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Beta-lactamase (β-lactamase) produced by different bacteria confers resistance against β-lactam-containing drugs.*e gene encoding
β-lactamase is plasmid-borne and can easily be transferred from one bacterium to another during conjugation. By such trans-
formations, the recipient also acquires resistance against the drugs of the β-lactam family. β-Lactam antibiotics play a vital sig-
nificance in clinical treatment of disastrous diseases like soft tissue infections, gonorrhoea, skin infections, urinary tract infections,
and bronchitis. Herein, we report a prediction classifier named as βLact-Pred for the identification of β-lactamase proteins. *e
computational model uses the primary amino acid sequence structure as its input. Various metrics are derived from the primary
structure to form a feature vector. Experimentally determined data of positive and negative beta-lactamases are collected and
transformed into feature vectors. An operating algorithm based on the artificial neural network is used by integrating the position
relative features and sequence statistical moments in PseAAC for training the neural networks. *e results for the proposed
computational model were validated by employing numerous types of approach, i.e., self-consistency testing, jackknife testing, cross-
validation, and independent testing.*e overall accuracy of the predictor for self-consistency, jackknife testing, cross-validation, and
independent testing presents 99.76%, 96.07%, 94.20%, and 91.65%, respectively, for the proposed model. Stupendous experimental
results demonstrated that the proposed predictor “βLact-Pred” has surpassed results from the existing methods.

1. Introduction

*e advent of penicillin was a great revolution of the last
century in the medical history of mankind. It was a very
effective treatment for many incurable diseases of that time
and led to the discovery of more effective remedies for other
fatal diseases. After this substantial discovery, a large
number of antibiotics were discovered to kill disease-causing
bacteria. As the application of such advanced drugs in-
creased, bacteria also acquired resistance to these antibiotics

by producing enzymes capable of breaking down these
antibiotics [1]. One example of such an antibiotic-resistant
enzyme is beta-lactamase which hydrolyzes the beta-lactam
ring found in antibiotics, thus destroying its structure.
Consequently, effective antibiotic medications are formed by
administering the β-lactam antibiotic drug along with a
beta-lactamase inhibitor to cure a bacterial infection [2]. In
this perspective, β-lactam antibiotics and β-lactamases are of
great consideration in clinical set up for the treatment of skin
infections, respiratory tract infections, eye infections,
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gonorrhoea, soft tissue infections, bronchitis, meningitis,
urinary tract infections, pneumonia, and others. A lot of
work has been done to understand the structure and the
action mechanism of these enzymes in order to elucidate the
acquired immunity of microbes against different drugs [3].
β-Lactamase enzymes are produced from bacteria such as
cephamycins, penicillins, cephalosporins, and carbapenems
[4, 5]. Its action mechanism works by breaking down the
beta-lactam ring present in all broad-spectrum antibiotics
through hydrolysis, thus deactivating the antibacterial na-
ture of the drug. *ese antibiotics are used to treat a vast
spectrum of Gram-negative and Gram-positive bacterial
infections though β-lactamases are produced only from
Gram-negative and anaerobic bacteria [5].

Figure 1 depicts the chemical structure of different
β-lactam antibiotics. *e ring of β-lactam is can be seen as a
quad-edge shape for each antibiotic [6]. *ree classes of
these enzymes, i.e., A, C, and D hydrolyze the substrate by
making an acyl-enzyme with the active involvement of
serine residue. While class B enzyme uses Zn+ for carrying
out its normal function [6].

*e initial work of Yildirim et al. studied a ligand based
on network model to cluster proteins. A network was cre-
ated, and the target protein network was connected to their
node if there was at least one ligand common. However, the
study demonstrated results pertaining to only common
networks and not for different compounds [7]. Keiser et al.
used ligand-based chemical resemblance and formulated
subsets of ongoing classes [8]. Cheng et al. used a bipartite
network to represent the target node and the protein
compound on the basis of similarity sharing protein and
ligand [9, 10]. In 2009, Bailey et al. worked on uses of
MEME-MAST to extract motifs on the amino acid sequence
in β-lactamase [11]. Both works do not concern chemical
applications. But since the fuzzy techniques are “data in-
dependent,” they can also be exploited for the problem
under study by the authors [12, 13]. Recently, a predictor
named Blapred has been proposed for the classification and
identification β-lactamases with its respective classes, i.e., A,
B, C, or D by using a three-tier identification computation
model via Chou’s PseAAC [14].

