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1 |  INTRODUCTION

Endothelial dysfunction participated in type 2 diabetes (T2DM) 
from the onset to its outcomes (Schalkwijk & Stehouwer, 2005), 
and it may be the key factor during the development of insulin 
resistance or cardiovascular disease (Reaven, 2005; Steinberg, 

Brechtel, Johnson, Fineberg, & Baron, 1994; Vincent et al., 2004). 
The endothelial dysfunctions and development of arteriosclerosis 
should impute the decreased bioavailability of nitric oxide (NO). 
Nitric oxide synthesis disruption induced by asymmetric dimethy-
larginine (ADMA) has been implicated as an important contribut-
ing factor for endothelial dysfunction (Cooke, 2004). All three NO 
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Abstract
Background: Asymmetrical dimethylarginine (ADMA) is an endogenous inhibitor 
of nitric oxide synthases, making it a contributing factor for diabetes. Endogenous 
ADMA is hydrolyzed by dimethylarginine dimethylaminohydrolase 1 (DDAH1), 
and a DDAH1 promoter ‐396 4N deletion/insertion polymorphism (DDAH1: 
‐396_‐395insGCGT) regulates its transcriptional activity. This study aimed to ex-
plore the association between this polymorphism and type 2 diabetes (T2DM).
Methods: In a case–control study, all participants were genotyped for this polymor-
phism within two sets of populations (discovery: 1,227 T2DM patients and 1,339 
controls; replication: 1,190 patients and 1,651 controls). The disease association was 
assessed by a unconditional logistic regression model. Homeostasis model assess-
ment calculations were conducted among different genotypes.
Results: We identified that DDAH1: ‐396_‐395insGCGT insertion allele was sig-
nificantly associated with increased risk of T2DM (discovery: adjusted odds ratio 
[OR]  =  1.380, 95% CI  =  1.128–1.687, p  =  .002; replication: OR  =  1.231, 95% 
CI = 1.007–1.504, p = .043). The homeostasis model assessment of insulin resist-
ance was increased in participants carrying Ins/Ins alleles (p = .0452). Interestingly, 
the insertion allele increased the risk of T2DM in males but not in females (male dis-
covery: OR = 1.528, 95% CI = 1.141–2.047, p = .004; replication: OR = 1.439, 95% 
CI = 1.083–1.911, p = .012; female discovery: OR = 1.218, 95% CI = 0.913–1.626, 
p = .18; replication: OR = 1.161, 95% CI = 0.871–1.548, p = .308).
Conclusion: The DDAH1: ‐396_‐395insGCGT insertion allele is associated with in-
creased risk of T2DM in a gender‐dependent manner, affects males but not females.
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synthase (NOS) isoforms could be inhibited by ADMA via com-
peting with l‐arginine as the substrate (Kakimoto & Akazawa, 
1970; Tsikas, Boger, Sandmann, Bode‐Boger, & Frolich, 2000; 
Vallance, Leone, Calver, Collier, & Moncada, 1992).

Plasma ADMA levels have been elevated in patients with 
several risk factors for atherosclerosis, including insulin re-
sistance and type 1 and type 2 diabetes (Abbasi et al., 2001; 
Altinova et al., 2007; Stuhlinger et al., 2002), and have been 
reported to be associated with diabetic micro/macrovessel 
complications (Abhary et al., 2009; Krzyzanowska et al., 
2006). Moreover, elevated plasma ADMA level could be a 
predictor for the adverse cardiovascular events in type 2 di-
abetic patients in some prospective studies (Kanazawa et al., 
2011; Krzyzanowska, Mittermayer, Wolzt, & Schernthaner, 
2007). Taken together, it seemed that ADMA may be a newly 
contributing factor for diabetes.

