3214-3222 Nucleic Acids Research, 2007, Vol. 35, No. 10

doi:10.1093/nar/gkm212

Published online 22 April 2007

Genomewide and biochemical analyses of
DNA-binding activity of Cdc6/0Orc1 and Mcm

proteins in Pyrococcus sp.

Fujihiko Matsunaga'?, Annie Glatigny®, Marie-Héléne Mucchielli-Giorgi®,
Nicolas Agier®, Hervé Delacroix®, Laetitia Marisa®, Patrice Durosay®, Yoshizumi Ishino?,

Lawrence Aggerbeck® and Patrick Forterre'*

'Institut de Génétique et Microbiologie, UMR8621, Bat. 409, Université Paris-Sud, 91405 Orsay Cedex,

France, “Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University,

Fukuoka 812-8581, Japan and °Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire
UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université

Pierre et Marie Curie-Paris 6, Paris F-75005, France

Received February 16, 2007; Revised March 26, 2007; Accepted March 27, 2007

ABSTRACT

The origin of DNA replication (oriC) of the hyperther-
mophilic archaeon Pyrococcus abyssi contains
multiple ORB and mini-ORB repeats that
show sequence similarities to other archaeal ORB
(origin recognition box). We report here that the
binding of Cdc6/Orc1 to a 5kb region containing
oriC in vivo was highly specific both in exponential
and stationary phases, by means of chromatin
immunoprecipitation coupled with hybridization
on a whole genome microarray (ChlP-chip). The
oriC region is practically the sole binding site for the
Cdc6/0rc1, thereby distinguishing oriC in the 1.8 M
bp genome. We found that the 5 kb region contains
a previously unnoticed cluster of ORB and
mini-ORB repeats in the gene encoding the small
subunit (dp7) for DNA polymerase Il (PolD). ChIP and
the gel retardation analyses further revealed that
Cdc6/0Orc1 specifically binds both of the ORB
clusters in oriC and dp1. The organization of the
ORB clusters in the dp1 and oriC is conserved
during evolution in the order Thermococcales,
suggesting a role in the initiation of DNA replication.
Our ChIP-chip analysis also revealed that Mcm
alters the binding specificity to the oriC region
according to the growth phase, consistent with its
role as a licensing factor.

INTRODUCTION

The duplication and transmission of genetic information
without loss, is a very important issue for life. Cell
division must be accompanied by DNA replication with
an appropriate timing and frequency. One mechanism to
achieve this goal is the regulated initiation of DNA
replication. In bacteria and eukaryotic organisms, specific
initiator protein(s) initiate DNA replication by activating
specific region(s), namely the replication origin(s).
Archaea, the third domain of life, are unicellular
organisms whose genome size is comparable to that of
bacteria. Most of the putative DNA replication proteins
encoded in the archaeal genome, however, are related
to eukaryotic genes involved in DNA replication
(reviewed in 1-4). The hyperthermophilic anaerobe
Pyrococcus abyssi belongs to the order Thermococcales
in Euryarchacota. We have used P. abyssi as a model
organism to study the molecular physiology of archaeal
DNA replication. P. abyssi has a single gene similar to
cdc6 or orcl (cdc6/orcl) and a single mcem gene in the
1.8 M bp chromosome. We have discovered a single
replication origin in the circular chromosome (5,6).
Although the minimal requirements for designating the
replication origin (oriC) have not yet been determined,
DNA replication initiates from the region containing
an 800bp intergenic region upstream of the cdc6/orcl
gene. Interestingly, the single origin per chromosome
rule is not applicable to all archaeal genomes, as
three replication origins were experimentally identified
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in Sulfolobus solfataricus and S. acidocaldarius (7-9).
Another potential origin has been reported in
S. solfataricus (10). Two replication origins were
predicted in Halobacterium sp. Strain NRC-1 (11,12),
and one of them was isolated as an ARS element (13).
Marker frequency analyses detected a single origin in
Archaeoglobus fulgidus and no single replication origin
in  Methanocaldococcus  jannaschii  (14).  Recently,
Aeropyrum pernix was also shown to have a replication
origin (15). In S. solfataricus, DNasel footprint experi-
ments identified 36 bp sequences (ORB, origin recognition
box) in oriC1 and 17 bp sequences (mini-ORB) in oriC2
that are recognized by purified Cdc6-1 protein (7).
The putative replication origin of Methanothermobacter
thermautotrophicus has multiple 13 bp mini-ORBs (16),
which are minimized versions of Sulfolobus ORBs (17). A
single mini-ORB is capable of binding M. thermautotro-
phicus Cdc6-1 specifically, while this protein binds
cooperatively to a DNA fragment containing multiple
mini-ORB repeats (17). The replication origin in 4. pernix
also contains ORB repeats, and ORCI1 dimer binds to
these repeats (15). Furthermore, the Halobacterium ARS
element lost its replication activity when a half of the
inverted repeat containing ORB-related sequences was
deleted (13). ORB-related sequences are found in many
archaeal origins, and specific binding of ORB by Cdc6/
Orcl is likely to be a common mechanism for origin
recognition in Archaea (7,17).

