity thickness of tube pheromone concentration

Ci capacitance transport efficiency total pheromone density

q reinforcement intensity tube expansion rate pheromone drop rate

l conductivity decrease rate tube decay rate evaporation rate
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general, simulation of this system on mazes converges to the

shortest path. The simulation also responds effectively in a

dynamic environment. Electronic supplementary material,

movie S1 is an example of the current-reinforced random

walk in which the network structure is changed in the same

way as the experiment by Reid et al. [1] on Argentina ants.

Both in the model and the experiment the particles/ants

adjust to the shortest path the maze was changed.

Equation (2.8) allows for discrete stochastic dynamics

of the conductivity. If we take Dt ! 0 and ignore stochastic

fluctuations, we get

dDij

dt
¼ qjNi �Njj

Dij

lij
� lDij; ð2:9Þ

where the first term on the right-hand side is now the expected

absolute value of the current rate. This equation is the mean

field version of equation (2.8). Importantly, this mean field
updating of conductivity is used in the Physarum solver

model, first described by Tero et al. [16]. In the Physarum
solver, the body of slime mould is assumed to be a network

of pipes. In terms of Physarum biology, the flow rate of proto-

plasm can be thought of as �Iij and the thickness of the pipe

as Dij. q is the intensity of reinforcement and l the degeneration

rate of the pipe, lij is the length of a pipe, Ni is the ‘pressure’ at

a node. By taking Dt ! 0 in equation (2.6), the dynamics of

the pressure can also be described continuously as

dNi

dt
¼
X
e[Ei

�Ie; ð2:10Þ

where �Ie is now the expected flow rate as in equation (2.7).

If q and l (in equation (2.9)) are small, then the conduc-

tivity Dij evolves much slower than Ni. In such a situation,

Ni and Dij are, respectively, fast and slow variables allowing

http://www2.math.uu.se/qi/Videos.html
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time separation between them. Ni can thus be treated as in

equilibrium, i.e. X
e[Ei

�Ie ¼ 0:

This equation is Kirchhoff’s current law, that the flow in

to a node equals to the flow out. By solving this equation

instantaneously every time after Dij is updated, one can

obtain the corresponding Ni and in advance get the flow

rate �Iij. Under this scheme, Dij is updated as in equation (2.9).

This is the simulation scheme used by Tero et al. in their

original Physarum solver [16].

The scheme of Tero et al. can allow for a faster numeri-

cal solution of the above equations. However, unlike in

equation (2.10) and our stochastic model, this scheme is no

longer decentralized. The advantage of the stochastic simulation

is that to update any one edge we need to know only the flows

into that edge, whereas a solution of Kirchhoff’s law depends on

a global solution over all nodes. This point is important both

regard to the biological realism of the model and if the model

were to be implemented efficiently on a parallel computer.
2.3. Density reinforcement
We now contrast the current-reinforced model with models in

which reinforcement is based on density. Based on exper-

imental work and models of ant foraging [20], Dorigo &

Stutzle [21] proposed the following reinforced random walk

algorithm. In their model, each ant at node i walks down

an edge ij with probability

Da
ijð1=lijÞbP

e[Ei
Da

eð1=leÞb
; ð2:11Þ

where, in terms of ants, Dij can be thought of as the concen-

tration of pheromone on edge ij. Here, we consider the

simplest case a ¼ b ¼ 1, where the ants use the same resist-

ance rule as in equation (2.1), i.e the probability of an ant

moving from i to j next step is

Dij=lijP
e[Ei

De=le
: ð2:12Þ

The pheromone concentration Dij in the ant system is

assumed to increase in proportion to the number of ants

pass through edge ij, i.e. traffic flow of ants on that edge,

and decrease with evaporation at rate l. The update rule

for Dij is then the same as in equation (2.8).