Most of ADMA would be degraded to citrulline by di-
methylarginine dimethylaminohydrolase (DDAH) or ex-
creted by the kidneys in vivo (Achan et al., 2003). There are 
two isoforms of DDAH, DDAH1 (OMIM No. 604743) and 
DDAH2 (OMIM No. 604744). DDAH1, but not DDAH2, is 
essential for metabolizing endogenous ADMA in vivo (Hu 
et al., 2009, 2011). Mice overexpressing DDAH1 exhibited 
enhanced insulin sensitivity and lower plasma ADMA levels 
(Sydow, Mondon, Schrader, Konishi, & Cooke, 2008). Our 
previous work discovered that a loss‐of‐function DDAH1 
promoter polymorphism led to reduced expression of DDAH1 
gene, and this ‐396 4N deletion–insertion polymorphism was 
associated with increased risk in both thrombosis stroke and 
coronary heart disease (CHD). The ‐396 4N insertion variant 
led to disruption of metal regulatory transcription factor 1 
(MTF1) binding to this promoter region, resulting in inhib-
ited transcriptional activity of DDAH1 gene, which in turn 
elevated the ADMA level in plasma (Ding et al., 2010).

The elevation of plasma or tissue ADMA and inhibition 
of NOS may partly explain the coexistence of insulin resis-
tance and the endothelial dysfunction. We hypothesized that 
this DDAH1: ‐396_‐395insGCGT polymorphism may be 
also associated with the risk of T2DM. To test this hypothe-
sis, we conducted a case–control study of T2DM in Chinese 
Han population, with enrollment of 2,417 cases and 2,990 
controls in total. The results demonstrated the association of 
DDAH1 ‐396 4N insertion variant with the risk of T2DM. 
The DDAH1: ‐396_‐395insGCGT Ins allele increased the 
risk of T2DM in males, but not in females. Thus, we found a 
new gender‐related risk factor for T2DM.

2 |  MATERIALS AND METHODS

2.1 | Ethical compliance
This study was approved by the Ethics Committee of Tongji 
Medical College. Experiments were conducted in accordance 

with the principles expressed in the Declaration of Helsinki. 
Each patient provided written informed consent at the 
enrollment.

2.2 | Recruitment for the discovery and 
replication population
In total, two sets of independent “discovery” and “rep-
lication” populations comprising T2DM patients and 
nondiabetic control subjects were included in our case–
control study. Detailed inclusion criteria of the study pop-
ulation have been described in our previous study (Liu 
et al., 2012). Briefly, T2DM cases were confirmed by 
OGTT or FPG results according to the American Diabetes 
Association criteria (American Diabetes Association, 
2008) or by reports of the use of antihyperglycemia medi-
cation or by reviews of medical records. Controls were 
recruited from geographically matched local communities 
from Central China (Wuhan, Hubei) by excluding those 
with a current diagnosis of diabetes or with a history of 
diabetes in their first‐degree relatives. In addition, all the 
cases and controls were self‐reported unrelated individu-
als at enrollment.

2.3 | Power estimation and the sample size
The sample size was considered with a power estimation 
using QUANTO program (Version 1.2.4). Assuming a minor 
allele frequency of 0.1 (according to our previous publica-
tion) (Ding et al., 2010) and disease prevalence of 0.5%–1%, 
95% power would be achieved to detect genetic effects at an 
odds ratio (OR) between 1.45 and 1.50, with a sample size of 
approximate 1,200 cases and 1,200 controls.

2.4 | Data collection and definition of 
risk factors
Demographic data and other risk factors, including history 
of hypertension, diabetes, hyperlipidemia, smoking, and 
physical exercise were collected by structured question-
naire. Hypertension was defined as systolic blood pres-
sure >140 mmHg, diastolic blood pressure >90 mmHg, or 
current treatment with an antihypertensive drug. Diabetes 
was diagnosed by a fasting glucose level of >7.8 mmol/L 
and/or a glucose level of >11.1 mmol/L at 2 hr after oral 
glucose challenge. Hyperlipidemia was defined as total 
plasma cholesterol level of >5.72 mmol/L or plasma tri-
glyceride (TG) >1.70 mmol/L. Smoking was defined as a 
history of smoking >2 pack‐years and/or smoking within 
the preceding 1  year. Body mass index (BMI) (kg/m2) 
was calculated from measurements of height and weight. 
Biochemical measurements including levels of total cho-
lesterol, high‐density lipoprotein cholesterol (HDL‐C), 
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low‐density lipoprotein cholesterol (LDL‐C), TG, and 
insulin were performed using standard laboratory assays. 
The homeostasis model assessment of insulin resistance 
(HOMA‐IR) and the homeostasis model assessment of 
pancreatic β‐cell function (HOMA‐β) were calculated 
from fasting insulin and glucose levels with the following 
equations: HOMA‐IR = fasting glucose (mmol/L) × fast-
ing insulin (mU/L)/22.5 and HOMA‐β = [20 × fasting in-
sulin (IU/mL)]/[fasting glucose (mmol/L)‐3.5].

