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An individual’s physical activity substantially impacts the potential for prevention

and recovery from diverse health issues, including cardiovascular diseases. Precise

quantification of a patient’s level of day-to-day physical activity, which can be

characterized by the type, intensity, and duration of movement, is crucial for clinicians.

Walking is a primary and fundamental physical activity for most individuals. Walking

speed has been shown to correlate with various heart pathologies and overall function.

As such, it is often used as a metric to assess health performance. A range of clinical

walking tests exist to evaluate gait and inform clinical decision-making. However, these

assessments are often short, provide qualitative movement assessments, and are

performed in a clinical setting that is not representative of the real-world. Technological

advancements in wearable sensing and associated algorithms enable new opportunities

to complement in-clinic evaluations of movement during free-living. However, the use

of wearable devices to inform clinical decisions presents several challenges, including

lack of subject compliance and limited sensor battery life. To bridge the gap between

free-living and clinical environments, we propose an approach in which we utilize

different wearable sensors at different temporal scales and resolutions. Here, we present

a method to accurately estimate gait speed in the free-living environment from a

low-power, lightweight accelerometer-based bio-logging tag secured on the thigh. We

use high-resolutionmeasurements of gait kinematics to build subject-specific data-driven

models to accurately map stride frequencies extracted from the bio-logging system to

stride speeds. The model-based estimates of stride speed were evaluated using a long

outdoor walk and compared to stride parameters calculated from a foot-worn inertial

measurement unit using the zero-velocity update algorithm. The proposed method

presents an average concordance correlation coefficient of 0.80 for all subjects, and

97% of the error is within ±0.2m · s−1. The approach presented here provides promising

results that can enable clinicians to complement their existing assessments of activity

level and fitness with measurements of movement duration and intensity (walking speed)

extracted at a week time scale and in the patients’ free-living environment.
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1. INTRODUCTION

In the United States and worldwide, cardiovascular diseases are
the main cause of death in adults (Mensah and Brown, 2007).
Efforts to combat and prevent these health issues have shown
physical activity to be vital in maintaining, improving, and even
recovering cardiovascular health (Englesbe et al., 2015). The
ability to assess an individual’s level of physical activity is a
critical component of clinical evaluations. Questionnaires are
often used to gather information about activity level during daily
life. However, among the large variety of existing questionnaires,
it is uncertain whether these survey instruments are capable of
representing reliable and valid quantification of a patient’s activity
level (Sattler et al., 2018). With recent technological progress in
wearable sensing technology, fitness trackers offer a promising
complementary tool for clinical assessments. Activity trackers
are devices, usually in the form of a wristband, that are used
to monitor physical activity in the free-living environment by
derivingmetrics, such as estimated energy consumption, distance

traveled, or step count. These activity budgets can be used by
clinicians to prescribe tailored treatments, as well as to monitor
adherence to these prescriptions (Ayabe et al., 2008;Walker et al.,
2016; Cadmus-Bertram, 2017). Summary metrics from wearable
sensors provide insight into the type and duration of physical
activity. However, to provide information for clinical assessment
of overall health, quantitative metrics from key activities, such as
walking speed should be accessible.

Walking is a central activity of daily living; it is an easy, safe,
and accessible aerobic exercise and does not require specialized
skills or equipment. Given the cardiovascular benefits of walking,
this low impact activity is often prescribed for patients as a way
to meet their required amount of physical activity (Murtagh
et al., 2010). Walking speed can be used as a metric to capture
the intensity of walking and serve as an effective surrogate
to evaluate fitness (Morris and Hardman, 1997; Afilalo et al.,
2016). The correlation of walking speed with functional decline
has also made it a widely used predictor for various health
issues (Bohannon, 1997; Graham et al., 2008). In addition to the
strong association with well-being, gait speed can be obtained
in a clinical environment, is cost-effective, and easy to interpret
(Fritz and Lusardi, 2009). Clinical walking tests typically estimate
walking speed by timing the subject as they walk a prescribed
distance or by measuring the distance a subject can walk in
a prescribed amount of time. However, the available space
and time constraints imposed in clinical settings can lead to
variations in the duration, distance traveled, and instructions
provided to the patient when measuring speed (Vaney et al.,
1996; Dean et al., 2001). High day-to-day variabilities in the
results of the same tests have also been observed (Prahm et al.,
2014). In most cases, a manual stopwatch is used to measure
time, which can lead to significant measurement error when
conducting short tests. Consequently, the different measurement
approaches typically used in clinical settings do not provide
consistent estimates of walking speed. Further, few studies have
compared speed measured in the clinic to measurements during
natural walking in a free-living environment (Brodie et al., 2016,
2017). As there are fundamental contextual differences between

supervised (e.g., laboratory or clinic) and unsupervised (e.g., free-
living) environments (Warmerdam et al., 2020), it is unclear
whether the values of walking speed extracted in a clinical
setting are representative of the true walking behavior of an
individual. To further enhance clinical understanding of real-
world gait performance, metrics from free-living observations
must be provided.

