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IMPHY000797 derivatives have been well known for their efficacy in various diseases. Moreover, 
IMPHY000797 derivatives have been found to modulate such genes involved in multiple neurological 
disorders. Hence, this study seeks to identify such genes and the probable molecular mechanism that 
could be involved in the pathogenesis of Parkinson’s disease. The study utilized various biological 
tools such as DisGeNET, STRING, Swiss target predictor, Cytoscape, AutoDock 4.2, Schrodinger suite, 
ClueGo, and GUSAR. All the reported genes were obtained using DisGeNET, and further, the common 
genes were incorporated into the STRING to get the KEGG pathway, and all the data was converted to 
a protein/pathway network via Cytoscape. The clustering of the genes was performed for the gene-
enriched data using two-sided hypergeometrics (p-value). The binding affinity of the IMPHY000797 
was verified with the highest regulated 25 proteins via utilizing the “Monte Carlo iterated search 
technique” and the “Emodel and Glide score” function. Three thousand five hundred eighty-three 
genes were identified for Parkinson’s disease and 31 genes for IMPHY000797 compound, among which 
25 common genes were identified. Further, the “FOXO-signaling pathway” was identified to be a 
modulated pathway. Among the 25 proteins, the highest modulated genes and highest binding affinity 
were exhibited by SIRT3, FOXO1, and PPARGC1A with the compound IMPHY000797. Further, rat 
toxicity analysis provided the efficacy and safety of the compound. The study was required to identify 
the probable molecular mechanism, which needs more confirmation from other studies, which is still a 
significant hit-back.
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Parkinson’s Disease (PD) is a progressive degeneration of dopaminergic neurons in the brain, manifested by 
motor and non-motor symptoms1. Bradykinesia, rigidity, postural instability, and autonomic dysfunction are 
some of the symptoms that are produced in PD patients2. Numerous natural molecules have presented their 
potency in countering reactive oxygen species levels (ROS), and oxidative stress, resulting in neuroprotection3. 
The unexplored IMPHY000797 (pyrimidine) derivatives have become highlighted due to their notable actions 
on neurodegenerative diseases such as monoamine oxidase inhibitors, Alzheimer’s disease, and PD4–7. Due to its 
unexplored action on neurodegenerative diseases, the proper molecular mechanism action remains unexplored 
for neurodegenerative diseases, as shown in Fig. 18.

One of the main culprits in the progression of PD remains to be ROS and oxidative stress generating via the 
mitochondrial route; both in-vitro and in-vivo model studies have exhibited the effective role of mitochondria as 
how the upregulation of various genes can enhance the mitochondrial activity and result in neuroprotection’s9,10. 
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Due to the advancement of biological tools, wet lab work has improved in past decades, improving the 
effectiveness between target and compound11. As reported, IMPHY000797 moieties have been studied for 
neuroprotection; in this contextual manner, we have utilized several biological tools to identify the probable 
molecular mechanism of IMPHY000797 concerning ROS levels and oxidative stress via studying various genes.

Materials and methods
Physicochemical properties of the IMPHY000797 compound
The compound was retrieved using PubChem, Indian Medicinal Plants (IMPPAT), whereas the MolSoft LLC 
database (https://www.molsoft.com/) was used to identify the drug-likeness score (DLS) of the drug. The 
physicochemical properties include a DLS of 0.81, a molecular weight of 521.08 with a hydrogen bond acceptor, 
and a donor of 15 and 9. The targets involved in the modulation of PD were retrieved using the DisGeNET 
database (https://www.disgenet.org/) CUI: C3825201, CUI: C0030567, CUI: C0751651, CUI: C0949855 with an 
overall gene count of 358312. The modulating targets for IMPHY000797 were predicted using SMILES in Swiss 
target prediction (http://www.swisstargetprediction.ch/), which predicted the common gene count 31.

Gene Ontology (GO) enrichment
The biological process (BP), molecular function (MF), and cellular component (CC) were retrieved using the 
STRING database, where the highest modulated gene was identified. Moreover, a two-tailed Pearson correlation 
coefficient analysis was performed for the GO terms using GraphPad Prism 8.

Network construction
The targets obtained from the DisGeNET database, CUI: C3825201, CUI: C0030567, CUI: C0751651, and CUI: 
C0949855, were cross-matched with the genes obtained from Swiss target prediction for IMPHY000797. The 
common targets were further adapted into protein-protein interaction using STRING databases for “homo-
sapiens”13.