2.5 | DNA isolation
Genomic DNA was extracted from peripheral leukocytes 
isolated from blood collected in K3‐EDTA tubes, using 
a commercially available DNA isolation kit (DP305‐03; 
TIANGEN; Life Science Products Division), according to 
the protocol provided by the manufacturer.

2.6 | Genotyping
All participants were genotyped for DDAH1 gene (GenBank 
reference sequence: NC_000001.11) polymorphism in pro-
moter region (DDAH1: ‐396_‐395insGCGT) according 
to standard TaqMan allelic discrimination assay (Applied 
Biosystems). Allelic discrimination was measured auto-
matically using the Sequence Detection Systems 2.1 soft-
ware (autocaller confidence level 95%). A total of 10% of 
all genotypes were repeated to check for consistency and 
to ensure intraplate and interplate genotype quality control. 
No genotyping discrepancies were detected between the re-
peated samples. DNA samples for cases and controls were 
run in the same batches. Probe sequences for this TaqMan 
5′‐nuclease assay were synthesized by Applied Biosystems, 
Foster City, CA, USA. Primer sequences for single nucleo-
tide polymorphisms (SNPs) were designed and synthesized 
by TSINGKE, Beijing, as described in our previous study 
(Ding et al., 2010).

2.7 | Statistical analysis
Continuous variables were compared between groups by 
univariate analysis of variance. Categorical values were 
compared by the chi‐squared test or Fisher's test when ap-
propriate. The distributions of genotype of variants were 
analyzed for deviation from Hardy–Weinberg Equilibrium 
(HWE) using chi‐squared test. Disease association was 
assessed by unconditional logistic regression model after 
adjusting for covariates (sex, age, BMI, hypertension, 
hyperlipidemia, and smoking status). All analyses were 
performed using SPSS 22.0 (SPSS Inc.). All tests were 
two‐sided, and p values less than .05 were considered sta-
tistically significant.

3 |  RESULTS

3.1 | Characteristics of study population
The general characteristics of the T2DM case–control study 
populations were shown in Table 1 (the discovery popula-
tion) and Table S1 (the replication population). The dis-
covery population included 1,227 OGTT‐confirmed T2DM 
patients and 1,339 ethnically and geographically matched 
controls. The replication population included 1,190 T2DM 
patients and 1651 controls. As for the discovery popula-
tion, the cases generally had higher TG, LDL‐C, and lower 
HDL‐C than that in controls. The frequencies of classical risk 
factors, such as hypertension, smoking status, and BMI were 
significantly higher than in the controls. Similar for the rep-
lication population, the frequencies of classical risk factors 
including hypertension, smoking status, and BMI were also 
significantly higher than in the controls. The subjects were all 
of self‐reported unrelated Chinese Han population.

3.2 | Association of DDAH1: 
‐396_‐395insGCGT polymorphism with type 
2 diabetes
We tested the association of the DDAH1: ‐396_‐395insGCGT 
polymorphism with T2DM in the discovery populations (1,227 
cases and 1,339 controls). No deviations from Hardy‐Weinberg 
equilibrium were observed in cases or controls from any of 
our populations (Table S2). The DDAH1: ‐396_‐395insGCGT 
Ins allele was significantly associated with increased risk of 
T2DM, both with or without adjustment for conventional risk 

T A B L E  1  Clinical characteristics of the discovery population

 
Control 
(n = 1,339)

Case 
(n = 1,227)