Pyrococcus abyssi oriC contains multiple 13 bp mini-
ORB repeats, two AT rich regions, and two 34bp ORB
repeats that form an inverted repeat (6,18). Both the mini-
ORB and ORB show significant sequence similarities to
known ORBs (7,17). Furthermore, ORB sequences of
P. furiosus can bind S. solfataricus Cdc6-1 in vitro (7).
In order to demonstrate the role of a putative archaeal
initiator protein in vivo, we have shown, using a chromatin
immunoprecipitation (ChIP) assay, that P. abyssi oriC is
recognized by Cdc6/Orcl protein referred to as Cdc6
hereafter for simplicity; (6). The Cdc6 protein binds with
much higher affinity to the oriC region in exponentially
growing cells as opposed to three other unrelated regions
used as controls. This interaction between oriC and Cdc6
is also observed in non-replicating cells. The ChIP
technique was also employed in S. solfataricus to
demonstrate preferential binding of Cdc6 proteins
to replication origins by comparison with a control locus
in S. solfataricus (7). However, the localization pattern of
the Cdc6/Orcl protein on a genomewide scale remains
to be elucidated in Archaea. Although the Mcm protein of
P. abyssi was shown to bind the oriC in exponentially
growing cells (6), the genomewide distribution of archaeal
Mcm remains to be examined, too.

In eukaryotes, genomewide localization analyses of
ORC and/or MCM have identified multiple binding sites
(19-21). We developed an experimental method combin-
ing ChIP and microarray analysis to investigate the
distribution of the Cdc6/Orcl and Mcm proteins in the
entire P. abyssi genome. Sequence analysis of the region
identified as the binding site for Cdc6 and Mcm revealed
a novel cluster of ORB repeats ~ 1.5kb apart from the
known ORB repeats in oriC. Furthermore, ChIP at a
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higher resolution and biochemical studies indicated that
both of these ORB clusters were bound specifically by
Cdc6. The organization of these ORB repeats is conserved
during evolution, suggesting a role for the initiation of
DNA replication. The ChIP-chip analysis also showed the
regulated loading of Mcm to oriC.

MATERIALS AND METHODS
Microarray preparation

The P. abyssi genome was divided into 353 regions, each
of which is 5kb in length. Each of the 353 DNA regions
has a specific ID number. For example, the microarray
region 25 corresponds to the genome coordinates
120000-125000. For the microarrays, each of the 353
regions was amplified with the BD Advantage 2 PCR kit
(BD Biosciences, Palo Alto, CA, USA, Clontech). The
primers were designed using the P. abyssi genome
sequence so that they have very low possibility of
miss-hybridization. The quality (appropriate size and
purity) of each PCR product was confirmed by agarose
gel electrophoresis. The purified PCR products were
quantitated and distributed into 384-well source plates at
final concentrations of 100 ng/ul in final volumes of 8 pul of
water. PCR products were dried using centrifugation
under vacuum and then resuspended in 8pul of 1%
CHAPS and 50% formamide (22).

The DNAs were arrayed onto activated GAPSII slides
(Corning, NY, USA) using a GeneTAC G3 robot
(Genomic Solutions, Ann Arbor, MI, USA) operating
under a controlled environment (20°C and 35% humidity)
using thirty-two 150 um diameter pins. Each fragment was
spotted six times (three spots in two different blocks
originating from two different pins). P. abyssi plasmid
pGTS5 and negative controls (lambda DNA, pBluescript,
pESPI1, 1kb ladder) were also added after linearization by
appropriate restriction enzymes. After spotting, the slides
were dried overnight, protected from light, at room
temperature. The DNA was then UV-crosslinked to the
slide using 250 mJ/ecm?® (Hoeffer UVC500; Amersham
Biosciences, Freiburg, Germany). For quality control,
one slide from every print batch was stained with SYBR
Green II (Invitrogen, Carlsbad, CA, USA) diluted
1:10000. The slides were pre-processed by washing for
5min each with 1) 2x SSC/0.1% SDS, 2) 0.2x SSC and 3)
water and then dried using centrifugation under vacuum.
Identical pre-processing was used for slides destined
for hybridization.