Clustering and its analysis
The ClueGO, an additional tool, was utilized to obtain the single clustering analysis from a set of multiple genes 
in Cytoscape 3.10.014. The critical points analyzed for clustering were BP, MF, CC, and KEGG pathways15. In 
contrast, the Two-sided hypergeometric test (enrichment/depletion) statistical analysis was performed with a 
P-value range of 0.05. The network specificity was medium with a GO tree interval of 3 to 8. The final Kappa 
score was obtained as 4, and the analysis was performed under the Bonferroni step-down method.

Fig. 1. IMPHY000797 and its multiple involvements in the pathogenesis of diseases.
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Preparation of the IMPHY000797 compound
IMPHY000797 (an IMPHY000797-based compound): The ligand was prepared using ChemDraw 19.0, saved in 
.mol format, and minimized using ChemDraw 3D using the MM2 force field. The file was converted to pdb. and 
pdbqt. Format (charged ligand)16. The “LigPrep” module (glide/Schrodinger suite) was used (glide/Schrodinger 
suite) to obtain the probable confirmations of the ligand, where the pH was kept in the range of 7.0 ± 0.2 using 
OPLS4 forcefield17.

Preparation of protein for AutoDock 4.2
All the proteins were extracted using Protein Data Bank, RCSB (https://www.rcsb.org/), and the extracted 
proteins were prepared using BIOVIA Discovery Studio-2017, where the water molecules and unwanted 
heteroatoms were removed, and the missing amino acids were substituted to the protein. The prepared protein 
was substituted with polar hydrogens, followed by Gasteiger and Kollmann charge, and converted into pdbqt. 
Format. Further “grid box” was established by using the “center of the macromolecule” in “AutoDock 4.2”18.

Preparation of protein for Schrodinger suite and molecular Docking studies
The “protein-preparation wizard tool” of the Schrodinger Suite 2022-24 was utilized to prepare protein. The 
unwanted water molecules were removed with OPLS4 and RMSD of 0.30 Å. The “PROPKA” module was used in 
the optimization of hydrogen bonds; further, the “grid” was formed using the “receptor-grid generation” tool. In 
the present study, the IMPHY000797 compound was docked with a hydrolase enzyme (Human SIRT3 bound to 
Ac-ACS peptide and Carba-NAD), PDB ID:4FVT, with the 2.47 Å. The docking was executed using the “ligand-
docking” tool with XP (extra precision) to obtain the binding affinity of the compound with the selected PDB 
ID19. The docking was performed using two computational algorithms, AutoDock 4.2 and Schrodinger suite 
(glide).

Trajectory studies
Selection of proteins for the simulation stability studies
Among the large set of proteins, the highest number of edge counts were obtained by SIRT3/FOXO1 and 
PPARGC1A. The “system builder” was utilized in the solvation of the protein-ligand complex, where the “TIP4P” 
was used as a solvent, and the buffer was added within a distance of 10/10/10 Å. The model was minimized 
using the neutral Na + ions via the OPLS4 forcefield. The protein-ligand complex was further minimized at 
100 picoseconds, and the residues of the protein-TIP4P compound were simulated at 100 nanoseconds under a 
pressure of 1.01 at 311 K temperature20.

Rat acute toxicity
The “GUSAR” (General Unrestricted Structure-Activity Relationships) (https://www.way2drug.com/gusar/
acutoxpredict/) module was used to predict acute toxicity. The GUSAR module predicts acute toxicity by 
running over 10 K chemical entities, whereas the QSAR approach was used to estimate acute toxicity21.

Results and discussions
IMPHY000797 and its physicochemical properties
IMPHY000797 was determined to have a molecular weight of 521.08 Daltons and a log-p value of -3.2, with two 
hydrophobic rings; the NHBA and NHBD were found to be 15 and 8, respectively. The DLS score was found to 
be 0.81. Thirty-one genes, HDAC1, SOD2, FOXO1, PPARGC1A, UBB, AMPK, IDH2, NTRK2, CREBBP, SIRT3, 
CDC34, PRKAA2, ATP5F1B, MAP4K4, PRKAA1, CDK1, PDE2A, ALOX5, IGF1R, HSD11B1, PTGS1, RELA, 
ESRRB, EPHX2, HMGCR, MAP2K1, ADORA1, NTRK1, NTRK3, PRKDC, HIF1A, were found to be modulated 
by the compound IMPHY000797, and 3583 of genes were found to be involved in the modulation of PD which 
was obtained using DisGeNET database. The common genes were identified from both sets (compound genes 
and DisGeNET genes) which predicted 25 common genes (HDAC1, SOD2, FOXO1, PPARGC1A, UBB, NTRK2, 
CREBBP, SIRT3, CDC34, PRKAA2, ATP5F1B, MAP4K4, PRKAA1, CDK1, PDE2A, ALOX5, IGF1R, RELA, 
EPHX2, MAP2K1, ADORA1, NTRK1, NTRK3, PRKDC, HIF1A) as shown in Fig. 2.