The analysis of walking gait in the real world has
benefited greatly from technological advancements in wearable
technologies. In particular, with the development of micro-
electromechanical systems (MEMS), inertial measurement units
(IMUs) have become compact and low-cost, which make them
instruments of choice for walking gait analysis (Chen et al.,
2016). High-resolution measurements are now possible outside
laboratory settings (Cho et al., 2018; Kowalsky et al., 2019), with
non-intrusive sensors, enabling the quantification of walking
behaviors in a free-living environment over extended periods
of time (Wang and Adamczyk, 2019). Among other walking
parameters, stride speed can accurately be measured using a
foot-worn IMU (Foxlin, 2005; Sabatini et al., 2005; Ojeda and
Borenstein, 2007; Rebula et al., 2013). However, IMUs present
several challenges that limit their current use in real-world, long-
term monitoring of clinical populations. Many sensors of this
type need to be recharged after daily use and are usually secured
to the body using elastic straps, which can lead to compliance
issues (e.g., sensors lose power and stop collecting data, sensors
are not donned at the beginning of the day). Additionally,
research-grade IMUs often require the use of specific software
packages to configure/reconfigure the devices to collect and
download data. Alternative types of mobile accelerometry exist,
which solve both compliance and battery life issues, though at
the cost of a decrease in resolution (decreased sampling rate, no
measure of angular velocity). These accelerometer-only devices
are lighter in weight, smaller in size, and can be embedded
in a belt or shoe sole (Benocci et al., 2009; Shu et al., 2010;
Motl et al., 2012), or worn on the leg for an extended period
of time (Edwardson et al., 2017). With these devices, there
is no direct approach to measure or calculate walking speed
from the extracted signals. Some machine learning methods
have been developed to estimate free-living walking speed from
specific accelerometer-based sensors (Schimpl et al., 2011), or
smartphones (Silsupadol et al., 2017; Shrestha and Won, 2018).
However, the different models in these studies (Schimpl et al.,
2011; Silsupadol et al., 2017; Shrestha and Won, 2018) were
mostly tested and validated in a supervised environment, using
short distance walks in hallways, treadmills, or a measuring
wheel rather than in the real-world during unconstrained
and unsupervised walking (Warmerdam et al., 2020). New
validated models that derive speed using data from acceleration-
only devices used in free-living environments remain an open
research problem.

To help extend the wearable sensing paradigm to the clinical
setting, we focus here on creating an efficient approach that
combines fine-scale and low-resolution long-termmeasurements
to estimate gait speed in the free-living environment. We use
a low-power accelerometer secured on the thigh to address
compliance and battery life issues; this sensor is used to make
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precise measures of stride frequency. Using a foot-worn IMU,
high-resolution acceleration and angular rate measurements
were used to calculate stride speed. Metrics from both systems
were then leveraged in a custom-designed walking task to build
a subject-specific data-driven walking model, mapping stride
frequency to stride speed. To demonstrate the ecological validity
of this model, walking data was collected in the free-living
environment with both an IMU on the foot and the body-
worn accelerometer. We define the accuracy of our model in
estimating gait speed as the agreement between the model and
IMUmeasurements, which have been used as a viable assessment
of walking speed in an unsupervised real-world environment
(Foxlin, 2005; Sabatini et al., 2005; Ojeda and Borenstein, 2007;
Rebula et al., 2013). Once validated, this approach can then be
used to perform monitoring on a week-long scale, with thorough
quantification of the walking activity, to allow clinicians to gain
a unique insight on the physical health of a subject in their
natural environment.

2. MATERIALS AND METHODS

2.1. Subjects
Ten subjects were recruited from a healthy population (Table 1).
Leg length, defined as l0, was measured from the anterior
superior iliac spine to the floor, without shoes. The experiments
were conducted in the free-living environment of each subject
as no specific setting was required. Each participant provided
written consent on a form where the purpose and detailed
experimental protocol was explained. This study was approved
by the Institutional Review Board of the University of Michigan.

2.2. Instruments
2.2.1. Free-Living Measurements
The activPALTM [PAL Technologies Ltd., Glasgow, UK] (AP)
monitor is a low-power triaxial accelerometer-based bio-logging
tag that can be placed on the thigh using an adhesive bandage
tape. This lightweight (9g) waterproof sensor can be worn
for 7 consecutive days without being removed or recharged.
AP’s compact size (23.5 × 43 × 5 mm) and shape make
it an unobtrusive device; reducing the risk that a subject’s
behavior changes due to the consciousness of being studied

TABLE 1 | Subject information.