Male (%) 45.56% 57.38%* 

Age (years) 57.77 ± 10.31 56.23 ± 13.61

BMI (kg/m2) 23.93 ± 6.92 24.70 ± 3.79* 

SBP (mmHg) 130.74 ± 29.60 140.87 ± 26.07* 

DBP (mmHg) 80.08 ± 16.57 105.78 ± 15.67* 

Hypertension (%) 32.86% 45.64%* 

Hyperlipidemia (%) 28.08% 30.24%

Total cholesterol (mmol/l) 4.80 ± 1.58 4.75 ± 1.80

Triglyceride (mmol/l) 1.48 ± 0.77 2.27 ± 0.91* 

HDL‐C (mmol/l) 1.40 ± 0.11 1.06 ± 0.47* 

LDL‐C (mmol/l) 2.30 ± 0.43 2.46 ± 0.53* 

Smoking (%) 30.25% 49.96%* 

Note: Data are means ± SD, or n (%).
Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; HDL‐C, 
high‐density lipoprotein cholesterol; SBP, systolic blood pressure; LDL‐C, low‐
density lipoprotein cholesterol.
*p < .05. 
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factors including sex, age, hypertension, hyperlipidemia, smok-
ing status, and BMI (unadjusted [OR]=1.255, 95% CI = 1.081–
1.456, p = .003; adjusted OR = 1.380, 95% CI = 1.128–1.687, 
p  =  .002). Similar association was found in the replication 
population (1,190 cases and 1,651 controls) (unadjusted 
[OR]=1.182, 95% CI  =  1.021–1.368, p  =  .026; adjusted 
OR = 1.231, 95% CI = 1.007–1.504, p = .043) (Table 2). Then 
we calculated the HOMA‐IR and HOMA‐β in age‐ and gen-
der‐matched groups of three genotypes of this polymorphism 
(n = 30 for each group). The HOMA‐IR was significantly in-
creased in the Ins/Ins group than in the Del/Del group (p < .05). 
For HOMA‐β, no difference was observed between all three 
groups (Figure 1).

3.3 | DDAH1: ‐396_‐395insGCGT Ins Allele 
increases the risk of type 2 diabetes in males 
but not in females
We next analyzed the association of the DDAH1: ‐396_‐395in-
sGCGT deletion–insertion polymorphism in the populations 
grouped by the gender. In male subjects of the discovery 
population (704 cases and 610 controls), the Ins allele was 

significantly associated with increased risk of T2DM, both 
with or without adjustment for conventional risk factors (un-
adjusted OR = 1.455, 95% CI = 1.170–1.811, p = .001; ad-
justed OR = 1.528, 95% CI = 1.141–2.047, p = .004). The 
analysis of association in the replication population (695 
cases and 828 controls) found similar results in male subjects 
(unadjusted OR = 1.308, 95% CI = 1.068–1.602, p = .009; 
adjusted OR  =  1.439, 95% CI  =  1.083–1.911, p  =  .012) 
(Table 3).

However, the analysis of association of the DDAH1: 
‐396_‐395insGCGT polymorphism in female subjects 
displayed unexpected results. In the discovery population 
(523 cases and 729 controls), the Ins allele was not asso-
ciated with increased risk of T2DM in females, both with 
or without adjustment for conventional risk factors (unad-
justed OR = 1.098, 95% CI = 0.888–1.358, p = .387; ad-
justed OR = 1.218, 95% CI = 0.913–1.626, p = .18). The 
analysis of female subjects in the replication population 
(495 cases and 823 controls) also showed no association 
(unadjusted OR = 1.144, 95% CI = 0.930–1.408, p = .115; 
adjusted OR = 1.161, 95% CI = 0.871–1.548, p =  .308) 
(Table 4).