Gene enrichment analysis for IMPHY000797 and network construction
The genes modulated in the PD were obtained using the DisGeNET database with the access codes “CUI: 
C3825201, CUI: C0030567, CUI: C0751651, and CUI: C0949855”. Whereas targets modulated by the 
IMPHY000797 compound (IMPHY000797) were obtained using Swiss target prediction (http://www.
swisstargetprediction.ch/) and Binding database (https://www.bindingdb.org/rwd/bind/index.jsp), which were 
having a probable score of 0.5-1. Overall, of 3583 genes were obtained using DisGeNET database, whereas 
the compound IMPHY000797 was found to modulate 31 genes (HDAC1, SOD2, FOXO1, PPARGC1A, UBB, 
AMPK, IDH2, NTRK2, CREBBP, SIRT3, CDC34, PRKAA2, ATP5F1B, MAP4K4, PRKAA1, CDK1, PDE2A, 
ALOX5, IGF1R, HSD11B1, PTGS1, RELA, ESRRB, EPHX2, HMGCR, MAP2K1, ADORA1, NTRK1, NTRK3, 
PRKDC, HIF1A). Furthermore, the commonly predicted 25 genes were queried in the STRING database 
(https://string-db.org/) to analyze the probable protein-protein interactions. The threshold used to choose 
high-confidence protein-protein interactions from the “STRING” database was set to “0.700,” which can be 
found in the “settings” section of the STRING database. Protein-protein interactions can be classified as highly 
confident if the high confidence factor exceeds 0.700. There were 25 nodes and 63 edges. The average node 
degree was determined to be 2.61, with a clustering value of 0.62. The protein-protein enrichment p-value was 
4.33e-1, indicating that the proteins had many interactions. This enrichment suggested that the targets were 
physiologically related to each other. Eighty-one enriched KEGG pathways were obtained (Supplementary File 
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1)22,23. Figure 3 illustrates how the network between the gene/pathways and compound targets was built using 
“Cytoscape 3.10.0”. SIRT3/FOXO1 and PPARGC1A displayed the highest number of “edge counts” among all the 
genes with a neighborhood connectivity of 6.4, the “FOXO signaling pathway” was found to have an edge count 
of 7, followed by an in-degree of 3, and an outdegree of 6.

Gene Ontology (GO) and Pearson correlation analysis
The GO term analysis predicted 56 KEGG pathways, whereas the “Longevity regulating pathway” was found to 
have a false discovery rate (FDR) of 3.57E-08. The KEGG pathway also predicted the “FOXO signaling pathway” 
(hsa04068) with an FDR of 1.41E-07, indicating probable significance, which could have resulted in more false 
results. A total of 175 BP was determined, among which “Cellular response to oxidative stress” (GO:0034599) 
and “Response to oxidative stress” (GO:0006979) were found to have the lowest FDR of 1.44E-06 and 8.98E-
09 and were found to modulate eight proteins (PPARGC1A, SIRT3, PRKAA2, FOXO1, CDK1, RELA, HIF1A, 
SOD2). The 29 MF were predicted, among which “Small molecule binding” (GO:0036094) was predicted with 
an FDR of 5.11E-07, whereas it was found to modulate 19 proteins (CDC34, ATP5F1B, NTRK2, HMGCR, 
MAP2K1, PRKDC, IDH2, PDE2A, MAP4K4, FOXO1, NTRK3, HSD11B1, ADORA1, PRKAA2, SIRT3, CDK1, 
NTRK1, SOD2, IGF1R). Overall, of 7 CF were predicted, among which “Cytoplasm” (GO:0005737) was found 
to modulate 31 genes (CDC34, ATP5F1B, CREBBP, PPARGC1A, NTRK2, HMGCR, MAP2K1, PRKDC, IDH2, 
PDE2A, MAP4K4, PRKAA1, NTRK3, PTGS1, HSD11B1, ADORA1, PRKAA2, HDAC1, ALOX5, FOXO1, 
ESRRB, SIRT3, CDK1, RELA, EPHX2, CA1, NTRK1, HIF1A, SOD2, UBB, IGF1R). All the enrichment analyses 
predicted various common genes, among which SIRT3, FOXO1, and PPARGC1A were identified as the most 
common genes involved in the modulation of oxidative stress. The diagram has been presented as a violin plot, 
which indicates the top-most modulated genes throughout the enrichment analysis, as shown in Fig. 4.