Leg length l0 (m) Height (cm) Weight (kg) Age (years) Gender

Subject 1 0.94 169 71 23 F

Subject 2 0.91 160 54 36 F

Subject 3 0.88 160 53 22 F

Subject 4 1.01 179 70 23 M

Subject 5 0.94 165 64 22 F

Subject 6 1.06 178 70 38 M

Subject 7 0.99 173 68 25 M

Subject 8 1.03 183 70 27 M

Subject 9 1.00 180 71 30 M

Subject 10 1.00 175 75 27 F

(the Hawthorne effect) (Warmerdam et al., 2020). Proprietary
algorithms enable classification of type and duration of different
activity states (lying, sitting, standing, stepping, cycling, and
driving). Summary metrics, such as the number of steps, sit-to-
stand transitions, or hours in each activity state are also calculated
and summarized from the data. The reliability of this sensor
and associated algorithms has been validated in the literature
(Edwardson et al., 2017).

With a sampling rate of 20Hz, the acceleration measurements
from the AP monitor can be used to accurately detect strides.
The sensor is instructed to be placed on the anterior surface of
the thigh with the positive x-axis pointing inferiorly, the positive
y-axis pointing medially, and the positive z-axis to be pointing
anteriorly out of the thigh. Using the classification of the different
activity states, bouts labeled as “Walking” were extracted from
the long-termmeasurements; short bouts (<10 s) were discarded.
To extract gait events, we isolated the accelerometer signal from
the x-axis of the sensor. The raw accelerometer signals from this
axis was smoothed using a locally weighted scatterplot smoothing
(LOWESS) method. This technique removed noise while keeping
the main peaks of the signal. We applied a peak detectionmethod
to identify stride frequency for each smoothed, steady-state
walking bout longer than 10 s in duration (Figure 1). Sections
used for analysis were required to contain at least five strides.
A section started when the first peak above a fixed threshold
was detected. Using labeled data, we heuristically determined a
threshold of −8m · s−2 for all participants, illustrated by a red
dashed line in Figure 1. We defined a minimum time interval
between peaks assuming a minimum stride time of 0.5 s, which
corresponds to a very fast walking speed to make sure all strides
were captured. We tracked the change in time between two
consecutive peaks to identify incorrect peak detections or pauses
in a walking bout. These identified outliers marked the end of a
section. To account for the anthropometric differences between
subjects, values of stride frequency were normalized by

√

g/l0,
where l0 is the subject’s leg length and g is the value of standard
gravity (Hof, 1996).

2.2.2. High-Resolution Short-Term Measurements
IMUs offer a reliable alternative to other methods, such as optical
or electromagnetic motion capture for capturing walking gait
data (Cho et al., 2018). In this work we used the Opal sensor
from APDM [Portland, OR, USA] which is a wearable IMU with
a three-axis accelerometer (range±200g), a three-axis gyroscope
(range ±200deg · s−1), and a three-axis magnetometer (range
±8Gauss). The IMU was worn on the dorsum of the foot, on top
of the shoe, using an elastic strap. The x-axis was positive in the
distal direction and was aligned with the long axis of the foot,
while the positive z-axis pointed superiorly out of the foot. The
system was configured to record all signals at 128Hz, resulting in
battery life of at least 8 h.

Continuous wavelet transforms (CWT) were used for gait
event detection using inertial sensor signals from real-world
gait (Khandelwal andWickström, 2016). The continuous wavelet
transforms were used to decompose the signal in the time-
frequency domain to detect abrupt changes in a signal. In walking
gait, foot strike events are one of the gait events that can be used
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FIGURE 1 | Data processing. Data extraction and pre-processing from the synchronized activPAL (AP) and the IMU. A representative window of four strides illustrates

the pre-processing of the raw data from both sensors. The AP is worn on the thigh, and the accessible raw data is from the embedded three-axis accelerometer. The

x-axis signal, which is from the sensor-axis that is aligned with the thigh and is positive in the inferior direction, is smoothed and a peak detection (threshold in

red-dotted line) method enables the detection of each stride. For the IMU, raw data from the embedded three-axis accelerometer and gyroscope are processed using

a continuous wavelet transform to detect gait events; foot velocity and position are then calculated using a ZUPT algorithm.

to single out each gait cycle. They correspond to the impact of
the foot on the ground, which creates a sudden variation in the
foot acceleration. CWT can then be used on the raw acceleration
signal to identify these events. Using custom code written in
MATLAB (MathWorks, Inc., Natick, MA, USA), high-frequency
content (>40 Hz) was kept from the CWT of the accelerations
along the three axes, to ensure the analysis was insensitive to
sensor orientation. The norm of each transform was summed,
and using a peak detection method, we were able to identify foot
strike events (Figure 1).

After identifying foot strikes, we utilized the zero-velocity
update (ZUPT) algorithm to calculate stride lengths. ZUPT
is a well-documented technique commonly used in pedestrian
navigation systems (Foxlin, 2005; Ojeda and Borenstein, 2007)
and provides highly accurate estimates of foot position and stride
parameters (Rebula et al., 2013; Potter et al., 2019). IMU estimates
of mean stride length and duration have been found to be within
1% of motion capture for walking. The ZUPT algorithm (Foxlin,
2005; Ojeda and Borenstein, 2007; Rebula et al., 2013; Potter et al.,
2019) uses the assumption that the velocity of the foot on the
ground reaches zero or close to zero and uses these points of
known zero velocity to correct the drift in the estimates of foot
velocity. The implementation we used followed the formulation
that is presented and evaluated in the work of Rebula et al. (2013)

and Potter et al. (2019) (which also uses the same hardware).
With this method, stride speed and stride length, among other
gait parameters, can be accurately calculated. Stride speed was
normalized by

√

g · l0, and stride length by l0 (Hof, 1996).