Labeling of chromatin immunoprecipitated DNA

The basic design of the ChIP-chip experiment followed the
protocol by Wyrick et al. (19). ChIP was performed
as described previously (6). The specificity of the antisera
used in this study was confirmed by ChIP using
preimmune antiserum and by western blotting of
P. abyssi cell extracts. The DNA fragments obtained by
the ChIP method, using a 500 pl cell extract, were treated
with RNaseA (0.3 mg/ml) and purified with the QIAquick
PCR purification kit (Qiagen, Valencia, CA, USA).
The purified DNA fragments were blunted with T4
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DNA polymerase (0.03U/ul, New England Biolabs,
Beverly, MA, USA) and purified with phenol/chloroform
treatment. The blunted DNA fragments were then ligated
to the unidirectional linker (19) by incubating with 8 U/ul
ligase (New England Biolabs) at 16°C overnight. The
resulting DNA fragments were purified again by ethanol
precipitation before being subjected to PCR based DNA
labeling. The experimental conditions for DNA-labeling
were the same as described (19); Cy5-dUTP and Cy3-
dUTP, respectively (Amersham Biosciences), were used
for labeling ChIP co-immunoprecipitated DNA and DNA
from mock-treated cell extract. Labeled samples were
purified by using the StrataPrep PCR purification kit
(Stratagen, La Jolla, CA, USA), and concentrated with a
vacuum evaporator just prior to hybridization to the
microarray.

Microarray hybridization and image acquisition

Experiments were done using at least three (Cdc6 in
exponential and stationary phases, MCM in stationary
phase) or four (MCM in exponential phase) independently
prepared samples. Fluorescently labeled samples were
resuspended in 110 pl of Micromax buffer (Perkin Elmer
Life Sciences, Foster City, CA, USA). All arrays were
hybridized and washed using an automated GeneTAC
hybridization station (Genomic Solutions). The hybridiza-
tion protocol consisted of incubations at (i) 65°C for 3 h;
(i1) 55°C for 3h and (iii) 50°C for 12h. Slides were then
washed twice with medium stringency buffer for 40s at
50°C; and then twice with high stringency buffer for 40 s at
42°C and then twice with postwash buffer for 40s at 42°C.
All the buffers were from Genomic Solutions. The slides
were scanned using a GenePix 4000B Microarray Scanner.
The resulting 16bit TIFF images were analyzed using
the GenePix Pro 3 software (Axon Instruments,
Aberdeenshire, Scotland). All slides were scanned
using 100% laser power and the same PMT voltage
(580V for CyS and 520V for Cy3).

Data analysis

For each spot, the log base 2 of the ratio of the median
intensity of Cy5 to Cy3 (M) was calculated.
Normalization by the lowess method across an array
was done using the Bioconductor LIMMA package (23).

Table 1. Comparison of DNA-binding specificities of Cdc6/Orcl and Mcm

Scale normalization across slides was also performed (24).
Peak detection was performed as follows: first, the average
value of M for each of the fragments, i, on a slide, M, was
calculated. Then, for each slide, the average and SD of the
M;, My and oy, respectively, were calculated. The M;
were centered around zero, with a constant SD, o, by
means of the following relationship:

M, = (M, - Mau)< i )

o,

i

N
. . Nj
where o is the geometric mean of the og7(0 = ]_[l o357 )-
i

Finally, for each series of experiments (Cdc6 exponen-
tial phase, Cdc6 stationary phase, Mcm exponential
phase, Mcm stationary phase), the average M, and its
SD, M. and 7 respectively, were determined.

Student’s ¢-tests comparing the M; value of each
fragment to the mean of all the spots were performed
independently for each slide. Associated P-values were
calculated and the minimum P-value is used to indicate
the degree of significance of each fragment. Selected peaks
(1 —P>0.95) and the associated values of M. and oy are
shown in Table 1.

Purification of the Cdc6/Orc1 protein of P. furiosus

We used the EasySelect Pichia expression system
(Invitrogen) to express histidine-tagged P. furiosus Cdc6/
Orcl protein in recombinant yeast cells. As the majority of
the Cdc6/Orcl was found in the insoluble fraction, the
histidine-tagged Cdc6/Orcl was purified under denaturing
conditions using a Nit*-NTA agarose column (Qiagen),
followed by renaturation in the buffer containing 50 mM
Tris-HCl (pH =8.0), 250mM NaCl, SmM p-mercap-
toethanol and 10% glycerol.