The Pearson correlation matrix statistical analysis was performed for the GO terms BP, MF, and CC. The 
predicted Pearson correlation for BP at 95% between the “observed gene count vs strength” was found to be 
-0.834 and − 0.717 with a two-tailed p-value < 0.0001 (****). In contrast, the correlation between “observed 
gene count vs false discovery rate” was found to be -0.604 and − 0.380 with a two-tailed p-value < 0.0001 (****). 
The predicted Pearson correlation for MF at 95% between the observed gene count vs. strength was found to be 
-0.919 and − 0.663 with a two-tailed p-value < 0.0001 (****). In contrast, the correlation between “observed gene 
count vs false discovery rate” was found to be -0.639 and 0.030 with a two-tailed p-value of 0.071, indicating 
no significance; it means that there was a lack of statistical significance between the “observed gene count vs 

Fig. 2. Venn illustration representation. (A) Targets involved in the modulation of PD (CUI: C0949855) and 
targets modulated by the IMPHY000797 compound. (B) Multiple sets of 3583 genes were collected from the 
different keywords involved in the pathogenesis of PD (CUI: C3825201, CUI: C0030567, CUI: C0751651, 
and CUI: C0949855). (C) The GO terms Biological Process (BP), Molecular function (MF), and Cellular 
component (CC) via KEGG-mediated pathways.
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false discovery rate” which suggests that the null hypothesis was not rejected. The predicted Pearson correlation 
for CC at 95% between the “observed gene count vs strength” was found to be -0.986 to -0.230 with a two-
tailed p-value of 0.0215, indicating a mild significance (*). In contrast, the correlation between “observed gene 
count vs false discovery rate” was found to be -0.908 and 0.632 with a two-tailed p-value of 0.047, indicating no 
significance, as shown in Supplementary File 1 and Fig. 5.

component (CC).

Clustering of genes
The clustering of gene analysis for the GO terms of BP, MF, and CC was performed in “ClueGo” via Cytoscape 
3.10.0, where the ClueGo predicted the FOXO signaling pathway “KEGG:04068” of group 4 was found to 
modulate 6.34% of associated genes with a total gene count of 7 (CREBBP, FOXO1, IGF1R, MAP2K1, SIRT3, 
PRKAA2, SOD2). Similarly, group 4 Thyroid hormone signaling pathway “KEGG:04919” was found to modulate 
3.53% of the associate genes with a total gene count of 5 (CREBBP, FOXO1, HDAC1, HIF1A, MAP2K1). The 
group 6 Longevity regulating pathway “KEGG:04211” was found to modulate 5.49% of the associated genes with 

Fig. 4. Violin plot representation with high and low probable regions. (A) Biological Process indicating (red 
color) the highest modulated genes. (B) Molecular function indicating (red color) the highest modulated 
genes. (C) Cellular component indicating (red color) the highest modulated genes.

 

Fig. 3. Network between pathway/gene-mediated targets by the IMPHY000797 compound (IMPHY000797). 
(A) Protein-protein interaction with the highest edge counts among the common genes collected. (B) The most 
modulated genes/pathways via IMPHY000797.
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a total gene count of 6 (FOXO1, IGF1R, PPARGC1A, PRKAA1, PRKAA2, SOD2). All the genes were evaluated 
using the Statistical Enrichment/Depletion (Two-sided hypergeometric) test with a p-value threshold of 0.05, 
and the correction technique was assessed by utilizing the Bonferroni step-down method. The ultimate Kappa 
Score for the groups was determined to be 7, displayed in Supplementary File 2 and Fig. 6.