2.3. Subject-Specific Model Derivation
Walking is a cyclic motion of the lower limbs, which can be
described by parameters from the time and frequency domain.
To minimize the energy consumption of the body, individuals
naturally adapt some of these parameters to their walking speed.
Particularly, data collected from individuals walking at different
speeds have shown that, for each individual, there is a preferred
stride length d for a chosen stride speed v (Grieve, 1968):

d = a · vb (1)

where a and b are the parameters of the model, specific to each
individual. Later, a simple walking model predicted the same
relationship for a minimal metabolic rate in human walking
(Kuo, 2001). Since stride frequency, f , can be expressed as the
ratio v/d, Equation (1) can be used to calculate stride speed as a
function of stride frequency:

v = exp
ln (a · f )

1− b
(2)
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In the current study, the parameters a and b were identified
using data from a foot-worn IMU during a “metronome walk”
conducted by each subject. In the metronome walk, subjects
walked with a wide range of stride frequencies over a flat terrain.
The location of the test was different for each participant. Overall,
the flat terrains chosen were between 100 and 300 m over
the duration of the test. Step frequencies were imposed by a
metronome set at 45, 60, 75, 90, 105, 120, 135, and 150 bpm.
Participants traveled back and forth on the terrain at each step
frequency, allowing the sensors to collect aminimumof 10 strides
per metronome frequency. The overall time to execute the entire
protocol was ∼15 min for every participant. Subjects were asked
to synchronize their steps as best as they could to the beats of the
metronome. This protocol was designed to capture a full range
of walking frequencies for each individual while walking in an
unconstrained environment.

We define stride speed and stride length extracted from the
IMU as vIMU and dIMU , respectively. These two variables were
extracted from each stride of the different walking bouts (defined
by stride frequency) using the method described in 2.2.2. to
identify a and b. Since subjects take a couple of steps to adapt
to each stride frequency and tend to slow down toward the end
of each walking bout, the transition steps from the beginning and
the end of each walking bout were removed from the analysis.
Through this designed protocol, we identified the parameters
a and b unique to each subject using MATLAB’s curve fitting
toolbox. This toolbox uses least squares analysis, in our case non-
linear least squares, to fit the data with the power model. We used
the default fit options for our analysis (Figure 2A).

2.4. Model Evaluation
The model parameters a and b were determined using measures
of stride frequency and stride speed from a prescribed and
supervised walk in an unconstrained environment. Thus, there
was no certainty that the identified parameters remain the same
if walking data was collected in the free-living (unsupervised)
environment. Therefore, we designed a protocol to verify that
our model can be used in the real-world (unsupervised and
unconstrained environment).

Each subject performed a long unsupervised walk at their self-
selected pace, with no specific time or environment (inside or
outside) constraints, while wearing both an IMU on the foot and
the AP on the thigh. Each participant was shown how to place the
sensors on themselves through a demonstration. Sensor locations
were then verified on each user by examining the raw data. Note
that orientation of the sensors did not influence the analysis. The
participants were advised to complete a minimum of 30 min of
walking in total but were free to use the time as they saw fit. To
analyze the same walking bouts using both sensors, the IMU data
were downsampled and synchronized with the data from the AP.
Then, we identified steady-state walking bouts from which we
extracted stride frequency fAP from the thigh-worn accelerometer
signal using the methodology introduced in 2.2.1. We used the
subject-specific models (created as described in 2.3) to map each
value of stride frequency to its corresponding stride speed vAP. To
quantify the error associated with these estimates of stride speed,
a ground truth measure of speed was established by leveraging

the accuracy of the IMU using the method described in 2.2.2.
Therefore, with this protocol, we evaluated the performance of
our model in an uncontrolled environment over an extended
period of time during which natural walking behaviors can be
observed (Figure 2B).

2.5. Statistical Analysis
2.5.1. Goodness of Fit of the Subject-Specific Model
We evaluated the subject-specific models that were built for each
subject to quantify the confidence in the identified parameters a
and b. The parameters used to evaluate the goodness of fit of the
power regression are R-squared (coefficient of determination),
the confidence intervals around the identified parameters, and
the root mean square error (RMSE). R-squared is a statistic that
quantifies how well our models explain the variation of the data.
The confidence intervals of a and b quantify the confidence in
the fitted coefficients and provide significant insight into whether
or not more data are needed to build the model. The RMSE, also
known as the standard error of regression, is an assessment of
how spread out the data are around the regression line.