In the past, chemists and biologists used traditional
methods to identify and differentiate of a protein in the
laboratory with the utilization of costly equipment which is
time-consuming, operator-dependent, costly, and laborious.
Besides this, the predictors previously available to classify
and identify β-lactamase do not have higher accuracy [14].
*ere is a need to construct a computational model for the
differentiation and classification of β-lactamase enzymes
from non-β-lactamase enzymes. *e objective of the re-
search is to develop a computational model βLact-Pred by
collecting a benchmark dataset, extracting the features and
then training the model via Chou’s PseAAC [15]. For the
purpose of identification and differentiation of proposed
model, Chou’s five steps are employed which entails [16, 17]
(i) construction or selection of an effective benchmark
dataset for training and testing the sequence-based statistical
predictor, (ii) using mathematical expression, finding a
correlation in the dataset, which is called feature extraction;

(iii) implementing an algorithm for learning and prediction;
(iv) performing numerous kind of persuasive verification
and validation testing to factually assess the projected
precision of the predictor. *is tells that how much our
method is effective and trustworthy; (v) developing of a
comprehensible and foolproof webserver that will be user-
friendly, to ensure its receptiveness and accessibility to the
public.

2. Methods and Materials

Consecutively, to develop a vigorous computational model,
it is prerequisite to acknowledge an accurate and explicit
scale dataset for the sake of training and testing the model.
An inoperative dataset may lead the computational model to
produce capricious results with untrustworthy validation
and unyielding verification testing. It is of uttermost sug-
gestive that the gathered dataset is an accurate, pertinent,
nonredundant, related, and comprehensive. Protein’s se-
quence dataset is collected to construct the βLact-Pred
computational model. Important and relevant statistical
feature vectors are extracted in the form of numerical from
the essential protein structure/primary sequences. *e
computational model is trained on these extracted features
using the neural network to accomplish the convergence.
Here, Chou’s first 3-steps will remain tended, as illustrated in
Figure 2.

2.1. Collection of Benchmark Data Set. A database which is
publicly available and well-known named Uniport is the
major fount to collect the protein sequences of beta-lacta-
mase and non-beta-lactamase. To acquire the concerning
positive sequences “beta-lactamase” named keyword was
used. An accurate and meticulously process is used to collect
dataset in which ambiguous, dubious, and uncertain se-
quences are excluded, by probability or similarity. Fur-
thermore, for the purpose of accurate and valid results,
complete sequences which should not be annotated with
fragment-like words are selected. *ese sequences are an-
notated with different class names, e.g., class A, B, C, or D. To
exclude the redundant and homology-biased sequences,
CD-HIT [17] is used with ≥60% resemblance. In conse-
quence, a great quality and an excellent data set is collected
which includes the most up-to-date beta-lactamase protein
sequences.

After applying CD-HIT, 2172 beta-lactamase sequences
were derived. By following the same procedure, 3463 non-
beta-lactamase were derived from the same database named
UniProt. By considering the Chou’s rule [18], any protein
sequence can be illustrated as

Kρ(β) � M0M1 . . . M(n−1)Mn. (1)

Considering all, a minimized dataset was obtained by the
following equation:

T � T
+ ∪T

−
. (2)

Here, T+ contains 2172 positive beta-lactamase se-
quences, T− contains 3463 negative beta-lactamase
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sequences, and ∪ shows the “union of two set.” A total of
5635 (2172 + 3463� 5635) sequences comprised dataset.

2.2. Sample Formulation. A specific sequence is constructed
by using the amino acids polypeptide chain.*ese sequences
contain biophysical characteristics of proteins. Minor ab-
sence or presence of amino acids could not control the
characteristics of protein. Behavior of protein is contrived by
many constituents, e.g., positioning of amino acids residues
and their composition. By observing data and the behavior
of different models, it is noted that minor change in com-
parative composition or ordering of amino acids residue
change the characteristics of protein by great extent. Due to
all these facts, feature vectors are extricating from primary or
core building/blocks of protein by using the computational
model which contains both of amino acids relative positions
and protein constituents. An extended technique from the
technique [18, 19] is used to extract features for βLact-Pred.