Molecular docking studies
AutoDock 4.2
The one-to-one (protein/ligand) docking was performed via AutoDock 4.2, among which the protein SIRT3 
(PDB ID: 4FVT)/IMPHY000797 complex was found to have the binding energy of -12.42 kcal/mol, the amino 
acid interactions were found to be SER 149, ALA 146, ASP 156, HIS 248, SER 321 and various unfavourable 
bonds were also observed with the amino acids THR 320, ASN 229, ILE 254, ASP 231, and GLN 228. The FOXO1 
(PDB ID: 5DUI)/ IMPHY000797 complex was found to have 2 hydrogen bond interactions with the amino acid 
SER 205 and SER 234, whereas there were various unfavourable bond interactions with the amino acids TRP 
237, LEU 183, LEU 217, and THR 182 with a docking score of -9.55 kcal/mol. The PPARGC1A (PDB ID: 1XB7)/ 
IMPHY000797 complex was found to have 2 hydrogen bond interactions with the amino acid interactions ALA 
516 and GLY 489 with the docking score − 8.55 kcal/mol, as shown in Supplementary File 3 and Fig. 7.

Glide (maestro)
The maestro Schrodinger suite 2022-24 (glide) module was used in the prediction of docking scores and 
interacting amino acids between one protein and multiple ligands: SIRT3 (PDB ID: 4FVT)/ IMPHY000797 
complex was found to have a binding energy of -8.95 kcal/mol; whereas 8 hydrogen bonds were formed with the 
amino acids (ASP 156, ASN 344, THR 320, ALA 146, and GLN 228), where 1 π − π interaction was observed 
with the PHE 180. The FOXO1 (PDB ID: 5DUI) exhibited a docking score of -8.48 kcal/mol, and 5 hydrogen 
bond amino acid (SER 184, GLU 188, LYS 192, LYS 233) interactions were obtained with the IMPHY000797. The 
PPARGC1A (PDB ID:1XB7) was found to have a docking score of -7.217 kcal/mol; whereas it predicted 5 amino 
acids interactions (GLU 512, GLN 353, LYS 340) as shown in Fig. 8. The results suggested different hydrogen and 
hydrophobic amino acid interactions with the compound IMPHY000797; whereas more hydrophobicity of the 
compound could improve the brain permeability.

Molecular dynamics simulation studies
SIRT3 and IMPHY000797
The stability between the SIRT3 and IMPHY000797 was determined using 100 nanoseconds (ns) simulation 
studies. In contrast, there was no effective interaction from 0 to 18 ns, and few amino acids, such as VAL 292, 
HIS 248, PHE 157, and PHE 157, were found to have interactions with the compound IMPHY000797. The mild 
interactions were observed from 20 to 40 ns, whereas the amino acid interacting was found to be VAL 292, HIS 
248, PHE 157, and PHE 157. The root means square deviation (RMSD) between the protein/IMPHY000797 
was 2.8/4.5 Å. Continuous stability was observed from 50 to 100 ns. The protein/ligand visualized 12 hydrogen 

Fig. 5. Correlation matrix for the collected GO terms. (A) The correlation analysis between strength, False 
discovery rate, and gene count for biological process (BP). (B) The correlation analysis between strength, False 
discovery rate, and gene count for molecular function (MF). (C) The correlation analysis between strength, 
False discovery rate, and gene count for Cellular.
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bond formation with the amino acids ALA 146, ASP 156, PHE 157, SER 160, SER 162, TYR 165, GLU 177, GLN 
228, ASN 229, HIS 248, VAL 292, and GLU 295. The hydrophobic interaction was visualized with the amino 
acids PHE 157, PRO 160, PRO 176, PHE 180, LEU 199, ILE 230, HIS 248, and PHE 294, as shown in Fig. 9. The 
hydrophobic amino acids signify their role in the good binding affinity with the amino acids/proteins.

FOXO1 and IMPHY000797
The stability between the FOXO1 and IMPHY000797 was determined using 100 ns simulation studies. In 
contrast, there was no effective interaction from 0 to 25 ns, and few amino acids such as ALA 146, ASP 156, 
GLN 228, HIS 248, THR 320, and SER 321 were found to have interactions with the compound IMPHY000797. 
The strong interactions were observed from 40 to 100 ns, whereas the amino acid interacting was found to be 
VAL 292, HIS 248, PHE 157, and PHE 157. Continuous stability was observed from 40 to 100 ns. The RMSD 
between the protein/IMPHY000797 was 2.8/4.8 Å. The protein/ligand visualized 15 hydrogen bond formation 
with the amino acids ALA 146, GLY 147, THR 150, ASP 156, ARG 158, GLU 177, GLN 228, ASN 229, ASP 
231, HIS 248, VAL 292, THR 320, SER 321, LEU 322, ASN 344 and ARG 345. The hydrophobic interaction was 
visualized with the amino acids PHE 157, PHE 180, ILE 230, HIS 248, PHE 294, and VAL 234, as shown in Fig. 9. 
The hydrophobic amino acids signify their role in the good binding affinity with the amino acids/proteins.