Under this scheme, the particle flow in both directions

between two nodes are taken into account, i.e. the flow on

edge ij equals to the number of particles going from i to j
plus the number of particles going from j to i. The mean

flow rate between node i and j is given by

�Iij ¼
NiP

e[Ei
ðDe=leÞ

þ
NjP

e[Ej
ðDe=leÞ

 !
Dij

lij
: ð2:13Þ

There is clearly a strong analogy between this density-

reinforced random walk and the current-reinforced random

walk described earlier. However, there are two important

differences between the ant system and the Physarum
solver. First, the pressure/potential is now defined as

NiP
e[Ei
ðDe=leÞ

ð2:14Þ
rather than simply being the number of particles. Because

Dij is analogous to pheromone and lij is the length of a

path, we can think of Dij/lij as pheromone density. Thus

Ci ¼
X
e[Ei

ðDe=leÞ ð2:15Þ

is the total pheromone density going in and out of node i. In

the sense of electric network, each node now can be con-

sidered as a capacitor, and Ci is thus the capacitance.

Second, as mentioned earlier, the flow between node i and j
here is a sum of particles moving from i to j and from

j to i, while in the current reinforcement random walk,

particles only move in one direction depending on the sign

of Ni 2 Nj. This difference is reflected by the different sign

in equations (2.7) and (2.13).

Reinforcement based on the sum of the pressure on

nodes results in a tendency for the ants/particles to stay

longer nearer to the source and it hinders them from

extending outward to new available space. Figure 3d shows

a stochastic implementation using equation (2.13). The par-

ticles are trapped in their own feedback loop and cannot

establish the shortest path between the source and the sink.

Dorigo & Stutzle [21] proposed loop-erased random walks

to prevent particles getting trapped in their own feedback.

In their simulation, they let only one ant at a time go through

the maze. This ant does not deposit pheromone until it

gets to the sink. Once it has arrived at the sink, all loops

in its path are removed, and pheromone is laid on the

paths not involving loops. These loop-erased random

walks are ultimately equivalent to the random walks based

on current reinforcement. This can be seen by noting that

loops are equally likely in either direction and thus

cancel out, leading back to reinforcement based on poten-

tial differences. The advantage of our current-reinforced

random walk over loop erasion is that it is based entirely

on local information.
2.4. Biologically realistic model
Although the current-reinforced random walk in §2.2

finds the shortest path through a maze it should not be con-

sidered fully biologically realistic in the case of the ants. In

figure 3c, we see that the number of particles/ants on the

nodes without flow passing by are approximately equal to

that on nodes where there is a flow. In biological terms,

this is equivalent to ants placing themselves at all positions

in the foraging arena, but moving only on the path which

is the shortest!

We can improve the biological realism by thinking about

the decisions by an individual particle or ant about how to

move through the network when responding to the local

pheromone density. We first assume that

Dij=lijP
e[Ei
ðDe=leÞ

is the probability that an ant on node i will chose to move to

node j. This rule is consistent with how Argentine ants react

to pheromone trails, where ants turn towards areas with

higher relative pheromone density [22]. The total rate of

traffic from i to j is

Dij=lijP
e[Ei
ðDe=leÞ

Ni;
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and the flow of traffic between i and j is then given by Ohm’s

law as

�Iij ¼
NiP

e[Ei
ðDe=leÞ

�
NjP

e[Ej
ðDe=leÞ

 !
Dij

lij
: ð2:16Þ

During time interval Dt, the flow from i to j is approxi-

mately Poisson distributed, as defined in equation (2.5).

The number of particles on each node and the conductivity

on each edge is then updated using the same rule as

equations (2.6) and (2.8), respectively. Note that

equation (2.16) requires information from second-order

neighbours in the network. To obtain a neighbour node’s

total pheromone density, the conductance of all edges

linked to this neighbour must also be calculated.

The difference between equations (2.7) and (2.16) is in the

introduction of a capacitance, Ci (defined in equation (2.15)).