2.5.2. Analysis of the Residuals
Data from the unsupervised long walk were used to evaluate the
accuracy of the subject-specific models for predicting walking
speed. We utilized multiple statistical methods to allow for direct
comparison with previous and future related work. We used
the Bland-Altman analysis to assess the concurrence between
the estimated speed from our model and the ground truth
walking speed calculated from the foot-worn IMU data. The
Bland-Altman analysis is a data visualization tool based on the
study of the mean difference and the definition of limits of
agreements within which 95% of the data falls (Giavarina, 2015).
The distribution of the points around the mean difference and
their distance to this value are visual and numerical indicators
of the agreement between the estimated (from AP) and the true
values (from the foot-mounted IMU) of walking speed. Besides
the visualization of the error, the randomness of the points can
reveal whether the model chosen (e.g., the power model) is
appropriate. By visualizing the Q-Q plot for the estimated and
true speed, we confirmed normality of the distributions was a
reasonably good approximation.

To complement this analysis, we calculated two other
statistical metrics to assess the validity of the created model. The
coverage probability (CPκ ) represents the probability Pr that the
residuals will be within a defined boundary κ (Lin et al., 2002). In
our study, it can be translated by the following equation:

CPκ = Pr(|vIMU − vAP| < κ) (3)

Three different boundaries were evaluated at 0.1, 0.2, and
0.3m · s−1. To be able to confidently use the model created
in a clinical setting, the error observed between the true and
estimated stride speed should be within the minimal clinically
important difference. For gait speed, it has been established
that the minimal clinically important difference is between
0.1 and 0.2m · s−1 (Bohannon and Glenney, 2014). Thus, we
considered a subject’s model valid if 95% of the residuals were
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FIGURE 2 | Experimental flow chart. (A) We start by deriving the parameters a and b of the power model using data collected from the IMU worn on the foot during

the designed Metronome Walk. (B) To verify the accuracy of the model and validate the identified parameters, each subject performs a long unsupervised walk in the

real-world wearing both the activPAL (AP) on the thigh and the IMU on the foot. The error between the estimated speed from the AP and the speed extracted from the

IMU is then analyzed. If the error is not clinically acceptable (Coverage probability with boundaries ±0.2m · s−1 CP0.2 > 0.95), the model is adjusted by finding new

parameters a′ and b′. (C) Once the model is validated, we can proceed to a longer observation with the AP only.
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within the ±0.2m · s−1. We also calculated the concordance
correlation coefficient (CCC). This metric has been created to
measure the variation of measures (X,Y) from the X = Y line
(Lin, 1989). It represents a more appropriate way to evaluate
the correlation between two measurements than the traditional
Pearson correlation coefficient, as it captures any location or scale
shift inmeasurements. It can take any value between 0 and 1, with
1 being a perfect concordance between the measurements.

2.6. Model Correction
If the analysis of the residuals revealed a clinically significant
difference for a subject, with<95% of the residuals within±0.2m·

s−1, corresponding to CP0.2 > 0.95, we did an exploratory
analysis of the metronome walk data to determine the source of
discrepancies between true and estimated speed. We started with
an observation of the statistical analyses to localize if a specific
range of stride speed was being estimated poorly. This enabled us
to find which data in the metronome walk was not representative
of the natural behavior of the subject. By combining these
observations with the knowledge of the effects in the variation
of the parameters of the power model, we designed an iterative
algorithm to obtain better estimates of the true parameters a and
b. This algorithm started with an initial guess of the parameters
based on the observation made on the primary data collected and
terminated when the analysis of the residuals led to a valid model
as defined in section 2.5.2 (Figure 2A).

Then, we investigated the effects of variations in the
parameters a and b to visualize the underlying biomechanics
behind the power model. By fixing a parameter and changing the
other, we can isolate the influence of each parameter on the shape
of the power curve.

2.7. Week-Long Quantification of the
Walking Activity
Once the models were validated, we collected data for 1
week from the AP worn by one participant from this study
(Figure 2C). We identified steady state walking bouts from the
raw accelerometer signal as explained in section 2.2.1. Then, we
used the model that we built and validated to estimate stride
speed from each walking bout. We investigated walking speed
across different time scales within a week to explore how the data
could be used in future work.

3. RESULTS

3.1. Mapping From Stride Frequency to
Stride Speed
Data from the subjects’ metronome walk were used to identify
parameters for the power regression model (a and b). The
subject-specific models account for at least 97.8% of the variance,
and the maximum RMSE is 0.013m · s−1, which indicates a good
fit for all models (Table 2). We observed maximum confidence
interval widths of 0.081 and 0.034 for a and b, respectively
(Table 2). The parameters a and b vary from 1.961 to 2.295
and 0.292 to 0.397, respectively (Table 2). The fitted line for
a representative subject illustrates the utility of the designed
walking task (Figure 3A), which resulted in a wide range of

TABLE 2 | Goodness of fit.