Gel retardation assay

The purified, histidine-tagged Cdc6/Orcl and 0.1 pico
mole of *?P-labeled DNA were incubated in 20ul of
reaction buffer containing 20mM triethanolamine
(pH=7.5), 50mM NaCl, I mM MgCl,, ImM DTT, 2%
glycerol, 10 pg/ml poly (dI-dC)-poly(dI-dC) and 0.1 mg/ml
BSA, for 20min at 55°C. The reaction mixture was
terminated and the protein—-DNA complex was chemically

Cdc6/Orcl No. 24 No. 25 No. 42 No. 43 No. 228 No. 229
Expo M, £ oy, 0.72+0.29 3.06+£0.10 0.144+0.10 0.04 +0.08 0.36+0.08 0.344+0.11
1-P 0.999 1 0.218 0.504 0.999 0.998

Stat M, £ oy, 0.61 +0.07 2.9140.16 0.2340.32 0.06 +0.04 0.254+0.20 0.2740.27
1-P 1 1 0.166 0.332 0.264 0.268

Mcm No. 24 No. 25 No. 42 No. 43 No. 228 No. 229
Expo M, + oy, 0.08 +0.05 0.7240.18 0.4740.19 0.26 +0.06 —0.01+£0.08 —0.064+0.13
1-P 0.109 1 0.999 0.999 0.350 0.874

Stat M. £ oy, 0.124+0.04 0.374+0.13 0.76 +0.31 0.28 +0.05 —0.08 +£0.02 —0.0640.01
1-P 0.855 0.999 1 0.999 0.807 0.645

Data are the average of at least three independent replicates with the corresponding standard deviation. 1 — P expresses the significance of the
peak height (see Materials and Methods section for details). Values should not be compared directly among different growth conditions, as
‘input DNA” is specific for each condition. Expo, exponentially growing cells; Stat, cells in stationary phase.



fixed by 0.1% glutaraldehyde. The samples were electro-
phoresed on a 4% polyacrylamide gel (37.5:1) in 1x TAE.
The gel was dried and analyzed using an FLA-5000
image analyzer (Fujifilm, Allendale, Tokyo, Japan). When
substratet  DNA was bound by Cdc6/Orcl, we
observed two major ‘shifted” DNA bands and they were
included in the quantification. Sequences of the 49 bp
DNA fragments used in the assay are as follows: ORBI,
AAAACCCCCCAGAGTTTCATTTCCACTGGAACC

AGGTTTTGAAAGGTAA; ORBI-mut, AAAACCCC
CCAGAGTTTCATGCTAACTTACGCCAGGTTTTG

AAAGGTAA; ORB2, GAAGTCCCCCAGAGTTTCA
TTTCCACTGGAGCCGGGCGGCAAACACCAG; OR
B2-mutl, GAAGTCCCGATCAGTTTCATTTCCACTG
GAGCCGGGCGGCAAACACCAG; ORB2-mut2, GA
AGTCCCCCAGAGTTTCATTTCCACTGGAGCCGG
ATCGCAAACACCAG; ORB3, AAAGAAGGAGAGA
GTTTTATTTCCACTGGAAGTGAACCACTTGAAG

AGG; mini-ORB, AGCTACCATGCCTGCACGATTT
CCACTGGAGGTAATCATGGTCATAGCT; control,
AGCTACCATGCCTGCACGAATTAAGCAATTCGT
AATCATGGTCATAGCT.

RESULTS
Cdc6/Orcl binds to oriC in vivo with high specificity

We previously reported that P. abyssi Cdc6 binds
preferentially to P. abyssi oriC in vivo as compared to
three other regions of the P. abyssi genome by using the
ChIP method (6). However, it was not known whether
this specificity persists at the level of the whole genome.
To address this issue, we devised a method to analyze the
distribution of Cdc6 over the entire genome by combining
ChIP and microarray based hybridization techniques
(ChIP-chip analysis). DNA fragments obtained by ChIP
using Cdc6 specific antiserum and those from mock
treated cell extracts were labeled by incorporating
fluorescent-labeled nucleotides, Cy5-dUTP and
Cy3-dUTP, respectively. Both labeled DNA samples
were hybridized simultancously on the microarray, the
spots of which represent the entire genome of P. abyssi.
The specificity of Cdc6 for each region was evaluated
by comparing the hybridization efficiency between co-
immunoprecipitated and mock-treated DNA on the
microarray (see Materials and methods).