Ci is equivalent to the total pheromone density of node i and

equation (2.16) states that ants are more likely to move

towards nodes that have relatively large total pheromone

density. In equation (2.7), the potential was simply the

number of particles on the node, i.e. Ci ¼ 1 for all nodes,

whereas in the biologically realistic model (equation (2.16)),

the number of particles is rescaled by the total pheromone

density on the node. As a result, edges linked to nodes

with large number of ants can still have flow if the two

nodes have different total pheromone density. Larger Ci

decreases the potential of the node and the ants will move

to a lower potential node and create a flow.

Figure 3e,f shows an example of this model solving the

Tower of Hanoi maze. Now both the flow and concentration

of particles lie on the shortest path, in exactly the same way as

they do in both ant and Physarum experiments (figure 1).

Electronic supplementary material, movie S1 provides an

example of the current-reinforced random walk in which

the network structure is changed in the same way as the

experiment by Reid et al. [1]. When the network is changed,

both the ants and the flow focus on the shortest path.
2.5. Non-symmetric Physarum solver
In the earlier-mentioned numerical examples, our current-

reinforced random walks converge to the shortest path

between a source and a sink. In order to prove the conver-

gence of these mechanisms in a general sense, Johansson

and co-workers have proposed a slight modification to the

Physarum solver in which conductivity is updated in both

directions between two linked nodes [23,24]. In this modifi-

cation, between node i and j, there are edges in both

directions. When Ni . Nj, the flow rate on edge ij will be
�Iij ¼ ðNi �NjÞDij=lij, while on the other direction �Iji ¼ ��Iji.

Because �Iij . 0; the conductivity will be reinforced on

edge ij, but at the same time �Iji , 0 so the conductivity

decreases on edge ji, thus the conductivity will be updated

non-symmetrically. Specifically, the conductivity Dij has the

deterministic dynamics

dDij

dt
¼ q

Dij

lij
ðNi �NjÞ � lDij: ð2:17Þ

The use of a bidirectional conductivity vector of Dij takes us

away from the electric network analogy, where conductivity

and conductance work symmetrically at a fundamental level.

A corresponding electric network for this model will have an
effective conductivity Dij þ Dji between node i and j. The

important point however is that of the two edges ij and ji at

most one can be increasing at any one time. If the flow is

from i to j, then the conductivity Dji in the opposite direction

will decrease with a rate O(e2t) as t ! 1.

Rewriting equation (2.17) in the following form,

dDij

dt
¼ l

q
l

Ni �Nj

lij
� 1

� �
Dij ð2:18Þ

we can see that at equilibrium it gives two possible solutions

for the solver, either Dij ¼ 0 or Ni �Nj ¼ llij=q and Dij . 0.

When Dij ¼ 0, Ohm’s law (equation (2.7)) implies that
�Iij ¼ 0 so there is no current between i and j. This means

that at equilibrium, flow moves along only some edges on

the graph, then the question is to prove that these edges

that have Dij . 0 are lying on the shortest path. This is

done by removing all negative cost cycles in the graph.

Details of the proof can be found in Ito et al. [23], along

with an application to linear programming problems [23,24].
3. Transport networks
Many biological systems connect multiple source and sinks to

form networks. For example, slime moulds link all the food

sources in their searching range and form efficient transport net-

works [6]. Similarly, many ant species have several nests among

which the workers, brood and resources are reallocated to

improve foraging efficiency and competitive ability [25]. Buhl

et al. [7] studied networks created by wood ants connecting

food sources to a central nest (figure 4a). They characterized the

networks in terms of two components of efficiency: the route

factor and total edge length [26]. The route factor is the average

of direct distance between each node and the central node while

the total edge length is the sum of all the edges in the measured

network. The wood ants’ networks consist of a main trunk

trails from which branching trails connect nearby food sources,

providing both low route factor and low total edge length.

There are some similarities between the reinforced

random walk models and the process of ant and slime

mould network formation. For example, Latty et al. [5]

found that in Argentine ants the process of network for-

mation involves an initial construction of multiple links

followed by a pruning process that reduces the number of

trails. A similar pruning process is seen in foraging army

ants, which show an initial expansion followed by a contrac-

tion to keep only trails leading to food items [27,28]. Perna

et al. [29] showed that a similar pruning mechanism is con-

sistent with the structure of chambers and passageways in

termite mounds. Slime moulds show a similar network

formation process among several food sources [4,6].