a b R-squared CI a CI b RMSE

Subject 1 2.009 0.292 0.992 (1.991, 2.027) (0.283, 0.300) 0.008

Subject 2 2.050 0.335 0.987 (2.017, 2.084) (0.319, 0.352) 0.009

Subject 3 1.997 0.314 0.981 (1.948, 2.006) (0.301, 0.328) 0.011

Subject 4 2.028 0.397 0.986 (2.005, 2.051) (0.386, 0.408) 0.009

Subject 5 2.109 0.372 0.984 (2.068, 2.149) (0.356, 0.389) 0.011

Subject 6 2.014 0.375 0.991 (1.998, 2.03) (0.367, 0.382) 0.009

Subject 7 2.002 0.305 0.992 (1.98, 2.025) (0.295, 0.316) 0.008

Subject 8 1.961 0.324 0.991 (1.938, 1.985) (0.313, 0.335) 0.009

Subject 9 2.295 0.392 0.978 (2.259, 2.331) (0.376, 0.407) 0.013

Subject 10 2.173 0.384 0.986 (2.137, 2.208) (0.368, 0.400) 0.010

Analysis of the goodness of fit of the power model built during the Metronome Walk for

each subject. CI, Confidence interval; RMSE, Root mean square error.

walking frequencies and speeds for model identification, where
distinct clouds of points correspond to each prescribed stride
frequency and the corresponding range of stride speeds.

3.2. Quantification of the Walking Speed
Estimate Error
The Bland-Altman analysis indicates that all subjects, except
Subject 2 and Subject 9, have limits of agreement within ±0.2m ·

s−1 (Table 3). Subject 2 also presents the highest mean difference
between estimated and true walking speed, followed by Subject 7
and Subject 9 (Table 2 and Figure 4). The violin plot (Figure 4)
shows that majority of residuals fall into the ±0.1m · s−1 range,
except for Subject 2, where we observe that the true speed is
clearly underestimated by the model. The other subjects have
small mean differences between −0.058 and 0.008m · s−1. The
Bland-Altman plot for a representative subject of this study,
Subject 4, shows a concentration of the points between 0.8 and
1.4m · s−1 (Figure 3B).

To quantify the agreement of the estimated speed from the AP
and the speed extracted from the IMU, we calculate CPs for each
subject for three different clinically meaningful boundaries and
computed the CCC (Table 4). All subjects’ data, except Subject
2’s, contain at least 70% of the error within ±0.1m · s−1 and at
least 97% within ±0.2m · s−1. An analysis of all subjects suggests
that 97% of the residuals are within±0.2m · s−1. The CCC values
range from 0.65 for Subject 2 to 0.96 for Subject 6, with an
average of 0.80.

Results from Subject 2 show a large difference (CP0.2 > 0.95)
between estimated and true walking speeds. Indeed, only 78%,
instead of 95%, of the residuals were within the ±0.2m · s−1

boundary. The Bland-Altman plot for this individual (Figure 5B)
illustrates a small cloud of points, corresponding to low values of
stride speeds, around zero. From this observation, we identified
different parameters a′ = 2.266 and b′ = 0.399 with respective
confidence intervals (2.161, 2.370) and (0.369, 0.431) by fitting
a power model only to the four slowest stride frequencies
(Figure 5A). The R-squared for this fit is 0.961 and the RMSE is
0.008. A new analysis of the residuals revealed better performance
of the updated model, with a mean error of only 0.039m · s−1 and
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FIGURE 3 | Subject 4 analysis. (A) Subject-specific data-driven map from stride frequency to stride speed built from the metronome walk. Each cloud of points

corresponds to an imposed stride frequency. (B) Bland Altman analysis of the residuals with mean difference, limits of agreement, and their confidence intervals (CI).

TABLE 3 | Bland-Altman analysis.

Sample size µ(vIMU − vAP) σ (vIMU − vAP)
Limits of agreement

Inferior Superior

Subject 1 245 −0.013 0.078 −0.157 0.148

Subject 2 248 0.116 0.084 −0.048 0.280

Subject 3 465 0.000 0.054 −0.107 0.107

Subject 4 294 −0.015 0.091 −0.193 0.162

Subject 5 449 −0.004 0.044 −0.091 0.083

Subject 6 144 −0.021 0.071 −0.159 0.117

Subject 7 530 −0.058 0.053 −0.162 0.045

Subject 8 482 −0.017 0.061 −0.137 0.104

Subject 9 534 −0.048 0.079 −0.203 0.108

Subject 10 478 0.009 0.067 −0.123 0.140

Bland & Altman plot statistics for all subjects. µ and σ correspond to the mean and

standard deviation, respectively.

limits of agreements of 0.214 and−0.136m · s−1 (Figure 5C). The
new CP values indicate 69% of the error within ±0.1m · s−1 and
96% within±0.2m · s−1. The CCC of the corrected model is 0.85
compared to 0.65 for the fitted model.