When exponentially growing cells were analyzed using
this method, we found that the Cdc6 protein bound
specifically to region 25 containing oriC (genome coordi-
nate 120000-125000) in a statistically significant manner
(P<<0.0001). The M -value for region 25 was extremely
high compared to the averages of all the other regions
(Figure 1A and Table 1). Binding to region 24 was
also significant (P=0.001), but the value of M, was
much lower. It should be noted that under the conditions
used in the ChIP-chip analyses, a portion of co-
immunoprecipitated DNA fragments was relatively long
(up to 1.5kb), and thus can hybridize to two flanking
regions such as regions 24 and 25. Cdc6 binding to region
25 was also statistically significant (P<<0.0001) with
similar M.-values in stationary phase cells, consistent with
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Figure 1. The binding of the Cdc6 and Mcm proteins to the P. abyssi
genome in exponentially growing (A and C) and stationary
cells (B and D) is represented by the value of M, for each of the 353
fragments of the genome. Cdc6 binds to the region 24-25 containing
oriC with an extremely high specificity in exponentially growing and
stationary cells. Mcm binds to two regions 25 and 42-43. The data
are the results of 3 or 4 independent experiments in each case.

our previous results implying constitutive binding of Cdc6
to oriC (Figure 1B and Table 1).

In exponentially growing cells, we found that two other
regions, 228 (genome coordinate 1135000-1140000)
and 229 (genome coordinate 11400001 145000) bound
Cdc6 significantly (P <0.002), albeit with markedly lower
‘M-values, despite the lack of ORB-related sequence
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(Figure 1A and Table 1). Although a peak corresponding
to these regions was also apparent with Cdc6 and
stationary phase cells, this binding was not statistically
significant (P>0.7; Figure 1B and Table 1). Among the
11 putative ORFs present in these regions, only one ORF
(PAB7298), whose function is unknown, has homologs in
the two other Pyrococcus sp. Currently, in the absence of
any other information, the possible role of Cdc6 binding
to this region remains unclear.

Two clusters of ORBrepeats are present in the region bound by
Cdc6

There are multiple 13 bp mini-ORB and two 34 bp ORB in
oriC (ORB1 and ORB2). In addition to the cluster of these
repeats in oriC, we found another cluster of 13 bp mini-
ORB and 23bp ORB (ORB3) repeats in the dpl

A
P. abyssi oriC
PAB2266 (dp1) PAB2265 (cdc6/orc1) PAB2264
> » b}( 411 ; 4
ORB3 ORB2 ORB1
ORB1: CCCCCAGAGTTTCATTTCCAGTGGAACTGGGTTG
ORB2: CCCCCAGGGTTTCATTTCCACTGGAACCGGGTTG
ORB3: CCAGAGTTCTATTTCCACTGGAA
mini-ORB: ATTTCCACTGGAG
ATTTCCAGTGGAA
GTTTCCACTGGAA
ATTTCCACAGGAA
ATTTCCGATGGAA
ATTTCCACTGGAA
GGTTCCAGTGGAA
AGTTCCACTGGAA
ATTTCCAGTGGAA
B
P. furiosus )
oriC
PF0018 (dp1) PF0017 (cdc6/orcT) PF0016
4 »» PR dad > 4
3 D)
ORB3 ORB2 ORB1
p . ;
PHO0123 (dp1) PHO0124 (cdc6/orc1) PHO0125
¢ )4 IXKEKKEL
» "0
ORB4 ORB3 ORB2 ORBH1
T .
TK1902 (dp7) TK1901 (cdc6/orc1) TK1900
o) 4 4 »rd
4 4 { })
ORB3 ORB2 ORB1

Figure 2. The cdc6/orcl gene is located between two clusters of ORB
repeats in Thermococcales genomes. (A) The region surrounding the
cdc6/orcl gene and oriC in P. abyssi is presented schematically. The
location of the mini-ORB repeats is indicated by small arrowheads,
while the ORB repeats are indicated by large arrowheads (not to scale).
The Skb region presented here corresponds to the region 25 of
the microarray. Nucleotide sequences of the ORB and mini-ORB are
aligned below. (B) ORB clusters in other Pyrococcus and Thermococcus
genomes are presented as in (A).

gene encoding the small subunit of family D DNA
polymerase II (Figure 2A). This ORB cluster in dpl
resides in the region where Cdc6 binds specifically
(Figure 1A and B). Interestingly, the organization of
these repeated sequences is conserved in all three
Pyrococcus genomes and in the recently sequenced
genome of Thermococcus kodakaraensis that also belongs
to the order Thermococcales (Figure 2B). We also
prepared a consensus sequence based on the eight
variations of the mini-ORB repeats observed in the
P. abyssi oriC and used it to map all possible 13bp
repeats in the P. abyssi genome. We found 30 repeats
widely distributed over the entire genome (Supplementary
Figure 1). Although these 13 bp repeats are scattered over
the entire genome, no more than two repeats appeared in
clusters except in the 5kb region spanning the oriC, cdc6/
orcl and dpl gene.