To compare our random walk models with these biological

systems, we now incorporate multiple sinks. We implement

both the current-reinforced random walk (§2.2) and the bio-

logically realistic model (§2.4) on a randomized hexagonal

grid with a central source and sinks placed at various places

around the grid. To compare with the data of Buhl et al., the

source can be thought of as the ant nest and the sinks are

located at the positions of the trees at which the ants forage

(figure 4a). The ants are simulated as particles going out

from the source to find the sinks. The current-reinforced

random walk model converges to the one-to-one shortest

path from the nest to each tree (figure 4b). The biologically



(a) (b)

(c) (d)

Figure 4. Comparison of wood ant trail and networks formed by implementations of different random walk models using the location of the ant nest as the source
and locations of trees as sinks in the simulations. The large grey dot in the centre of each subfigure represents the source where particles enter the system. Small
green dots at the extremities of each sub-trail represent sinks where particles are subtracted from the system. The thickness of the black lines on the edges is
proportional to the conductivity of the edge. (a) Ant trail no. 1; (b) network formed by current reinforced random walk; (c) network formed by biologically realistic
random walk; (d ) network formed by nonlinear biologically realistic random walk with m ¼ 1.1. Parameters for the simulations: Dt ¼ 0.1, q ¼ 1025, l ¼
1023, Dmin ¼ 10�4, external particles flow-out rate at each sink bt ¼ 100, flow-in rate is bt times the number of sinks.

rsif.royalsocietypublishing.org
JR

SocInterface
10:20120864

7

realistic random walk model also converges to nearly the one-

to-one shortest path from the source to each sink, but with a

few redundant edges owing to larger random fluctuations

(figure 4c). The solution produced by these models have the

lowest route factor, but they do not provide an efficient net-

work in terms of total edge length. Nor does this solution

look like the network built by the ants (figure 4a).

To understand why the current-reinforced random walk

produces a low route factor network, but not one that looks

like a real ant foraging network, we should consider the

type of optimization problem which the current-reinforced

model solves for multiple sinks. Johansson et al. [23] prove

that the non-symmetric Physarum solver (equation (2.17))

minimizes the following cost function

X
ij[E

lij �Iij ð3:1Þ

subject to BI ¼ b and I � 0, where B is the adjacency matrix

of the network, Im�1 is the flow vector goes through each

edge and bn�1 is the external flow on each node. If bi . 0,

then i is a source and if bi , 0 it is a sink. The total inflow

equals the total outflow, i.e.
P

i bi ¼ 0. Here, the total cost,

i.e. equation (3.1), represents the total power caused by the

flow at equilibrium. In electric networks, the power needed

to transport one unit flow between two nodes depends on

the potential difference/voltage drop Uij, when Ohm’s law

is valid, i.e. Uij ¼ �Iij Rij ¼ ðlij=DijÞ�Iij. The cost U of transport-

ing per unit flow grows linearly with the flow. As a result,

when there is one source and multiple sinks the solution is

simply a union of the one-to-one shortest paths between

every sink and the source, as seen in figure 4b.
In many biological systems, the cost of transporting per

unit flow does not grow linearly with the flow. For example,

for ants, there is a cost associated with maintaining trail and

clearing it from debris which decreases if many ants are using

the trail [30,31]. In such cases, per unit flow can be modelled

by a concave cost function such as

X
ij[E

lij
Dij

�I1=m
ij ; ð3:2Þ

where m . 1. Transportation systems optimized in this way

require particles to share the same path near to the source,

because the cost of per unit flow is smaller when the flow

increases. As a result, the networks formed in these systems

have smaller total length than the networks formed by

linear cost optimization. Furthermore, unlike the linear cost

problem, when m . 1 this problem is NP-hard [32], implying

there is no general computational efficient algorithm to

construct solutions.

