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Introduction
Stroke is a major cause of death and a major factor behind peo-

ple spending their lives confi ned to bed, as the consequences of 

a stroke include loss of functions such as memory, sensory per-

ception, and motor skills. These symptoms are caused by vari-

ous kinds of ischemia, which drive brain neurons toward death. 

In most cases with brain ischemia, neuronal death is composed 

of necrosis and apoptosis, which remove all damaged neurons 

(Dirnagl et al., 1999; Lipton, 1999). Necrosis occurs fi rst in the 

ischemic core, whereas apoptosis occurs several days later in 

the region surrounding the core, called the penumbra. Both cell 

death modes after ischemia are initiated by the rapid loss of cell-

ular ATP, followed by disturbances in cellular signaling mecha-

nisms, including Ca2+ homeostasis (Lipton, 1999; White et al., 

2000). The apoptosis machinery is accelerated after reper-

fusion, which partially supplies blood fl ow to produce the ATP 

required for the execution of apoptosis (Ferri and Kroemer, 

2001; Danial and Korsmeyer, 2004; Ueda and Fujita, 2004). 

Many studies have revealed that several compounds that inhibit 

apoptosis in cells have protective roles against ischemic damage 

in vivo, although their potencies are limited (Cheng et al., 1998; 

Brines et al., 2000; Gilgun-Sherki et al., 2002; Gladstone et al., 

2002). This may be related to the possibility that rapid and ex-

panding necrosis largely contributes to the total loss of brain 

neurons after ischemia. Thus, rapid treatments are currently the 

focus of investigations into cures for brain strokes (The National 

Institute of Neurological Disorders and Stroke rt-PA Stroke 

Study Group, 1995; Gladstone et al., 2002; Borsello et al., 

2003). Compared with the machinery of apoptosis, necrosis is 

a more passive process in which energy failure leads to mito-

chondrial swelling, accompanied by cristae disruption. These 

processes then lead to rupture of the plasma membrane with con-

comitant loss of intracellular proteins and ions. However, little is 

known about how to develop compounds that inhibit necrosis.

We recently demonstrated that cultured cortical neurons 

die by necrosis under low-density (LD) and starvation stress 

without serum or any supplements (Fujita et al., 2001; Fujita 

and Ueda, 2003a,b). Of particular interest are the fi ndings 

that  neuronal death in high-density (HD) cultures is markedly 

inhibited and that addition of conditioned medium (CM) 

from HD cultures prevents necrosis in LD cultures (Fujita and 

Ueda, 2003b). Here, we report the identification of a CM 
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 molecule, prothymosin-α1 (ProTα), that mediates necrosis 

inhibition and note the clinical potential of this protein to 

 prevent brain strokes.