2.2.1. Statistical Moment Calculation. Quantitative measures
to describe the collection of data are known as statistical
moments. Different statistical moments order renders

nonidentical data properties. Some statistical moments are
helpful in evaluation of the data size, some demonstrate data
eccentricity, and some are related to the alignment of proteins.
*ese moments formed by some mathematicians and stat-
isticians contain certain polynomials and distribution func-
tions. βLact-Pred explained by using the moments which
include Central, Raw, and Hahn moments. Raw moments,
most fundamental moments, contain different properties of a
distribution, e.g., mean, variance, and asymmetry. Raw
moments do not represent the location, rotation, and scale
invariants. To calculate location, rotation, and scale invariants,
central moments are calculated deliberately. Central moments
again did not calculate the scale and location variants. To
calculate scale and location variant properties, another well-
liked set of moments named Hahn moment is computed.
Hahn moment obtained by using Hahn polynomials exhibits
scale and location variants. Major keys to choose these
moments are to inspect the composition and composition of
residues as they are important factors as per initial discussion.
Calculated values yielded from the all above techniques de-
scribe in data in their distinctive way. Furthermore, variance
is described in terms of moments by using numerical values
for capricious datasets [20].
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Figure 1: Chemical structures of the β-lactam antibiotics. (a) Penicillin. (b) Ampicillin. (c) Cephalosporin. (d) Carbapenem.
(e) Monobactam.
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Figure 2: Graphical illustration of the computational model using the Chou’s first three stages.
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To make protein synthesis, solely 20 amino acids are
useable. To compute the moments, distinctive integer index
is allocated to each and every amino acids residue. If the
allocated index is unique, consistent, and integral, then it
barely makes any distinction that what a particular esteem is
substituted. Initially, a mapping conversion tool is discov-
ered to convert 1-D (one-dimensional) essential structure
into a 2-D (two-dimensional) illustration by equation.

Let S be a sequence of the proteins. *e format of S is
given as follows:

S � β1, β2, β3, . . . , βm−1, βm􏼈 􏼉. (3)

In above, m is surplus in primary protein

Z � ⌈
��
m

√
⌉, (4)

where Z represents the features of S′ matrix in the following
equation.

All amino acids S that are computed given by m∗m

S′ �

K11 K12 · · · K1n

K21 K22 · · · K2m

⋮ ⋮ ⋱ ⋮

Km1 Km2 . . . Kmm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

*e 2-D matrix S′ refers to matrix S. It can be converted
by using mapping function as ].

] βx( 􏼁 � αpq, (6)

where p and q signify the index of K in S′.

Moments can be computed till 3-degree by using two-
dimensional S′, and consequent equation is utilized for
computing raw moments.

Zmm � 􏽘
l

x�1
􏽘

l

y�1
x

m
ynaxy

, (7)

where m + n] indicates the order of moments, l describes the
aspects of matrix, which should be the same, i.e., Z. Mo-
ments till 3-degree are computed as
Z00, Z01, Z02, Z10, Z11, Z12, Z20, Z21, and Z22.

Data center is like center of gravity. Distribution of data
is fair along with the data’s central point w.r.t the average
weight of data. It computes the following raw moments and
known as an argument (v, w), where

v �
Z10

Z00
,

w �
Z01

Z00
.

(8)

Central moments are calculated by point where the
centroid is acting. *e following equation is employed to
compute the central moments such as

Bst � 􏽘
m

k�1
􏽘

m

l�1
(k − v)

s
(l − w)

1
akl. (9)

For Hahn moments calculation, 1-D analysis S was
transferred to a square matrix analysis S′. *e Hahn poly-
nomials in n order can be employed as

ωa,b
m (p, M) � (M + b − 1)m(M − 1)m × 􏽘

m

l�0
(−1)

l(−m)l(−p)l(2M + a + b − m − 1)l

(M + b − 1)l(M − 1)l

1
l!