T A B L E  2  Association of the DDAH1: ‐396_‐395insGCGT polymorphism with T2DM between two independent populations

Samples

Genotype, n (%) 4N Del/Ins + Ins/Ins

Del/Del Del/Ins Ins/Ins Frequency
Unadjusted OR  
(95% CI)

Adjusted OR  
(95% CI)

Discovery

Control (n = 1,339) 1,085 (81.03%) 236 (17.63%) 18 (1.34%) 20.31% 1.255 (1.081–1.456)
p = .003** 

1.380 (1.128–1.687)
p = .002** Case (n = 1,227) 935 (76.20%) 272 (22.17%) 20 (1.63%) 25.43%

Replication

Control (n = 1,651) 1,338 (81.04%) 286 (17.31%) 27 (1.65%) 20.61% 1.182 (1.021–1.368)
p = .026* 

1.231 (1.007–1.504)
p = .043* Case (n = 1,190) 916 (76.97%) 250 (21.01%) 24 (2.02%) 25.05%

Note: GenBank reference sequence of DDAH1 gene is NC_000001.11. Odds ratios (ORs) and 95% confidence intervals (CIs) were obtained by logistic regression, 
with and without adjustment for sex, age, body mass index, hypertension, hyperlipidemia, and smoking status.
*p < .05. 
**p < .01. 

F I G U R E  1  DDAH1: ‐396_‐395insGCGT Ins/Ins genotype was associated with impaired insulin sensitivity. (a) The homeostasis model 
assessment of insulin resistance (HOMA‐IR) and (b) the homeostasis model assessment of pancreatic β‐cell function (HOMA‐β) were calculated 
in age‐ and gender‐matched subject groups of three genotypes (DDAH1: ‐396_‐395insGCGT Del/Del, Del/Ins and Ins/Ins), n = 30 for each group. 
*p < .05
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4 |  DISCUSSION

In this study, we identified that DDAH1: ‐396_‐395in-
sGCGT Ins allele was associated with increased risk 
of T2DM, but only in males, while no similar associa-
tion was observed in females. To our knowledge, this 
study first investigated the association between DDAH1: 
‐396_‐395insGCGT polymorphism and the risk of T2DM. 
It was recognized that genetic variation of DDAH1 was ad-
ditively associated with circulating ADMA levels in par-
ticipants with T2DM (Abhary et al., 2010). They tested 
26 tag SNPs in DDAH1 and showed that, among the 26 
tag SNPs, rs1498373 was significantly associated with 
serum ADMA level, while rs1241321 and rs587843 were 
not. However, as all these SNPs are included in the intron 
regions of DDAH1, the altered protein function and how 
DDAH1 polymorphisms affect the plasma ADMA levels 
remain unclear. Previous work in our laboratory showed 
that the transcriptional activity of the DDAH1 gene is 

reduced in Ins allele due to the disruption of MTF1 tran-
scription factor binding to the promoter region, and this 
Ins allele increased the risk of coronary heart disease and 
stroke (Ding et al., 2010). In this study, we demonstrated 
that the Ins allele also increased the risk of T2DM in both 
discovery and replication populations, with or without the 
adjustment of conventional risk factors (i.e. age, gender, 
hypertension, hyperlipidemia, smoking status, and BMI), 
suggesting that the contribution of this polymorphism to 
the risk of T2DM is independent of conventional risk fac-
tors (Tables 2). Then, the calculation of HOMA‐IR and 
HOMA‐β showed that subjects with Ins/Ins genotype 
had higher HOMA‐IR than Del/Del genotype, but no dif-
ference of HOMA‐β was observed among all genotypes 
(Figure 1). Our previous work showed that individuals 
with the DDAH1: ‐396_‐395insGCGT Ins allele had sig-
nificantly higher ADMA level than those with two copies 
of the Del allele (Ding et al., 2010), and other researcher 
demonstrated a positive correlation between the plasma 

T A B L E  3  Association of the DDAH1: ‐396_‐395insGCGT polymorphism with T2DM in male subjects between two independent populations

Samples

Genotype, n (%) 4N Del/Ins + Ins/Ins

Del/Del Del/Ins Ins/Ins Frequency
Unadjusted OR  
(95% CI)

Adjusted OR  
(95% CI)

Discovery

Control (n = 610) 507 (83.11%) 96 (15.74%) 7 (1.15%) 18.04% 1.455 (1.170–1.811)
p = .001** 

1.528 (1.141–2.047)
p = .004** Case (n = 704) 531 (75.43%) 164 (23.30%) 9 (1.28%) 25.86%

Replication

Control (n = 828) 685 (82.73%) 130 (15.70%) 13 (1.57%) 18.84% 1.308 (1.068–1.602)
p = .009** 

1.439 (1.083–1.911)
p = .012* Case (n = 695) 538 (77.41%) 144 (20.72%) 24 (1.87%) 24.46%

Note: GenBank reference sequence of DDAH1 gene is NC_000001.11. Odds ratios (ORs) and 95% confidence intervals (CIs) were obtained by logistic regression, 
with and without adjustment for sex, age, body mass index, hypertension, hyperlipidemia, and smoking status.
*p < .05. 
**p < .01. 