To address the question whether Cdc6 binds both
of these ORB clusters, we employed the conventional
ChIP technique in which specific binding is evaluated
by measuring PCR efficiency (6). We analyzed 11 loci
including the two ORB clusters, its neighboring regions
and control regions, as indicated in Figure 3A. The results
indicated that Cdc6 binds preferentially to both of the
ORB clusters in vivo (Figure 3B). The binding affinity to

A ORB3  ORB1+2

O Ao
Q' Q'
\ &”&f”\ S

dp2 dp1 v & 2

- = = omm -

Y0

10 kb 5kb-L
- -

B B Exponential phase [ stationary phase

40
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20

15

Relative abundance

10

]
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Figure 3. Cdc6 binds specifically to the two ORB clusters in vivo.
(A) Location of the regions analyzed by conventional ChIP is indicated
as small boxes. Arrowheads indicate the ORB repeats.
(B) DNA-binding specificity of Cdc6 to the regions indicated in (A)
was analyzed by relative abundance of each PCR product. ChIP
analysis was performed as described previously (6). The error bar
indicates the SD (n>3).



the ORB cluster in dp/ (ORB3) was comparable to that of
oriC (ORBI1 + 2). Furthermore, this binding is observed in
exponential and stationary phases (Figure 3B).

Cdc6 protein binds to DNA with the conserved ORB repeat
in vitro

In Pyrococcus sp., there have been no studies that address
the DNA-binding activity of Cdc6 in vitro. The amino acid
sequence identity between P. furiosus Cdc6 and P. abyssi
Cdc6 is 93%, thus confirming their functional identity.
We, therefore, purified the Cdc6 protein of P. furiosus
from which many DNA replication proteins have been
purified in our laboratory, and examined its DNA-binding
properties in vitro (Figure 4). We found, using a gel
retardation assay that the recombinant Cdc6 protein binds
to a DNA fragment carrying either one of the ORB
repeats (ORB1, ORB2 or ORB3; see also Figure 2B). The
concentration of Cdc6 to achieve 50% binding of the
substrate DNA was ~ 150, 110 and 240nM for ORBI,
ORB2 and ORB3, respectively. On the contrary, a control
DNA fragment whose sequence is irrelevant to the ORB

A

Cdcé 1 = | = | E | = |
“
bound{ ““ L “ .- "
e S [ R~ '

free -

L L | e L]

ORB1 ORB2 ORB3

mini-ORB control

90
80
< 70
&
= 60 —-ORB1
3 -m-ORB2
> 50 —4—ORB3
s 20 —>¢mini-ORB
2 —e—control
30
20
10
—e
b4
0 ! ) H
0 100 200 300 400
Cdc6/Orc1 (nM)
C
ORB1 : CCCCCAGAGTTTCATTTCCACTGGAACCAGGTTT
ORB2 : CCCCCAGAGTTTCATTTCCACTGGAGCCGGGCGG
ORB3 AGAGAGTTTTATTTCCACTGGAA
mini-ORB : ATTTCCACTGGAG

Figure 4. DNA-binding activity of the purified Cdc6 protein was
analyzed by the gel retardation assay. (A) A representative result
obtained with a 49bp DNA fragment containing ORB, mini-ORB, or
the control sequence is shown. The reaction contained 0, 25, 50, 100,
200 or 400nM Cdc6 protein. (B) Free and bound forms of DNA
were quantitated and the ratio of bound DNA was plotted against
the concentration of Cdc6. The error bar indicates the SD (n>3).
(C) Nucleotide sequences of P. furiosus ORB1, ORB2, ORB3 and mini-
ORB used in the assay are indicated.
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repeats bound Cdc6 with a very low affinity (Figure 4).
We also evaluated the binding of Cdc6 to one of the 13 bp
mini-ORB repeats in oriC in the same gel retardation
assay (Figure 4). Cdc6 showed a low affinity to a DNA
fragment carrying the mini-ORB.