. (10)

*e above polynomial uses Pochhammer mark as

(b)l � b, (b + 1) . . . (b + 1 − 1). (11)

Simple form of the above can be represented by using a
delta operator:

(b)l �
Δ(b + l)

Δ(b)
. (12)

Hahn moments are calculated by weighing function and
square rule such as

􏽥β
c,d

n (q, N) � βc,d
n (q, N)

����
o(q)

c
2
n

􏽳

n � 0, 1, . . . N − 1, (13)

whereas

o(q) �
ϕ(c + q + d)ϕ(d + q + 1)(c + d + q + 1)N

(c + d + 2q + 1)n!(N − q − 1)!
. (14)

*e logical data for 2-dimentional discrete data is cal-
culated by using the following equation:

Gef � 􏽘
N−1

c�0
􏽘

N−1

d�0
αc d

􏽥J
g,h

t (c, N)􏽥J
u,v

s (b, N), n � 0, 1, . . . N − 1.

(15)

In order, Han and Central moments can be calculated up
to 3.

2.2.2. Generation of Position Relative Index Matrix.
Information regarding the composition/arrangements is the
foundation of any computational model that is used to
predict protein functions. Physical properties of the proteins
can be determined by assuming a key function for the area of
amino acid. Relative positioning of amino acid in poly-
peptide chain is very important as position relative index
matrix (PRIM) divulges information about the relative
position of amino acids in polypeptide chain. Position
relative index matrix (PRIM) excerpts the amino acid’s
location information in polypeptide chain [20]. A matrix of
20× 20 dimensions related to PRIM matrix is given as
follows:
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ZPRIM �

Q1⟶1 Q1⟶2 Q1⟶3 Q1⟶b · · · Q1⟶20

Q2⟶1 Q2⟶2 Q2⟶3 Q2⟶b · · · Q2⟶20

⋮ ⋮ ⋮ ⋮ · · · ⋮

Qd⟶1 Qd⟶2 Qd⟶3 Qd⟶b · · · Qd⟶20

⋮ ⋮ ⋮ ⋮ · · · ⋮

QU⟶1 QU⟶2 QU⟶3 QU⟶b · · · QU⟶20

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

An element of matrix such as Qd⟶b contains the ag-
gregate of bth residue in contradiction of the first index of dth

residue. It makes 400 coefficients which show a large
number. Dimensions of PRIM matrix are curtailed by
computing the three moments, i.e., raw, central, and Hahn.

2.2.3. Generation of Reverse Position Relative Index Matrix
(RPRIM). Reverse position relative indexmatrix (RPRIM) is
used to extract hidden features from protein sequences
which have the ambiguity of homologous sequences. RPRIM
has a 20× 20 dimension matrix containing 400 coefficients
same as in the PRIM, but it is used in a reverse order of the
PRIM [20].

QRPRIM �

R1⟶1 R1⟶2 · · · R1⟶k · · · R1⟶20

R2⟶1 R2⟶2 · · · R2⟶k · · · R2⟶20

⋮ ⋮ · · · ⋮ · · · ⋮

Rt⟶1 Rt⟶2 · · · Rt⟶k · · · Rt⟶20

⋮ ⋮ · · · ⋮ · · · ⋮

Rz⟶1 Rz⟶2 · · · Rz⟶k · · · Rz⟶20

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

Like PRIM, the dimension of the RPRIM matrix is also
curtailed by computing the three moments, i.e., raw, central,
and Hahn.

2.2.4. Frequency Matrix. Frequency matrix is a technique
used to determine the structure and how frequently proteins
are occurring. *is plays a significant role in sequencing of
proteins. PRIM holds the series information of amino acids,
while frequency matrix does not hold that series information
[20]. *e following expression is used to compute the fre-
quency of the matrix as

ξ � τ1, τ2, τ3, τ4 , . . . , τ20􏼈 􏼉. (18)

Here, τi denotes the frequency of i
th essential amino acid.