Fig. 6. Clusters for the GO term biological process, molecular, and cellular function.
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PPARGC1A and IMPHY000797
The stability between the PPARGC1A and IMPHY000797 was determined using 100 ns simulation studies. There 
was no effective interaction from 0 to 60 ns, and strong interactions were observed from 70 to 80 ns. Continuous 
stability was observed from 70 to 100 with an RMSD of 4.0–9 Å. The RMSD predicted the fluctuation with the 
complex molecule (PPARGC1A/IMPHY000797), as shown in Fig. 9.

Rat acute toxicity
To unearth the bad upshots that may result from the unintended/determined short-term exposure, a compound 
acute toxicity should be investigated24. Long-term toxicity studies and animal model assessments should be 
done to choose the dose of a substance. These acute toxicity findings can be further used to determine the 
substance’s toxicity status25. The computational model of way2drug (PASS) software was used in the prediction 
of the possible toxicity for the compound IMPHY000797. The bulkiness of the IMPHY000797 compound was 
determined using the QSAR applicability domain (AD). The bulkiness of the compound was determined using 
parameters such as Intraperitoneal route of administration (IP), Intravenous route of administration (IV), Oral 
route of administration, and Subcutaneous route of administration (SC). The rat IP LD50 was found to have 
class 4, which indicated that the compound was within the AD of the predicted models. The rat IV50 was found 
to have class 5, which stated that the compound was within the AD of the predicted models. The rat oral LD50 
was classified under class 4, and the rat SC LD50 was classified as non-toxic, where both of the parameters were 
found in the AD of the predicted models, as shown in Table 1.

Discussion
The initiation of the study was carried out with different types of phytoconstituents such as.

IMPHY000752, IMPHY000569, IMPHY000827, IMPHY000622, IMPHY000833, IMPHY000089, 
IMPHY002073, IMPHY001637, IMPHY001738, IMPHY002390, IMPHY002343, IMPHY001777, 
IMPHY001988, IMPHY001830, IMPHY002186, and IMPHY000797. The phytoconstituent IMPHY000797 was 
the most active phytoconstituent in modulating those genes involved in the progression of Parkinson’s disease. 
The present work mainly focuses on the putative molecular mechanism of the IMPHY000797 as a free radical 
scavenger using different biological and in-silico methodologies. The study consists of target identification, 
molecular docking with multiple targets, GO enrichment analysis, Pearson correlation analysis, molecular 
dynamic studies, and dose-dependent of the IMPHY000797 via computational-assisted biological technique. 
The IMPHY000797-based derivatives have been assessed for their neuroprotective studies, where the dose 