3.3. A Week in the Life of Subject 1
During the week long experiment, 168 h of data were collected
from subject 1. The histogram of the average steady state speed
indicates a strong preference to walk at 1.47 and 1.58m · s−1

(Figure 6A). During that time, 167 bouts of walking (as defined
in Methods) were identified with an average of 16 strides per
bout. Overall, the subject had an average steady state speed of
1.53m·s−1. There were not large daily differences in the data, with
the slowest average day of 1.36m·s−1 and the fastest of 1.50m·s−1

(Figure 6B). Figure 6C illustrates the variability in stride speed

FIGURE 4 | Distribution of residuals. The violin plot enables the visualization of

the distribution of the error for each subject with ±0.1m · s−1 (black-dotted

line) and ±0.2m · s−1 (gray-dotted line) bands. Each shaded area represents

the shape of the distribution of residuals for a particular subject.

over the course of a day; 85% of the data is contained within
1.00 and 1.80m · s−1, with a maximum speed recorded around
5 p.m. at 2.85m · s−1 and a minimum speed recorded around
7:20 p.m. at 0.22m · s−1.

4. DISCUSSION

Walking is an important activity of daily life for many
individuals, and the ability to monitor and assess gait in a
free-living environment is key to an improved understanding
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of an individual’s physical health. Here, we utilized fine-scale
measurements from a prescribed walking task to build subject-
specific walking models that accurately estimate gait speed from
low-resolution long-term accelerometers, in an unconstrained
environment. Finally, a representative subject wore the bio-
logging tag for a week to demonstrate the viability of this
approach for the extraction of clinically relevant parameters in
the real-world.

Data to generate the subject-specific model parameters were
collected using a metronome to create a large range of stride
speeds and frequencies without the constraints that result from
walking over a range of fixed speeds on a treadmill (Bertram
and Ruina, 2001). The identified parameters (a and b) for the

TABLE 4 | Measures of agreement.

CP0.1 CP0.2 CP0.3 CCC CCC CI inf CCC CI sup

Subject 1 0.80 0.99 1.00 0.82 0.78 0.86

Subject 2 0.33 0.78 0.98 0.65 0.60 0.70

Subject 3 0.93 1.00 1.00 0.90 0.88 0.92

Subject 4 0.72 0.97 1.00 0.86 0.83 0.89

Subject 5 0.97 1.00 1.00 0.91 0.89 0.92

Subject 6 0.82 0.99 1.00 0.96 0.95 0.97

Subject 7 0.78 1.00 1.00 0.62 0.58 0.66

Subject 8 0.88 1.00 1.00 0.78 0.74 0.81

Subject 9 0.71 0.97 1.00 0.66 0.61 0.70

Subject 10 0.86 1.00 1.00 0.84 0.82 0.86

Average 0.78 0.97 1.00 0.80 0.77 0.83

Coverage probabilities (CP) for the boundaries 0.1, 0.2, and 0.30.013m · s−1 and

concordance correlation coefficient (CCC) with its confidence interval (CI).

power model are similar in magnitude with the first study
(to our knowledge) which used this model (Grieve and Gear,
1966). The goodness of fit measures presented in Table 2 further
demonstrate that the power model captures the relationship
between stride speed and frequency well. Figure 3B illustrates
a random and equal distribution of points around a zero mean
difference in the Bland Altman plots, which can be used to verify
the modeled relationship between stride frequency and speed.

Analysis of the subject-specific models indicate that
individuals with similar anthropometric parameters do not
always have the same relationship between stride speed and
frequency. Subjects 4 and 9 have almost equal leg lengths and
heights, but their identified parameters a differ by 0.267. Subject
9’s fit resulted in the largest a value, while Subject 4’s fit has a
fairly small a but the second largest b value (Figure 7A). To
achieve a given speed, Subject 9 used longer strides at a lower
frequency, while Subject 4 employed shorter steps at a higher
frequency (Figure 7B). Environmental or contextual differences,
like the type of footwear (Wang and Adamczyk, 2019), might
also influence the parameters of the model and warrant further
investigation. For example, Wang and Adamczyk have shown
that gait parameters can change between walking with sandals
and athletic shoes. All participants wore athletic shoes for this
study. Additionally, the analysis of Subject 2’s statistics indicated
that the walking speeds at the higher step frequencies were
slower than during free walking. All subjects were given limited
time just before the task to familiarize themselves with the
metronome walk before data was recorded. In the future, more
time to learn and practice the metronome walk could improve
the data utilized for the model identification.

To evaluate our approach, estimates of stride speed calculated
from the foot-worn IMU were compared to the model-based

FIGURE 5 | Model correction. (A) Observation of the metronome walk fitted curve (a = 2.050 and b = 0.335) against the corrected power model (a′ = 2.266 and

b′ = 0.399) for Subject 2. (B) Bland Altman analyses for the original and (C) corrected models with mean differences, limits of agreements, and their confidence

intervals (CI).
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FIGURE 6 | Week analysis. (A) Analysis of the distribution of all stride speed values collected over a week for one subject. (B) Observation of the evolution of walking

speed in a week. Each point corresponds to the average of the values of stride speed in a quasi-steady-state walking bout as defined in Methods. (C) A closer look at

the values of stride speed on a particular day, shaded in yellow in the figure above. Each point corresponds to the average of three strides.