2.2.5. Generation of Accumulative Absolute Position Index
Vector. Frequency matrix contains the protein formation
related information and the total occurrence of protein
information. Frequency matrix did not contain the infor-
mation related to the occurrence of amino acid residues in a
polypeptide chain. Accumulative absolute position inci-
dence vector (AAPIV) is used to compute the information
related to the position of amino acid residue in the poly-
peptide chain. AAPIV contains position relevant

information in a vector form. A vector with 20 elements in
which each component encompasses a numerical ordered
value to represent the amino acid position relevant infor-
mation from the residue [20]. Native sequence shows the
specific residue occurrence in a protein structure which is
given as follows:

υk
μ1 . . . υk

μ2 . . . υk
μ3 . . . υk

μn . (19)

It represents υk residue which is placed at a position of
μ1, μ2, μ3, . . . μn

Let accumulative absolute position index vector repre-
sented as

T � ]1, ]2, ]3, ]4, . . . , ]20􏼈 􏼉. (20)

Hence, ith element of the accumulative absolute position
index vector is computed by

vi � 􏽘
n

u�1
su. (21)

2.2.6. Generation of Reverse Accumulative Absolute Position
Index Vector. As per earlier discussion, detecting ambigu-
ous patterns using feature extraction is an efficient tech-
nique. RAAPIV did the same task as AAPIV performs, but it
finds the patterns in a reverse order [20]. It also contains 20
elements which can be represented as follows:

δ � o1, o2, o3, o4, o5, . . . , o20􏼈 􏼉. (22)

Reversed sequence in RAAPIV is shown as

ωk
m1 . . .ωk

m2 . . .ωk
m3 . . .ωk

mn. (23)

*e amino acid residue k
ω that occurs in the reverse order

sequence and the term m1, m2, m3, . . . , mn represents their
ordered position. *e significance of any residue is calcu-
lated as

ℓi � 􏽘
n

m�1
tm. (24)

All of these abovementioned features have specific bi-
ological significance. *ese methods help in extracting
position and composition relative features from the amino
acid sequence which is a very pivotal aspect while dealing
with proteins. Each amino acid, in its surrounding, plays a
role in describing the physiochemical characteristics of that
molecule; thus, these features help in extracting such in-
formation. For example, the frequency of amino acids in
molecule, position relative occurrence of amino acids,
composition of a specific peptide, and absolute positioning
of residues.

3. Operational Algorithm via Neural Network

Artificial neural network is one of the most significant tools
for tackling the issue examined in this paper, it mimics
preparing data as depicted in Figure 3. Neural network
clarifies the fundamental shape of every residue within a
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protein. To train the model, composition of positive and
negative feature vectors which are extracted in above section
are used. *ese feature vectors depict the two-dimensional
structure of protein by using central, raw, and Hahn mo-
ments. Here, in this study, the neural network was con-
sidered as neural network which is represented by directed
graph similar to the biological neuron system in brain. Back
propagation ANNwas used instead of SVM because of many
reasons that ANN performs better than SVM. First of all,
ANN is a parametric model, while SVM is not. As in ANN,
there can be many hidden layers depending on features and
parameters [20]. In SVM, we have support vectors that are
acquired by training data. In some cases, support vectors can
have many support vectors with weight of each vector. ANN
can also have one or many outputs, while SVM can have only
one output. In case of a n-ary classifier, ANN can be trained
in one step, while SVM needs to train n support vectors one
by one that is time-consuming [20].

ANN is fast and flexible. ANN can be reached at global
optimal point, and we do not face any issue regarding
choosing the number of parameters, but in case of SVM, we

need to select hyperparameters. Less amount of memory is
required to store ANN, but SVM requires much memory
because it needs to store support vectors as well. Results in
ANN are more readable and interpretable [21, 22].

4. Formulation of Results and Discussion

4.1. EstimatedAccuracyMetrics. *e unbiased assessment of
newly constructed computational model is the most key
aspect that aids to estimate the accomplishment of that
computational model [22, 23]. Conversely, for such kind of
an unbiased assessment, two important aspects one must
keep in mind that (i) the choice of metrics accuracy and (ii)
the test method deployed for the validation of the com-
putational model. Here, first classify the measurements for
the unbiased assessment and then use the numerous vali-
dation and verification techniques.