Fig. 7. 2D and 3D representation of the interaction between protein/compound via AutoDock 4.2. (A) 2D 
and 3D interactions showing multiple hydrogens and π − π interaction with the SIRT3 (PDB ID:4FVT) and 
IMPHY000797 compound. (B) 2D and 3D interactions showing multiple hydrogens and π − π interaction with 
the FOXO1 (PDB ID:5DUI) and IMPHY000797 compound. (C) 2D and 3D interactions showing multiple 
hydrogens and π − π interaction with the PPARGC1A (PDB ID:1XB7).
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management of these derivatives has also been reported to manage PD26,27. IMPHY000797 derivatives have been 
found to exert an antioxidant effect in the PD model, which has downregulated the ROS level and oxidative stress, 
resulting in a neuroprotective effect28,29. As IMPHY000797 derivatives have been found to exert the antioxidant 
effect, a major source of its mechanism/pathway could be generated from mitochondria30. Mitochondria are also 
involved in the production of ROS species (harmful if in higher amounts); the dysfunctioning of the mitochondria 
fails to control the ROS species via some major targets/genes such as SIRT3, FOXO, and PPARGC1A, thus, 
enhancing the activity of the mitochondria and these genes could/maybe the option to counter the ROS level 
and oxidative stress to prevent the neuronal death31. The study found 3583 of the genes that were involved with 
the PD, which were collected from the DisGeNET database; further, the IMPHY000797 predicted 31 genes 
(HDAC1, SOD2, FOXO1, PPARGC1A, UBB, AMPK, IDH2, NTRK2, CREBBP, SIRT3, CDC34, PRKAA2, 
ATP5F1B, MAP4K4, PRKAA1, CDK1, PDE2A, ALOX5, IGF1R, HSD11B1, PTGS1, RELA, ESRRB, EPHX2, 
HMGCR, MAP2K1, ADORA1, NTRK1, NTRK3, PRKDC, HIF1A) and these genes were obtained using various 
databases. Further from the collected genes, 31 of the genes, 25 genes were found to have a common match 
(HDAC1, SOD2, FOXO1, PPARGC1A, UBB, NTRK2, CREBBP, SIRT3, CDC34, PRKAA2, ATP5F1B, MAP4K4, 
PRKAA1, CDK1, PDE2A, ALOX5, IGF1R, RELA, EPHX2, MAP2K1, ADORA1, NTRK1, NTRK3, PRKDC, 
HIF1A) with the DisGeNET disease database. The common 25 genes were queried for possible protein-protein 
interactions via the STRING database32. The GO term analyzed 56 KEGG pathways; among which the Longevity 
regulating pathway was found to be the most modulated pathway, whereas 175 BP were predicted, among which 
Cellular responses to oxidative stress was the most modulated event. The Longevity regulating pathway and 
Cellular response to oxidative stress have been associated with aging-related processes, as well as PD33,34. Both 
processes/pathways act as markers in the downregulation of the ROS species and oxidative stress. Figure 10 
hypothesizes the probable molecular mechanism that could be involved in the modulation of PD.

The most modulated genes found through the network approach were SIRT3, FOXO1, and PPARGC1A, 
these proteins were also found to have the highest docking results, several studies have reported the role of these 
proteins in the modulation of ROS and oxidative stress via mitochondria, as ROS and oxidative stress have been 
reported to alter various cellular signaling pathways and cause neuronal death. The protein binding affinity 
evaluation was performed via “AutoDock 4.2” and “Schrodinger suite” (glide). SIRT3 (PDB ID: 4FVT) visualized 
various hydrophobic, hydrogen, and unfavourable amino acid interactions with SER 149, HIS 248, ALA 146, SER 
321, THR 320, GLN 228, ASP 231, ILE 154, and ASN 229. The FOXO1 (5DUI) was found to have hydrophobic, 
hydrogen, and unfavourable amino acid interactions with SER 234, ARG 214, TRP 237, THR 182, LEU 183, and 
LEU 217. The PPARGC1A (1XB7) was found to have hydrophobic, hydrogen, and unfavourable amino acid 

Fig. 8. 2D and 3D representation of the interaction between protein/compound via Schrodinger suite (glide). 
(A) 2D and 3D interactions showing multiple hydrogens and π − π interaction with the SIRT3 (PDB ID:4FVT) 
and IMPHY000797 compound. (B) 2D and 3D interactions showing multiple hydrogens and π − π interaction 
with the FOXO1 (PDB ID:5DUI) and IMPHY000797 compound. (C) 2D and 3D interactions showing 
multiple hydrogens and π − π interaction with the PPARGC1A (PDB ID:1XB7).
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interactions with ALA 516, ARG 458, and GLY 489; all these interactions were observed in AutoDock 4.2. In 
the Schrodinger suite (glide), the SIRT3 (PDB ID: 4FVT) was found to have hydrophobic, hydrogen, and polar 
amino acid interactions with VAL 292, PHE 180, ALA 146, GLN 228, SER 321, THR 320, ASN 344, and ASP 156. 
The FOXO1 (5DUI) was found to have hydrophobic, hydrogen, and polar amino acid interactions with SER 184, 
GLN 185, GLU 188, LYS 192, and LYS 233. The PPARGC1A (1XB7) was found to have hydrophobic, hydrogen, 
and polar amino acid interactions with LYS 340, GLN 353, and GLU 512. Similar amino acid interactions, such 
as SER 321, ALA 146, GLN 228, ASP 156, GLU 188, LYS 233 and LYS 192, were obtained using AutoDock 
4.2 (Monte Carlo iterated search algorithm combined with the Broyden-Fletcher-Goldfarb-Shanno) and the 
Schrodinger suite (Emodel1 and Glide score2 function); modulating the activity of GLU 188, LYS 233 and LYS 
192 have been found to upregulate the activity of SIRT3, FOXO1, and PPARGC1A35,36. The compound’s LD50 
(lethal dose) was predicted at 10 mg/kg. The AutoDock 4.2 software is free and open-source software algorithms 
such as genetic algorithm, simulated annealing, and Lamarckian genetic algorithm make the protein act as rigid. 
The ligand acts as flexible; the scoring functions depend on the empirical free energy function, which includes 
hydrogen, electrostatics, and desolvation energies, which include poor accuracy for the binding energy. The 
Schrodinger suite applies the grid-based method in the ligand docking, and mainly, it also includes induced 