To further understand the mechanism of ORB recogni-
tion by Cdc6, we introduced nucleotide substitutions into
the ORB repeat and analyzed the DNA-binding activity of
Cdc6 to the mutated versions of ORB. The mini-ORB and
ORB repeats share a consensus sequence with perfectly
conserved motifs, “TTCC’ and ‘GAA.” We introduced
nucleotide substitutions into these ‘core motifs’ or into
their surrounding sequences (Figure 5B). We found that

A
100
90
9
©
S —-ORB1
> —&— ORB1-mut
S - control
8
0 100 200 300 400
Cdc6/0Orc1 (nM)
100
g
I --ORB2
£ —A—ORB2-mut1
° -~ ORB2-mut2
3 - control
Qo
0 100 200 300 400
Cdc6/Orc1 (nM)
B
ORB1 CCCCCAGAGTTTCATTTCCACTGGAACCAGGTTT
ORBl-mut CCCCCAGAGTTTCATGCTAACTTACGCCAGGTTT
ORB2 CCCCCAGAGTTTCATTTCCACTGGAGCCGGGCGG
ORB2-mutl: CCCGATCAGTTTCATTTCCACTGGAGCCGGGCGG
ORB2-mut2: CCCCCAGAGTTTCATTTCCACTGGAGCCGGATCG

Figure 5. Mutation analysis of the ORB repeat in the gel retardation
assay. (A) DNA-binding activity of Cdc6 to ORBI or ORB2 with
nucleotide substitutions was analyzed as in Figure 4. (B) Position and
sequences of nucleotide substitutions are shown (underlined), together
with the original sequence. The 13bp sequences that match the
consensus of mini-ORB repeats are indicated in bold letters. These
are the ORB repeats of P. furiosus and not identical to those shown in
Figure 2.
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both the ‘core motifs’ and their surrounding sequences
are important for binding with Cdc6, as every nucleotide
substitution examined results in partial reduction of the
binding affinity (Figure 5A).

Eukaryotic ORC can bind single stranded DNA (25),
and structure rather than sequence dependent DNA-
binding activity of archaeal Cdc6 has been reported, too
(26-28). We then tested if Pyrococcus Cdc6 can bind
single-stranded DNA or flayed duplex in the gel retarda-
tion assay. The results, however, indicated that the
Pyrococcus Cdc6 protein does not bind these substrates
(data not shown).

Genomewide analysis of Mcm distribution

ChIP-chip analysis revealed that the Mcm protein in
exponentially growing cells also binds specifically to
region 25 (P<<0.0001) that contains oriC (Figure 1C
and Table 1). In contrast to the result obtained with Cdc6,
Mcm binding to this region decreased greatly in stationary
phase (Figure 1D and Table 1). Surprisingly, we
also observed that region 42 (genome coordinate
205000-210000) 1is specifically bound by Mcm in
exponential phase (P=0.001; Figure 1C and Table 1).
Mcm remained bound specifically to region 42 in
stationary phase (P<0.001).

DISCUSSION

We developed the ChIP-chip method and explored, for the
first time in Archaea and Bacteria, the genomewide
distribution of the initiator of DNA replication in vivo.
In contrast to eukaryotic ORC that has multiple binding
sites on the genome (19-21), our ChIP-chip analyses have
shown that region 25 containing oriC, cdc6/orcl and dpl is
the only one where Cdc6 protein binds with an extremely
high specificity in P. abyssi cells (Figure 1). The result is
also in contrast to the observation that DnaA in
Escherichia coli recognizes the promoter/operator region
of certain genes that are irrelevant to the regulation
of DNA replication (29). This highly specific binding of
P. abyssi Cdc6 to oriC was observed both in replicating
and non-replicating cells, indicating a constitutive mode of
oriC-binding, as was suggested by our previous ChIP
analysis (6). In S. cerevisiae, many of the sites that bind
both ORC and MCM proteins colocalize well with
replication origins (19,21). Our ChIP-chip analysis has
shown that Mcm, as well as Cdc6, binds specifically to the
fragment 25 containing oriC (Figure 1 and Table 1),
and that it is the only region where both protein binds
specifically. Furthermore, the binding of Mcm to oriC
decreased markedly in stationary phase cells. This is
consistent with our previous hypothesis that loading
of Mcm to oriC is a key step for regulating DNA
replication (6).

In the course of the sequence analysis of the 5 kb region
bound by Cdc6 and Mcm, we found a previously
unnoticed cluster of ORB-related repeats (13 or 23 bp) in
the dpl gene. The cdc6/orcl gene, therefore, is flanked by
two clusters of the ORB repeats (Figure 2). The

organization of the ORB clusters is conserved in the three
sequenced  Pyrococcus  genomes and  in  the
T. kodakaraensis genome (Figure 2), suggesting that
evolution has conserved a role for this structure in the
initiation of DNA  replication in the order
Thermococcales. Supporting this idea, our ChIP and gel
retardation assays demonstrated that Cdc6 binds to both
of the two ORB clusters (Figures 3 and 4). The dnaA4 gene
in certain gram-positive bacteria is flanked by multiple
target sequences (DnaA box) on both sides (30). In
Bacillus subtilis, both of the DnaA box clusters are
required for the origin function, and DNA synthesis
starts from within one of the DnaA-box clusters. Whether
binding of Cdc6 to the two ORB clusters introduces a
higher order looping structure in Pyrococcus remains to be
investigated. Such a nucleo—protein complex with a
higher-order structure has also been proposed to occur
in Archaea (15).