4.2. Mathematical Formulation ofMetrics. It is obvious that,
for any machine learning problem, some collective and
important metrics are used for formulation of the metrics,
which are (1) Acc (accuracy) is the percentage of correctly
classified samples from total input dataset; (2) MCC
(Matthews correlation coefficient) is used in case of binary
classification, and it is also considered as balanced measure
even in multiple classes of different sizes; (3) Sn (sensitivity)
is the percentage of true positive or those samples that are
correctly classified as positive, and it is also called true
positive recognition rate. (4) Sp (specificity) is the percentage
of true negative or those samples that are correctly classified
as negative, and it is also called true negative recognition
rate.

Predominantly, these four metrics were introduced in
2001, and an accurate set of four measures was obtained in
[24] for all of these measures.

Sn � 1 −
Ŋ+

−

Ŋ+ 0≤ Sn≤ 1

Sp � 1 −
Ŋ−

+

Ŋ− 0≤ Sp≤ 1

Acc � 1 −
Ŋ+

− + Ŋ−
+

Ŋ+
+ Ŋ− 0≤Acc≤ 1

Mcc �
1 − Ŋ+

−/Ŋ
+

( 􏼁 + Ŋ−
+/Ŋ

−
( 􏼁( 􏼁

��������������������������������
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Here Ŋ− signifies non-β-lactamases data, predicted as
non-β-lactamases correctly by βLact-Pred. Ŋ−

+ signifies the
non-β-lactamases aggregate number which are anticipated
inaccurately as β-lactamases by βLact-Pred. Additionally,Ŋ+

is the β-lactamases aggregate number which are predicted
correctly as β-lactamases by βLact-Pred, and Ŋ+

− is the
β-lactamases aggregate number which are identified inac-
curately as non-β-lactamase by βLact-Pred. Accordingly,
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Figure 3: Graphical representation of the artificial neural network
for βLact-Pred.
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equation (25) provides the information regarding Sn, Sp,
Acc, and consistency more relaxed to recognize and innate,
especially when we discourse about MCC [25, 26].

*ese accuracy metrics have been used/identified by a
numerous researchers [27, 28], but merely for binary class
data labelled. Multiclass data labelled identification is a
utterly diverse problem, which has been supplementary
prominent in computational biology [29] and biomedicine
[30]. Consequently, it entails a diverse kind of accuracy
metrics for formulation [29].

4.3. Self-Consistency Testing. *e self-consistency testing is a
term referred as the ultimate test for the validation of ef-
ficiency and efficacy of the prediction model using the test
cases by training the data set. *e reason behind the
implementation of self-consistency is that the obtained re-
sults are individual and the actual true positive rate of the
benchmark dataset is also known. Self-consistency results
are revealed in Table 1; it can be observed that the βLact-Pred
has the 99.76% Acc, 99.76% Sp, 99.76% Sn, 0.99 MCC, and
0.99 AUC.

4.4. Validation of Model via Leave-One-Out. Validation is a
significant step that comes toward the end of the process. Its
motivation is to discover that how much the model is
proficient. A few validation techniques are utilized to vali-
date the model. To validate the model, data are portioned
into two parts; (1) training set and (2) testing set. *e model
is trained on training data, and then its performance is
measured on testing data. As the validation techniques select
the data haphazardly for predicting the model, there is not
well-defined technique that expresses how to partition the
data from the given dataset. Generally, the predictive model
can be tested using numerous types of testing, i.e., k-folds
(subsampling), independent testing, and leave-one-out
(jackknife) [27, 30]. Jackknife testing is amongst the most
frequently used validation techniques. Jackknife works by
overlooking each observation from the data and set up the
model on residual data. At the end, average is calculated of
all calculations and the output is unique. Issues like sampling
or sub-sampling are alleviated.

Jackknife is used to quantify the quality of the predictor,
and it is likewise generally utilized in these sorts of problems.
It is an iterative technique that computes the accuracy of the
model for all variations of the sample of size n − 1. *e
jackknifing technique trains the predictor on left-out data
and estimates overall accuracy by meticulously leaving out
every observation from a dataset. It is more efficient as it
overwhelms the issues that are triggered by data indepen-
dency and subsampling [31]. Results of jackknife validation
testing is 96.07% which is higher than the BlaPred [12] and
are revealed in Table 2.