Results
As previously reported (Fujita et al., 2001; Fujita and Ueda,  

2003a,b), rat embryonic cortical neurons in serum-free LD 

(105 cells/cm2) cultures rapidly died by necrosis. As early as 6 h, 

but not at 3 h, after the start of serum-free culture, neurons under 

LD conditions showed many pores on their surfaces by scan-

ning EM analysis (Fig. 1 a). At 12 h, the cell surface membranes 

were largely destroyed and only the nuclei remained. By trans-

mission EM analysis, typical necrotic features, such as mem-

brane destruction, loss of cytoplasmic electron density, and 

swollen mitochondria with a disrupted cristae structure, were 

observed at 6 h (Fujita and Ueda, 2003a,b). Necrotic features 

were also observed by staining with propidium iodide (PI). PI 

staining was substantially observed after 3 h of LD culture and 

showed a time course that was parallel to the decrease in sur-

vival activity (Fig. 1 b). Addition of CM derived from 72-h HD 

(5 × 105 cells/cm2) cultures delayed the cell death in LD cul-

tures in a concentration-dependent manner, with the concentra-

tion dependency also being parallel to the decrease in survival 

activity (Fig. 1 c). When the factor mediating this survival ac-

tivity was purifi ed from prefractionated extracts, 6.3 μg of an 

�20-kD protein was obtained by molecular weight cutoff ultra-

fi ltration, ion-exchange fi ltration, and SDS-PAGE from 20 ml 

of the CM (Fig. 1 d–f; and Table S1, available at http://www.jcb

.org/cgi/content/full/jcb.200608022/DC1). After SDS-PAGE, 

this 20-kD protein was analyzed by matrix-assisted laser 

 desorption/ionization–time of flight (MALDI-TOF) mass 

spectrometry (MS), and a search in the nonredundant National 

Center for Biotechnology Information protein database for 

matching peptide mass fi ngerprints revealed 17 peptides that 

were unique to rat ProTα. Moreover, tandem MS analysis con-

fi rmed that the N terminus of purifi ed ProTα was an acetylated 

serine (129.612 vs. Ser 87.343 m/z; Fig. 1 g), in agreement with 

a previous report (Pineiro et al., 2000).

For biological identifi cation, we performed several ex-

periments using an anti-ProTα IgG, which had already been 

characterized (Figs. S1 and S2, available at http://www.jcb

.org/cgi/content/full/jcb.200608022/DC1). When CM factors 

were applied to anti-ProTα IgG-conjugated beads, the eluates 

obtained from acid-treated beads exhibited a single band that 

corresponded to recombinant ProTα on SDS-PAGE and an 

“acidic blot,” with no substantial signal in the fl ow-through, 

whereas the ProTα signal was observed in the fl ow-through 

from preimmune IgG-conjugated beads, but not in the con-

trol eluates (Fig. 2 a). After pretreatment of the CM with 

anti-ProTα IgG-conjugated beads, but not preimmune IgG-

conjugated beads, �80% of the original CM-induced survival 

activity was lost (Fig. 2 b). Thus, it is evident that a large pro-

portion of the survival activity in the CM can be attributed to 

the action of ProTα.

For quantitative analysis, ProTα was extracted from the 

CM by acid phenol (Fig. S1 and supplemental text), subjected 

to SDS-PAGE, and directly detected by the highly sensitive 

blue stain method without a blotting procedure, as transfer of 

ProTα to a blotting membrane is unstable because of its acidity. 

ProTα was detected in the CM as early as 1 h after the onset of 

serum-free culture, and the level was maintained for up to 12 h, 

whereas the intracellular ProTα level was reduced (Fig. 2 c). 

The amount of ProTα in the CM of HD culture (72 h) was de-

termined to be 66 pmol/cm2. This release into the CM was ob-

served in serum-free, but not in serum-containing (serum-plus), 

cultures. Because cortical neurons showed no substantial plasma 

membrane damage at 12 h after the start of serum-free HD cul-

ture in terms of PI staining or transmision EM analysis (Fujita 

and Ueda, 2003a,b), the ProTα in the CM is likely to have been 

released from neurons whose membranes have not yet been 

disrupted. ProTα lacking a signal peptide sequence is probably re-

leased in a nonvesicular manner (unpublished data), as seen in the 

case of FGF-1 (LaVallee et al., 1998; Matsunaga and Ueda, 2006). 

Figure 1. Purifi cation and identifi cation of ProT𝛂. (a) Scanning EM (SEM) analysis of neuronal necrosis. Cortical neurons were cultured at LD (105 cell/cm2) 
under the serum-free condition. (b) Parallel time-dependent decreases in survival activity and increases in PI staining (10 μg/ml) after the start of LD and 
 serum-free cultures. Survival activity was evaluated by the WST-8 reduction activity. (c) Parallel CM concentration-dependent increases in survival activity 
and decreases in PI staining. The activities were measured at 12 h after the start of LD and serum-free cultures with various concentrations of CM. Error bars 
indicate mean ± SEM. (d and e) Purifi cation of ProTα. Vivaspin 2, and Vivapure Q mini were used for ultrafi ltration (d) and ion-exchange spin column 
 chromatography (e), respectively. The samples indicated by asterisks in panels d and e were used for further separation in panels e and f, respectively. 
(f) SDS-PAGE analysis of the fi nal purifi ed material. (g) Predicted amino acid sequence.
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When anti-ProTα IgG was simply added to HD cultures, a 

 concentration-dependent decrease in the survival activity was 

observed, despite no extra incubation for immunoabsorption 

(Fig. 2 d). This fi nding provides strong evidence that ProTα 

released under serum-free stress plays a substantial neuro-

protective role.