FIGURE 7 | Subjects’ models and their parameters. (A) Parameters a and b from each subjects power model and their 95% confidence intervals. (B) Fitted lines for

all subjects and visualization of the effects of variations of the parameters a and b. Females are represented with solid lines and males with dashed lines.
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FIGURE 8 | Distributions of estimated and true speed. Distributions of the estimated speeds from the AP using the built models, and of the true speeds calculated

from the IMU. Gaussian curves were fitted to each distribution and mean and standard deviation for each curve are given.
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estimates during an unsupervised long walk in the real-world for
each subject (Figure 8); for Subject 2 the corrected model was
used. Qualitatively, the speed distribution for the two estimates
are in good agreement for all subjects. Quantitatively, more than
95% of the error between the estimated speed from our model
and the speed extracted from the foot-worn IMU were within
±0.2m · s−1, with the estimated mean walking speed comparing
well to the true value for the majority of subjects. The CCC
values can be visualized by looking at the overlapping regions
of the distributions of vIMU and vAP. Subject 6 presents almost a
perfect overlap with a corresponding CCC value of 0.95 whereas
there is a slight shift in Subject 7’s distributions who presents a
CCC value of 0.58. The study from Schimpl et al. (Schimpl et al.,
2011) compared different methods to extract stride speed from a
single waist-worn accelerometer in the free-living environment.
The method that gave the best results when tested during
outdoor walking with self-selected speed used a support vector
regression algorithm. The values of CP and CCC reported by
this study when using this method are comparable with the value
obtained in our study. The Bland Altman analysis of the results
from the thigh-worn accelerometer also have smaller bias and
limits of agreements for estimated walking speed than results in
the literature that used smartphone data collected at different
locations (e.g., body, bag, belt, hand, and pocket) to estimate
speed (Silsupadol et al., 2017). This points to the benefit of data
collection from a fixed point on the lower body.

Extending this work to the clinical environment will require
data collection over multiple days in the real-world environment.
The wearable sensor used in this work is capable of capturing
7 days of continuous motion data, and the attachment on the
thigh enables unobtrusive data acquisition in the free-living
environment. Using this sensor platform we were able to collect
data for a week from a single representative subject of this study.
The week-long assessment demonstrates the potential of this
approach to gain a unique insight into movement and activity
at different temporal resolutions; we expect similar results when
we extend our approach to assess a larger subject population.
The capacity to extract average stride speeds from 167 bouts of
walking (duration>10 s and strides>5) enables estimation of an
individuals preferred walking speed in their daily environment.
In the future, we expect that the extraction of walking speed,
in combination with other parameters, over an extended time
period could allow clinicians to get amore objective and complete
picture of the walking activity of individuals in their free-living
environment, compared to a traditional in-laboratory walking
test. Fine grain observations of daily trends could be used to build
more tailored prescription related to physical activity.

A potential shortcoming in this study is the use of an
IMU-based estimate of stride speed to derive and verify the
speed estimates presented in this work. IMU-based estimates
are known to contain small measurement errors on the order
of 1 − 5% depending on gait speed (Foxlin, 2005; Ojeda and
Borenstein, 2007; Rebula et al., 2013; Potter et al., 2019). Multi-
camera motion capture and force plates are tools that have
been proved to be highly accurate to estimate gait parameters
(Chiari et al., 2005; Pfister et al., 2014). However, these measuring
instruments cannot be used outside the laboratory and constrain
data collection to a limited capture volume. Therefore, the

ZUPT approach is one of the most viable method to accurately
and unobtrusively assess the ecological validity of walking gait
measures in the real-world. To our knowledge, the potential
errors of the ZUPT algorithm have not been assessed in the free-
living environment, since most validation methods are bound to
the laboratory setting. However, the method has been validated
during uncontrolled hallway walking with a large number of
strides collected (Rebula et al., 2013). The conditions of this study
are close to the walking conditions in which subjects performed
the model validation. This makes us confident regarding our
choice to use the ZUPT algorithm to obtain ground truth
stride speed in this study. Another limitation to consider is
the sample size and the population recruited in this work. Our
experiment involved young healthy subjects. However, different
studies have shown the impact of weight (Błaszczyk et al., 2011;
Jegede et al., 2017) or age (Samson et al., 2001; Aboutorabi
et al., 2016) on gait parameters. Additional work is needed to
evaluate whether the power model can still be used with different
study populations. In addition, the frequencies used during the
metronome walk might also need to be adapted to participant
or patient ability. This approach could also be enhanced by
including parameters to inform how behavior of an individual
extracted from a bio-logging sensor is interpreted. For example,
being able to add a layer of physiological and contextual data on
to the current analysis would allow a more objective evaluation
of a patients’ level of physical activity (Chen et al., 2012). These
types of additions will further enable clinicians to design and
monitor the compliance to tailored treatments to improve patient
care and outcomes.
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