Although the ORB repeat is a common characteristic of
archaeal oriC, the length of ORB is variable. In
S. solfataricus, Cdc6-1 recognizes not only the 36bp
ORB of oriCI but also the 17 bp mini-ORB of oriC2 (7),
while in 4. pernix, ORCI1 recognizes a 22bp ORB (15).
For M. thermoautotrophicus Cdc6-1, a 13 bp mini-ORB
repeat is sufficient for specific binding (17). Interestingly,
there are mini-ORB (13bp) repeats and longer ORB
repeats (23 or 34bp) in Pyrococcus oriC. Our gel
retardation assay revealed that purified Cdc6 binds to a
single mini-ORB only weakly (Figure 4). The ChIP-chip
analyses also indicate that a single mini-ORB repeat is not
sufficient for stable binding of Cdc6 in vivo. For example,
although a 13 bp sequence “TTCCAGTGGAACT’ in the
region 348 is identical to that which overlaps ORBI repeat
in oriC, the region 348 does not show any preferential
binding to Cdc6/Orcl (Figure 1). The role of the 13bp
repeats located outside oriC and dpl in the genome is
unclear since their numbers and locations are not identical
in the three sequenced Pyrococcus genomes. Multiple
mini-ORB repeats in oriC and dpl, on the other hand,
may contribute to the highly specific binding of Cdc6
observed in vivo. Unlike the mini-ORB, a single ORB
repeat showed high affinity for purified Cdc6 protein
(Figure 4). The ORB repeats share the same motifs with
the mini-ORB repeats in Pyrococcus sp., and similar
motifs in ORB of oriC1 in S. solfataricus are essential for
the binding purified Cdc6-1 protein (7). However, our
mutation analyses indicated that not only the conserved
motifs but also their surrounding sequences are important
for the binding between ORB and Cdc6 in Pyrococcus sp.
(Figure 5). This explains why Cdc6 binds to ORB more
efficiently than to mini-ORB. The binding of Cdc6 to
ORB or mini-ORB did not fit a simple hyperbolic curve
(Figure 4B). Furthermore, the shapes of the curves are not
identical (Figure 4B and Supplementary Figure 2). The gel
retardation assays also indicated that the complex of Cdc6
and ORB/mini-ORB is not uniform: we observed two
major ‘shifted’ bands in the gel (Figure 4A). We, therefore,
do not exclude the possibility that the binding of Cdc6 to
a single ORB/mini-ORB repeat involves a complex



mechanism such as cooperative binding. In M. thermo-
autotrophicus, Cdc6-1 binds cooperatively to a DNA
fragment containing multiple mini-ORB repeats (17).

We also found that the two flanking regions, 228 and
229, showed statistically significant Cdc6 binding in the
ChIP-chip assay in the exponential phase (P <0.002),
although the value of M, was less than that for the region
25 (Figure 1 and Table 1). These regions do not have
any ORB-like repeats and they show no DNA replication
initiating activity (5). Furthermore, the genetic environ-
ment of these regions is not conserved in the three
Pyrococcus genomes, suggesting that a possible role
for Cdc6 is not specific for these genes. Unexpectedly,
ChIP-chip analysis revealed that Mcm has a second
binding site, the specificity of which is comparable to
oriC. This region becomes the major binding site for Mcm
in stationary phase, while the specificity for the region
containing oriC decreased greatly (Figure 1 and Table 1).
The region 42 contains two rRINA genes and a tRNA gene
and is extremely rich in GC nucleotides (Supplementary
Figure 3), raising the possibility that this GC-rich region is
an obstacle to the replication fork. Although it is possible,
this does not sufficiently explain the binding between Mcm
and this region in stationary phase. Also, it should be
noted that the three genes in region 42 are transcribed in
the same direction as the replication fork movement, thus
eliminating the possibility of collision between transcrip-
tion machinery and DNA replication fork. Eukaryotic
MCM protein is known to interact with the C-terminal
domain of RNA polymerase II, HBO1 histone acetyl-
transferase and histone H3 (reviewed in 31). Furthermore,
MCM is identified in a Yphl complex that is involved
in the biogenesis of the 60S ribosome (32). MCM is also
suggested to move along with the RNA polymerase
IT during transcription activated by Statl (33). However,
with the limited information available, understanding of
the involvement of archaeal Mcm in such biological
contexts remains elusive.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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