4.5. K-Fold Cross-Validation Testing. Cross-validation is a
method to thrive an expectancy for the proposedmodel as an
exemplary method in the absence of validation set. Cross
validation tests the model on given training dataset and

prevents underfitting and overfitting. In k-fold cross vali-
dation, the dataset is portioned into k sets and k is picked at
start, and afterward, it is kept constant. Generally, k is kept 5
or 10; however, in the proposed method, k is set to 10. *e
model is tested k times and, in each iteration, 9 sets (k-1) are
used for training set and the one set (k set) is treated as
testing set. Subsequent to performing k iterations, the ac-
curacy of model is computed by the sum of each iteration
and then divided by k. *is average accuracy is considered as
a result of cross validation.*e overall 10-fold validation was
repeated 20 times, so that the credibility of results is in-
creased, as illustrated in Table 3.

4.6. IndependentDatasetTesting. To evaluate the precision of
βLact-Pred, independent testing was performed, in which
the training/testing split method was used for validating the
model. Out of 2172 positive and 3463 negative samples, three
different train/test split ratios were used which were 90/10,
80/20, and 70/30. After sufficient training, the left-out
samples were used for testing, and subsequent evaluation of
the accuracy of the proposed prediction technique was
performed. Based on the ability and inability of the model to
recognize the test samples accurately, all the described
metrics in equation (25) were computed, which are men-
tioned in Table 4.

4.7. Comparative Analysis. βLact-Pred uses a composition
and position variant feature extraction method for classi-
fication besides neural network. *e other existing predic-
tion models discussed in text use type-1 PseAAC, type-2
PseAAC, and classic PseAAC for feature extraction com-
bined with SVM (support vector machine). Both the tech-
niques (type I and type II) and classic are based on the
PseAAC model, presented in [32]. *e method of feature
extraction for such kind of problems has extreme signifi-
cance. *e proficiency to uncover deeply obscure patterns
within a specified set of data is highly anticipated for a
feature extraction algorithm. *e capability of a model to
translate deeply obscure patterns in the primary structure
into coefficients is dependent on a variable λ. *e value of λ
not only determines the size of the feature vector but also
plays a significant role in sieving out the correlation among
residues within a peptide chain. *e factors produced by
βLact-Pred are not reliant on such a variables.*e vector size
of the feature is adjusted and carefully calculates all possible
interactions between all possible residues in the peptide
chain in the form of succinct. βLact-Pred used both assorted
sequences of β-lactamase and non-β-lactamase which is
subsequently used as a dataset for the purpose of training
and testing. As illustrated in Table 1, βLact-Pred reveals a
greater sensitivity, specificity, accuracy, and MCC for

Table 1: Performance analysis of self-consistency for βLact-Pred.

Predictor/identifier
Precision metrics

Acc (%) Sp (%) Sn (%) MCC AUC
βLact-Pred 99.76 99.76 99.76 0.99 0.99

Computational Intelligence and Neuroscience 7



prediction of β-lactamases and non-β-lactamases than the
other previous predictors. Experiments prove that it is a
highly efficient technique as compared to previous ones.
Rigorous validation in diverse scenarios elucidates that the
method is less noisy and more effective for the prediction of
beta-lactamases. Subsequently, it is also established that the
presented methodology provides higher throughput and
accuracy than the previous predictors. To quantitatively
evaluate and compare the βLact-Pred, an independent
dataset of 75 β-lactamases, previously reported by [12], was
used in (Table 5).

In addition to this, the results of βLact-Pred were also
compared with CNN-BLPred [33], which performs the
functional and molecular classification of β-lactamases by
employing a deep learning method/technique called the
convolutional neural network (CNN). *e study performs
classification of β-lactamases at molecular and functional

level; however, for comparison with βLact-Pred, only mo-
lecular classification (level 1) results were considered.
Comparative analysis is provided in Table 6.