Compound Name Parameter
LD50 (mg/kg)

IP IV Oral SC

IMPHY000797

LD10 (mmol/
kg) −0.047 0.038 0.421  −0.726

LD50 (mg/kg) 466.400 567.700 1369.000 3543.000

Class Non-toxic Class 5 Class 5 Class 3

Table 1. Acute toxicity prediction of IMPHY000797 compound (IMPHY000797).

 

Fig. 9. Simulation studies for the top 3 proteins and IMPHY000797 compound to identify the stability of the 
protein/compound complex at 100 nanoseconds. 1(A) PL-RMSD between the SIRT3 (PDB ID: 4FVT) with the 
IMPHY000797 compound. (B) The PL-contact timeline indicates the stable interaction of amino acids with 
the compound EGGC. (C) The PL-histogram plot represents the number of hydrogen, water, and hydrophobic 
interactions between the amino acids and the IMPHY000797 compound. 2(A) PL-RMSD between the 
FOXO1 (PDB ID:5DUI) with the IMPHY000797 compound. (B) The PL-contact timeline indicates the 
stable interaction of amino acids with the IMPHY000797 compound. (C) PL-histogram plot representing the 
number of hydrogens, water, and hydrophobic interactions between the amino acids and the IMPHY000797 
compound. 3(A) PL-RMSD between the PPARGC1A (PDB ID:1XB7) with the compound EGGC. (B) The 
PL-contact timeline indicates the stable interaction of amino acids with the IMPHY000797 compound. (C) PL-
histogram plot representing the number of hydrogens, water, and hydrophobic interactions between the amino 
acids and the IMPHY000797 compound.
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fit docking where it can accommodate receptor flexibility. The scoring function utilizes a sophisticated glide 
score that calculates both the empirical, as well as molecular mechanics energies and more accurate solvation 
and entropy methods. Both software AutoDock 4.2 and Schrodinger suite exhibited different docking scores, 
as AutoDock 4.2 exhibited high docking scores and Schrodinger suite exhibited lower docking scores with the 
selected proteins. The expected result obtained from both software predicted that the highest docking scores 
were predicted SIRT3, FOXO1, and PPARGC1A.

Conclusion
The study highlights the potential of the compound IMPHY000797 as a therapeutic agent in Parkinson’s disease 
by modulating oxidative stress, which is a significant contributor to neuronal damage in PD. A total of 31 genes 
were identified as being modulated by IMPHY000797, with 25 of these genes also linked to PD, indicating 
a strong connection between the compound and the disease’s molecular mechanisms. The FOXO signaling 
pathway emerged as a critical pathway influenced by IMPHY000797, mainly through the gene FOXO1, which 
regulates reactive oxygen species (ROS) and oxidative stress. The study utilized various biological tools and in-
silico methodologies, including molecular docking and GO enrichment analysis, to validate the interactions and 
pathways involved. Despite promising findings, the study emphasizes the need for extensive wet lab experiments 
to confirm the computational predictions and to explore the therapeutic efficacy and safety of IMPHY000797 
derivatives in managing PD. Overall, the research provides a foundation for future studies aimed at developing 
IMPHY000797-based therapies for Parkinson’s disease, highlighting its antioxidant properties and potential 
neuroprotective effects.

Data availability
The collected datasets/analyzed in the current study are available at the https://cb.imsc.res.in/imppat/, https://www.
molsoft.com/, https://www.disgenet.org/, http://www.swisstargetprediction.ch/, https://string-db.org/, https://
www.way2drug.com/gusar/acutoxpredict/, http://www.swisstargetprediction.ch/, https://www.bindingdb.org/
rwd/bind/index.jsp, https://www.rcsb.org/structure/5DUI, https://www.rcsb.org/structure/4FVT, https://www.
rcsb.org/structure/1XB7. All data are available in the manuscript and its supplemental files.
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