T A B L E  4  Association of the DDAH1: ‐396_‐395insGCGT polymorphism with T2DM in female subjects between two independent 
populations

Samples

Genotype, n (%) 4N Del/Ins + Ins/Ins

Del/Del Del/Ins Ins/Ins Frequency
Unadjusted OR  
(95% CI)

Adjusted OR  
(95% CI)

Discovery

Control (n = 729) 578 (79.29%) 140 (19.20%) 11 (1.51%) 22.22% 1.098 (0.888–1.358)
p = .387

1.218 (0.913–1.626)
p = .18Case (n = 523) 404 (77.25%) 108 (20.65%) 11 (2.10%) 24.85%

Replication

Control (n = 823) 654 (79.47%) 155 (18.83%) 14 (1.70%) 22.23% 1.144 (0.930–1.408)
p = .204

1.161 (0.871–1.548)
p = .308Case (n = 495) 378 (76.36%) 106 (21.41%) 11 (2.23%) 25.87%

Note: GenBank reference sequence of DDAH1 gene is NC_000001.11. Odds ratios (ORs) and 95% confidence intervals (CIs) were obtained by logistic regression, 
with and without adjustment for sex, age, body mass index, hypertension, hyperlipidemia, and smoking status.
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ADMA level and HOMA‐IR (Chou et al., 2019). So, these 
findings support a hypothesis that genetic variants affect-
ing DDAH1 gene expression modify T2DM susceptibility 
due to impaired insulin sensitivity but not insulin secretion, 
through the ADMA/NOS pathway.

It is interesting that gender difference appeared in the 
association of this polymorphism and the risk of T2DM. 
The DDAH1: ‐396_‐395insGCGT Ins allele increased the 
risk in male subjects, but not in females, both in discovery 
and replication populations (Tables 3 and 4). It is not sur-
prised that adult men have higher risk for T2DM, as well as 
for other cardiovascular disease. Two large national study of 
prevalence of T2DM in Chinese adults demonstrated higher 
incidence of T2DM in males than in females, in different 
age groups and residence groups (Wang et al., 2017; S. H. 
Yang, Dou, & Song, 2010). Studies also showed that men 
could develop diabetes at lower average BMI than women, 
and men were more susceptible to insulin resistance due 
to ectopic distribution of fat and lower level of lipid‐regu-
lating hormones like adiponectin and leptin (Sattar, 2013). 
A prospective follow‐up study of 14,786 middle‐aged men 
and women showed that the overall cardiovascular risk factor 
level was more favorable in women. The difference in the 
HDL/total cholesterol ratio was the major determinant of the 
sex difference in CHD risk. In addition, differences in smok-
ing rate contributed markedly to the excess CHD risk of men 
(Jousilahti, Vartiainen, Tuomilehto, & Puska, 1999). Here we 
showed that the DDAH1: ‐396_‐395insGCGT polymorphism 
might also be involved in the gender difference for diabetes 
susceptibility.