Furthermore, βLact-Pred applies numerous types of
approach and uses composition and positioning features of
sequences of protein to accomplish the identification of
β-lactamases. In first, it uses PseAAC, and then it calculates
the statistical moments, AAPIV, RAAPIV, PRIM, and
RPIRM using the relative positioning features of protein;
thus, βLact-Pred outperforms its counterparts.

5. Web Server

Final step of Chou is the enlargement of user-friendly and
publicly accessible webserver for the comfort of chemists
and biologists as an enlightened in [34, 35]. Publicly ac-
cessible and user-friendly webserver development and

Table 2: Jackknife testing results for βLact-Pred.

Predictor/identifier
Precision metrics

Acc (%) Sp (%) Sn (%) MCC AUC
βLact-Pred 96.07 97.39 96.96 0.92 0.93
BlaPred [12] 93.57 94.00 89.24 0.70 —

Table 3: Performance analysis of 10-fold cross-validation results (20 iterations) for βLact-Pred.

10-fold (iterations)
Precision metrics

Acc (%) Sp (%) Sn (%) MCC AUC
1 93.92 97.23 99.74 0.97 0.99
2 96.11 97.97 99.90 0.98 1.00
3 93.87 97.00 99.12 0.98 0.99
4 94.68 97.26 99.32 0.98 0.99
5 95.03 97.58 97.22 0.98 0.99
6 96.26 98.72 97.59 0.98 1.00
7 93.38 99.00 98.32 0.98 0.98
8 94.04 97.00 97.23 0.97 0.99
9 96.24 98.30 97.57 0.99 1.00
10 93.34 96.00 96.97 0.99 0.98
11 94.94 97.32 96.63 0.97 0.99
12 93.41 99.80 99.01 0.98 0.99
13 93.72 99.00 99.91 0.98 0.99
14 93.90 95.11 99.89 0.98 0.99
15 94.09 96.44 99.23 0.98 0.99
16 96.12 98.00 99.12 0.98 1.00
17 94.25 96.79 98.90 0.98 0.99
18 95.15 97.70 97.26 0.98 0.99
19 94.17 96.57 99.32 0.98 0.99
20 95.60 97.82 97.34 0.97 1.00
Average 94.61 97.80 99.89 0.98 1.00

Table 4: Results for independent dataset testing of three different methods.

Splits
Precision metrics

Acc (%) Sp (%) Sn (%) MCC AUC
90/10 95.27 94.50 96.90 0.8990 0.92
80/20 91.57 92.60 93.40 0.8310 0.89
70/30 88.10 91.34 92.10 0.8120 0.86
Average 91.65 92.81 94.13 0.8473 0.89
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establishment signifies the direction of the future in order to
develop prediction methodologies [34, 35]. For this purpose,
various computational analysis and research findings have
been reported. *erefore, useful and practical webserver has
significantly enhanced the overall impacts of computational
biology on medical sciences directing medicinal chemistry
into an unsurpassed revolution [12]. In this view, the
webserver shall be established for βLact-Pred as described in
the paper.

6. Conclusion

Multidrug-resistant strains of bacteria have posed a great
threat to human health nowadays. Bacteria have cleverly and
speedily acquired resistance against most of the antibiotics of
the time and are creating hurdles in an effective cure for
diseases. It is believed that, within few years, all prevailing
antibiotics would lose their efficacy against these multidrug-
resistant bugs. β-Lactamase is one of the safeguards pro-
duced by bacteria which protects it from the adverse action
of β-lactam antibiotics. Various data preprocessing tech-
niques are used to calculate the feature vector including raw,
Hahn, and central Moments and position and composition
variant features. For this purpose, an artificial neural net-
work is used for training and predicting the sequences. *e
results for the proposed computational model was validated
by employing numerous types of approaches, i.e., self-
consistency testing, jackknife testing, cross-validation, and
independent testing. *e overall accuracy of the predictor
for self-consistency testing, jackknife testing, cross-valida-
tion, and independent testing by using paradigm metrics
presents 99.76%, 96.07%, 94.20%, and 91.65%, respectively,
for the proposed model. Stupendous experimental results
demonstrated that the proposed predictor “βLact-Pred” has
surpassed results from the existing methods.
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