The form of the optimization problem suggests a possible

heuristic method for its approximate solution. If we consider

the cost per unit flow as the potential difference/voltage

drop, then equation (3.2) can be considered to be

lij
Dij

�I1=m
ij ¼ jNi �Njj

Note the optimization problem is subject to �Iij 0, therefore

we use the absolute value in the calculation. The correspond-

ing flow rate is then

�Iij ¼ jNi �Njj
Dij

lij

� �m

:
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which can be substituted in to equation (2.7), and then used

correspondingly in equations (2.5), (2.6) and (2.8) to specify a

nonlinear-reinforced random walk.

In the biologically realistic random walk model, the same

argument can be applied just with a different pressure/

potential. In this case, however, by using this nonlinear

flow, Ohm’s law is violated. To avoid this problem, we intro-

duce the nonlinearity to the update of the conductivity

instead. We set the evolution of the conductivity as

Dijðtþ DtÞ ¼ DijðtÞ þ qjIijðtÞjm � lDijðtÞDt; ð3:3Þ

where Iij(t) is defined the same as in equation (2.5). In terms

of ants, this rule implies that amount of pheromone depos-

ited by individual ants increases super-linearly with the

flow. Figure 4d shows the networks formed by this model,

i.e. equations (2.16), (2.5), (2.6) and (3.3) when m ¼ 1.1. This

nonlinear biologically realistic model gives networks with a

high route factor (r* ¼ 0.97 for the simulated network and

r* ¼ 0.70 for the real ant network) but low total edge

length (L* ¼ 0.89 for the simulated network and L* ¼ 0.84

for the real network) and similar to that of real ant trails

(see Buhl et al. [7] for a definition of r* and L*). The similarity

suggests that nonlinear response of the ant flow to the phero-

mone density change might be the mechanism used by ants.

Tero et al. [6] use a mean-field variant of equation (3.3) in

modelling Physarum network formation, and also drew the

conclusion that with nonlinear response of the flow the

networks formed resembled those formed by Physarum.

While we have used current reinforcement in our simu-

lation, it is density reinforcement which is used in the

majority of previous models of biological aggregation and

trail formation [10,15,28,33]. To model pattern formations in

chemotactic environment, Othmer and Stevens assume that

the reinforcement is proportional to the local density of par-

ticles and or the control substance (pheromone). These

models reproduce general aggregation patterns of particles,

but do not form the spatial networks seen in figure 4d. Earlier

biologically motivated trail formation models also use

density reinforcement. For example, Edelstein-Keshet et al.
assume that follower ants and lost ants lay pheromone at a

constant rate, so ant trails are reinforced proportionally to

the number of follower ants and lost ants in local area. As a

result, and similar to in figure 3d, this model gives ant

trails with many loops [33]. Other models of ant and

human trails, as well as vessel formation, that use density

reinforcement, can reproduce more realistic tree-like trail

structures. However, these results depend on introducing

global navigational information [15], a gradient that biases

growth towards one particular direction [34] or by treating

outbound and inbound particles differently [28]. The differ-

ence between our current-reinforced random walk and

these approaches is that our model is based entirely on

local information and does not require that particles have

memory. As such, the assumptions underlying current

reinforcement are consistent with the biology of both slime

moulds, ants and other biological systems.
4. Conclusion
In the context of foraging by trail-laying ant species, the

model presented in this study makes a minimum of assump-

tions about the individual navigational capabilities of ants.
The first of these assumptions is about how ants follow

pheromone. Recent experiments have established that

Argentine ants turn at a rate proportional to

L� R
Lþ R

; ð4:1Þ

where L is the pheromone concentration to their left and R is

concentration to the right [22]. This rule is consistent with

equation (2.16), supporting this basic model assumption

about how ants follow pheromone. Different evaporation

rates and pheromone sensitivity for different species deter-

mine the parameters l and q, respectively. However, in the

model, the eventual establishment of a shortest path does

not depend crucially on these parameters. Instead, these

will determine how quickly ants will react to changes in

their environment.