ProTα purifi ed to homogeneity exhibited a concentration 

dependency equivalent to that of the recombinant protein and 

had a maximum survival activity in LD cultures that was equal 

to that in HD cultures (Fig. 2 e). Furthermore, addition of ProTα 

mutants that lacked the N-terminal region (∆1–29), including 

thymosin-α1 (Pineiro et al., 2000), or the C-terminal region 

(∆102–112), including the nuclear localization signal TKKQKK, 

retained the original activity of ProTα. As the culture plates 

were precoated with ProTα in the aforementioned experiments, 

the site of ProTα action seems to be through unidentifi ed cell 

surface membrane targets, but not through thymosin-α1 re-

ceptors or nuclear binding sites. In this experiment, the sur-

vival activities of ProTα were equivalent when the same amount 

of protein (25 pmol/cm2) was used to precoat culture plates 

or added directly to cultures (initial medium concentration: 

80 nM; Fig. 2 f).

Recombinant ProTα reversed the rapid decrease in sur-

vival activity in cortical neurons caused by the serum-free or 

permanent ischemia model (Fig. 3 a). The addition of ProTα 

abolished all the typical necrotic features, such as disrupted 

plasma membranes and swollen mitochondria, but no damage 

to the nucleus, at 6 h in the transmission EM analysis, and in-

stead caused apoptosis, as observed by nuclear fragmentation, 

at 12 h (Fig. 3 b). A similar cell death mode switch from necrosis 

to apoptosis was observed by pretreatment with CM factors 

(20%) derived from HD cultures, whereas treatment with 1 μg/ml 

anti-ProTα IgG inhibited the cell death mode switch (Fig. 3 b). 

When the cell death mode was evaluated by double staining 

with necrosis (PI) and apoptosis (annexin V, caspase-3, and 

 TUNEL) markers, 69, 86, and 92% of neurons, respectively, died 

by necrosis under serum-free stress, whereas only 15, 22, and 

5% of neurons, respectively, died by apoptosis (Fig. 3 c). Addi-

tion of ProTα or CM totally switched the cell death mode from 

necrosis to apoptosis, and the CM-induced changes were abol-

ished by further addition of anti-ProTα IgG. These fi ndings 

suggest that the cell death mode switch induced by CM factors 

is largely attributable to the action of ProTα. A pharmacological 

study using various inhibitors revealed that the survival activity 

of recombinant ProTα was mediated through activation of PLC 

and PKC (Fig. 3 d), consistent with a previous report regarding 

CM factors (Fujita and Ueda, 2003b). In the present study, we 

used 1 μM U73122, a PLC inhibitor, and GF109203X, a pan-

type PKC inhibitor. These findings were supported by a bio-

chemical study, in which addition of ProTα significantly 

increased the PKC activity and the effect was reversed by 

U73122 (Fig. 3 e). This survival activity at 12 h was inhibited 

by Go6976, a PKCα/β inhibitor, but not by HBDDE, a PKCα/γ 

inhibitor, or Rottlerin, a PKCα/δ/θ inhibitor (Fig. 3 d). There-

fore, the PKCβ isoform is likely to be involved.

Significant ProTα-induced survival activity was ob-

served after 12 h of serum-free culture, but not at 24 h (Fig. 4 a). 