The differences in vascular endothelial functions between 
genders have been discussed in previous studies. Young 
Finns Study showed that men were more easily to have 
impaired vascular endothelium functioning under chronic 
stress and at increased risk of atherosclerotic progression 
(Chumaeva, Hintsanen, Juonala, Raitakari, & Keltikangas‐
Jarvinen, 2010). The female advantage in vasculature is 
mainly attributed to an enhanced vasodilative capacity of 
the endothelium, with the fact that basal and agonist‐in-
duced NO release from endothelium is elevated in vascula-
ture from females compared to males (Kauser & Rubanyi, 
1994; Orshal & Khalil, 2004; Yang, Bae, & Zhang, 2000). 
The mechanisms of hormone effects involved in the differ-
ences between the males and females on NO production and 
endothelial functions are mainly rely on the roles of estrogen, 
which have been shown to stimulate NO production in cul-
tured human endothelial cells (CaulinGlaser, GarciaCardena, 
Sarrel, Sessa, & Bender, 1997). The binding of estrogen (pre-
dominantly 17β‐estradiol) to estrogen receptors or specific 
subtypes of G protein coupled receptors (GPCRs) can trigger 
multiple signaling pathways including activation of ERK, 
PI3K, Akt, and c‐Src (Filardo, Quinn, Bland, & Frackelton, 
2000; Revankar, Cimino, Sklar, Arterburn, & Prossnitz, 

2005; Sharma & Prossnitz, 2011), which in turn promote 
the activation of eNOS via the phosphorylation of residue 
Ser1177 (Haynes et al., 2003, 2000; Li et al., 2007; Simoncini 
et al., 2000). Studies in murine aortae have also verified the 
involvement of these pathways in the estrogen‐induced endo-
thelium‐dependent NO‐mediated vasodilation (Florian, Lu, 
Angle, & Magder, 2004; Guo, Razandi, Pedram, Kassab, & 
Levin, 2005; Li et al., 2007). Moreover, the ET‐1 concentra-
tions are usually higher in men versus women (Polderman 
et al., 1993). It was also reported that the ADMA level is 
lower in females than that in males (Schulze et al., 2005). A 
study in rats under restraint stress observed enhanced levels 
of ADMA and reductions in levels of NO metabolites in the 
brain, and the effects being greater in intensity in males as 
compared to females (Chakraborti, Gulati, & Ray, 2014).

Since NO synthase‐derived free radical production 
may be one of the resources of oxidative stress in diabe-
tes (Rochette et al., 2013; Vanhoutte, Zhao, Xu, & Leung, 
2016), the prooxidant environment is also found to be less 
pronounced in women as reflected by different activity and 
expression of vascular NADPH oxidases (Chen et al., 2015; 
Wong, Randall, & Roberts, 2015). In vascular smooth mus-
cle cells (VSMCs) harvested from rat aortae, male VSMCs 
have higher levels of superoxide, one of the main ROS, but 
lower levels of SOD‐1, compared to females (Morales et 
al., 2015). So the gender difference in risk of T2DM which 
is related to DDAH1 promoter polymorphism might be 
explained by differences in NO production and oxidative 
status between males and females. Males seem to be more 
susceptible to NO reduction‐induced vascular endothelium 
malfunction.

5 |  LIMITATION

This is a retrospective case–control study, thus the information 
bias cannot be excluded. To limit this bias, all subjects were 
examined in a standardized manner, with well‐defined diagnos-
tic criteria, and genotyping was performed blind. Although we 
calculated adjusted ORs with conventional variables like sex, 
age, BMI, hypertension, hyperlipidemia, and smoking status, 
there might be unknown confounding variables which would 
affect the genetic variation and the risk of T2DM. Next, this is a 
single‐center study, though we employed two independent sets 
of case–control populations to verify the association, the further 
external implementation is still important, especially in popu-
lation with different ethnic backgrounds. Then, we could just 
conclude in an association between the genetic variation and 
the risk of T2DM, but the evidences here were inadequate to 
support a causal association. Finally, the biological mechanism 
underlying the association between this polymorphism and 
risk of T2DM remains unclear. In summary, additional studies 
are needed to investigate the impact of this polymorphism on 
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specific T2DM related pathways, and on disease susceptibility 
in a multicentered design.

6 |  CONCLUSION

In this study, our findings suggested that the DDAH1: 
‐396_‐395insGCGT insertion allele is associated with in-
creased risk of T2DM in a gender‐dependent manner, affects 
males but not females. These findings indicate that DDAH1 
promoter polymorphism represents an important locus for 
predicting inherited susceptibility to T2DM. Gender might 
be also an important factor in evaluating risk of T2DM in 
combination of gene polymorphism.
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