The second model assumption is that ants modify their

trail-laying behaviour with the flow of ants on a trail. Such

regulation has not as yet been tested experimentally. Ants

of most trail-laying species pause to interact with nestmates

on the trail, providing a possible mechanism for regu-

lation [35]. The prediction of our model is that ants lay less

pheromone when they encounter a flow of ants moving in

the other direction. For example, one behaviour consistent

with the model is that ants leave pheromone whenever they

find food, but when these fed ants meet other fed ants

moving in the opposite direction then they reduce their ten-

dency to lay pheromone. In cases where ants leave

pheromone both before and after they find food, their trail-

laying tendency should reduce if they encounter ants in the

same state (fed/unfed) as themselves moving in the opposite

direction. Testing these assumptions requires experiments in

which the interactions of ants on the trail are observed and

the effect these have on trail-laying propensity measured.

A third additional assumption is made in §3 in order to

generate transport networks. Here, we include a nonlinear

interaction between traffic flow and pheromone deposition.

This nonlinearity is not captured directly in equation (4.1),

but there is evidence of similar nonlinearities in interactions

between ants, pheromones and their environment [20,22].

We would expect the exact details of interactions to vary

from species to species, providing different values for the

nonlinearity parameter m, as it does with the pheromone

parameters l and q. Moreover, many species of ants exhibit

more complex behaviour during foraging than are included

in our model. Some species leave multiple pheromones

depending on whether they are exploring or they have

found food [36]. Other species use environmental navigatio-

nal cues, such as path integration and compass [37]. Earlier

models of the foraging ants have shown that including

these extra capabilities, together with density reinforcement

via pheromone, produce somewhat realistic network struc-

tures [14,28]. We have shown that even in the absence of

these additional cues, ants can use current reinforcement to

build foraging networks.

The current-reinforced random walk description provides

biological underpinnings to the Physarum model proposed by

Tero et al. [16]. The Physarum model is described by a set of

ordinary differential equations on a network, which we have

shown to be a particular deterministic limit of the current-

reinforced random walk in §2.2. One important difference is

that while random walk models are local, the Physarum solver

uses global information in calculating Kirchhoff’s law on each
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time step. Another difference is that the Physarum model does

not explicitly deal with the problem of having large numbers

of particles in areas of the network where there is low flow.

These differences are important if our aim is to describe the

decentralized construction of transport networks.

We expect current reinforcement to be important in a

much wider range of biological systems than ant foraging.

Indeed, at the microscopic level, cells and other biological

‘particles’ do not have any additional navigational capa-

bilities. Work on reinforced random walks in, for example,

tumour angiogenesis, has used density-reinforced random

walks combined with a gradient bias to model chemotaxis

cell migration, leading to blood vessel growth towards a

tumour [11,34]. While external gradients may well exist in

these systems, we would suggest that current, rather than

density, reinforcement is a more realistic paradigm for this

type of network formation or morphology problems. Many
of these systems involve the flow of biological matter

and produce bifurcating networks reminiscent of figure 4d
[38]. By adopting current reinforcement, these systems can

avoid the formation of self-reinforcing loops. Gradients

can be represented in our models simply by changing the

resistance lij of the edges of the network. A similar argument

for the application of current reinforcement can be made

for neural networks, where electrical signals created by

chemicals reinforces the connections between neurons

[39–41]. We expect the biological details of each system to

be different, but the principle of reinforcement where flow

and capacitance are large should be common to many of

these systems.