However, more potent and long-lasting survival activity was ob-

served in the low-oxygen and low-glucose (LOG) ischemia and 

reperfusion model. It should be noted that no change in the sur-

vival activity was observed between 24 and 48 h in the latter 

condition. The incidence of apoptosis in ProTα-treated samples 

was markedly lower in the latter reperfusion model (38.4 ± 

6.16%; n = 4) than in the serum-free model (86.0 ± 8.25%; 

n = 6), suggesting that this difference could be attributed to the 

action of antiapoptotic serum factors. This view was clearly 

confi rmed when antiapoptotic growth factors and ProTα were 

added to the serum-free culture (Fig. 4 b). At 48 h after the start 

of serum-free culture, the survival activity was as low as 5%, 

even in the presence of ProTα alone. However, further addition 

of NGF, brain-derived neurotrophic factor (BDNF), basic FGF, 

or interleukin-6 rescued the survival activity to >80% of the 

control level, whereas these factors alone had no effects on the 

survival. There was no mitochondrial cytochrome c (cyto c) 

Figure 2. ProT𝛂 is a major CM factor. (a) Immunoblot (“acidic blot”) iden-
tifi cation of ProTα in the CM. (b) Functional absorption of the survival ac-
tivity of CM factors by anti-rat ProTα IgG (α-ProTα IgG)–conjugated or 
preimmune IgG–conjugated beads. CM (20%) was added to cortical neu-
rons at the start of LD (105 cells/cm2) culture, and the survival activity was 
evaluated after 12 h. Next, α-ProTα IgG (1 μg/ml)–conjugated or pre-
immune IgG–conjugated beads were incubated with the CM at 4°C for 
8–12 h. *, P < 0.05 versus preimmune IgG–treated fl ow-through. (c) Time 
course of ProTα secretion in serum-free HD culture. In total, 2.75 × 107 cells 
were used for each sample. The protein (ProTα) was purifi ed by acid-phenol 
extraction and detected by blue staining. The protein was identifi ed as 
ProTα using MALDI-TOF MS. (d) Inhibition of survival activity in HD (5 × 105 
cells/cm2) cultures after addition of α-ProTα IgG. *, P < 0.05 versus 
0 μg/ml ProTα treatment. (e) Comparison of the survival activities of purifi ed 
ProTα, recombinant ProTα, and ProTα deletion mutants after 12 h in serum-
free LD culture. The amounts of ProTα precoated on the culture plates at 
2 h before the LD culture are represented in pmol/cm2. (f) Equivalent ProTα-
induced survival activities after precoating or addition. The amounts of 
ProTα precoated on the culture plates correspond to the initial concentra-
tions indicated for ProTα addition (in nM). The results represent the mean ± 
SEM from six independent experiments.
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 release, which induces apoptosis through the formation of the 

apoptosome with Apaf- 1 and caspase-9, whereas addition of 

ProTα caused cyto c release (Fig. 4 c). It should be noted that 

ProTα-induced cyto c release was abolished by further addition 

of BDNF or BIP-V5, which blocks the translocation of Bax to 

mitochondria (Yoshida et al., 2004), but not by zVAD-fmk, a pan-

type caspase inhibitor.

Fig. 4 d demonstrates the time-dependent changes in cell 

death status when the culture was performed in the presence 

of ProTα and BDNF, zVAD-fmk, or BIP-V5. The addition 

of ProTα alone inhibited necrosis throughout 48 h and increased 

the number of living cells (or necrosis, apoptosis double negative) 

more prominently at the early stage (12 h), but not at the later 

stage (24 or 48 h). On the contrary, the number of cells showing 

apoptosis time-dependently increased in the presence of ProTα. 

Further addition of BDNF or BIP-V5 showed complete survival 

by inhibiting apoptosis throughout 48 h. However, zVAD-fmk 

caused a marked cell death by necrosis at the later stage, though 

it showed complete survival at the early stage.