This research was supported by the Strategic Japanese–Swedish
Cooperative Program on Multidisciplinary BIO from SSF and HFSP
grant no. RGP0051/2007.
20120864
References
1. Reid CR, Sumpter DJT, Beekman M. 2011
Optimisation in a natural system: Argentine ants
solve the Towers of Hanoi. J. Exp. Biol. 214, 50 – 58.
(doi:10.1242/jeb.048173)

2. Nakagaki T, Yamada H, Toth A. 2000 Maze-solving
by an amoeboid organism. Nature 407, 470.
(doi:10.1038/35035159)

3. Nakagaki T, Iima M, Ueda T, Nishiura Y, Saigusa T,
Tero A, Kobayashi R, Howalter K. 2007 Minimum-
risk path finding by an adaptive amoebal network.
Phys. Rev. Lett. 99, 068104. (doi:10.1103/
PhysRevLett.99.068104)

4. Nakagaki T, Yamada H, Hara M. 2004 Smart
network solutions in an amoeboid organism.
Biophys. Chem. 107, 1 – 5. (doi:10.1016/S0301-
4622(03)00189-3)

5. Latty T, Ramsch K, Ito K, Nakagaki T, Sumpter DJT,
Middendorf M, Beekman M. 2011 Structure and
formation of ant transportation networks. J. R. Soc.
Interface 8, 1298 – 1306. (doi:10.1098/rsif.2010.0612)

6. Tero A, Takagi S, Saigusa T, Ito K, Bebber DP, Fricker
MD, Yumiki K, Kobayashi R, Nakagaki T. 2010 Rules
for biologically inspired adaptive network design.
Science 327, 439 – 442. (doi:10.1126/science.
1177894)

7. Buhl J, Hicks K, Miller ER, Persey S, Alinvi O,
Sumpter DJT. 2009 Shape and efficiency of wood
ant foraging networks. Behav. Ecol. Sociobiol. 63,
451 – 460. (doi:10.1007/s00265-008-0680-7)

8. Berg HC. 1983 Random walks in biology. Princeton,
NJ: Princeton University Press.

9. Otto SP, Day T. 2007 A biologist’s guide to
mathematical modeling in ecology and evolution.
Princeton, NJ: Princeton University Press.

10. Othmer H, Stevens A. 1997 Aggregation, blowup,
and collapse: the ABC’s of taxis in reinforced
random walks. SIAM J. Appl. Math. 57, 1044 – 1081.
(doi:10.1137/S0036139995288976)

11. Codling EA, Plank MJ, Benhamou S. 2008
Random walk models in biology. J. R. Soc. Interface
5, 813 – 834. (doi:10.1098/rsif.2008.0014)
12. Davis B. 1990 Reinforced random walk. Probab.
Theory Related Fields 84, 203 – 229. (doi:10.1007/
BF01197845)

13. Levine H, Pamuk S, Sleeman B, Nilsen-Hamilton M.
2001 Mathematical modeling of capillary formation
and development in tumor angiogenesis:
penetration into the stroma. Bull. Math. Biol. 63,
801 – 863. (doi:10.1006/bulm.2001.0240)

14. Schweitzer F, Lao K, Family F. 1997 Active random
walkers simulate trunk trail formation by ants.
Biosystems 41, 153 – 166. (doi:10.1016/S0303-
2647(96)01670-X)

15. Helbing D, Keltsch J, Molnar P. 1997 Modelling
the evolution of human trail systems. Nature 388,
47 – 50. (doi:10.1038/40353)

16. Tero A, Kobayashi R, Nakagaki T. 2006 Physarum
solver: a biologically inspired method of road-
network navigation ( proceedings paper). Physica A
Stat. Mech. Appl. 363, 115 – 119. (doi:10.1016/j.
physa.2006.01.053)

17. Doyle P, Snell L. 1984 Random walks and electrical
networks (Carus mathematical monographs).
Washington DC: Mathematical Association of America.

18. Kelly F. 1979 Reversibility and stochastic networks.
London, UK: John Wiley and Sons Ltd.

19. Kingman J. 1969 Markov population processes.
J. Appl. Probab. 6, 1 – 18. (doi:10.2307/3212273)

20. Goss S, Aron S, Deneubourg J, Pasteels J. 1989 Self-
organized shortcuts in the Argentine ant (note).
Naturwissenschaften 76, 579 – 581. (doi:10.1007/
BF00462870)
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