It is generally accepted that necrosis is caused by energy 

failure because of the loss of cellular ATP (Eguchi et al., 1997; 

Fujita and Ueda, 2003a,b; Zong and Thompson, 2006). The cel-

lular ATP levels of cortical neurons rapidly decreased immedi-

ately after the start of serum-free culture (Fig. 5 a). This decrease 

was markedly inhibited by the addition of ProTα or CM, and 

further addition of anti-ProTα IgG abolished the CM effects. 

As previously reported (Fujita and Ueda, 2003b), this rapid 

decrease and its reversal by ProTα seem to be parallel to the 

ac tivity of glucose transport, as [3H]-2-DG uptake was markedly 

decreased by serum-free treatment and reversed by ProTα 

(Fig. 5 b). Similar changes were also observed in the ischemia-

reperfusion model of culture (Fig. 5 c). Addition of ProTα reversed 

the rapid decrease in the cellular ATP levels of cortical neurons 

after LOG ischemic stress and reperfusion with serum-containing 

medium (Ueda and Fujita, 2004). We previously revealed that 

the membrane translocation of the glucose transporters GLUT1 

and -4 is largely inhibited in serum-free cultures of cortical 

 neurons, which leads to necrotic cell death (Fujita and Ueda, 

2003a). In the present study, inhibition of GLUT1 and -4 

 membrane translocation was also observed under LOG stress 

by immunocytochemistry (Fig. 5 d). Biochemical evidence was 

also found when the cell surface proteins were biotinylated 

 before Western blot analysis (Fig. 5 e).

An immunocytochemical study revealed that ProTα acti-

vated PKCα, -βI, and -βII at 10 min (Fig. 5, f and g). A knock-

down study using antisense oligodeoxynucleotides (AS-ODNs) 

for these kinases demonstrated that only PKCβII, not PKCα 

or -βI, plays roles in the ProTα-induced GLUT1/4 translocation 

(Fig. 5, h and i). Further characterization revealed that ProTα 

induced GLUT1/4 translocation by activation of PLC through 

pertussis toxin–sensitive Gαi/o, but not Gαq/11, suggesting that 

a putative Gαi/o-coupled ProTα receptor may be involved in 

Figure 3. ProT𝛂 induced cell death mode switch. (a) Time course 
of the survival activity of cortical neurons throughout serum-free 
(SFree) and LD cultures. The survival activity of ProTα was evalu-
ated by the WST-8 reduction activity as the percentage relative to 
the 0 time activity immediately after the start of the cultures using 
96-well culture plates precoated with 0 or 25 pmol/cm2 ProTα at 
2 h before the culture. (b) Transmission EM analysis at 12 h. 
Necrosis is characterized by membrane destruction and loss of 
electron density in the cytosol. Apoptotic features of nuclear frag-
mentation, but no substantial necrotic features, are observed in 
neurons treated with 25 pmol/cm2 ProTα or 20% CM. The CM, 
which had been preabsorbed with α-ProTα IgG, shows no apop-
tosis induction. (c) Double staining of LD cultures with PI (red) and 
annexin V (green), PI (red) and activated caspase-3 IgG (green), 
and PI (red) and TUNEL (green) after incubation for 3, 12, and 
24 h, respectively. (d) Effects of various inhibitors of PKC and 
PLC on ProTα-induced survival activity. All the inhibitors were 
used at 1 μM. The survival activity is inhibited by U73122, a PLC 
inhibitor; GF109203X, a pan-type PKC inhibitor; and Go6976, 
a PKCα/β inhibitor, but not by U73343, an inactive isomer of 
U73122; HBDDE, a PKCα/γ inhibitor; or Rottlerin, a PKCα/δ/θ 
inhibitor. None of the inhibitors had any signifi cant effects alone 
(not depicted). (e) ProTα induced PKC activation through PLC. The 
results represent the mean ± SEM from six independent experi-
ments (a, d, and e). *, P < 0.05 versus vehicle; #, P < 0.05 versus 
ProTα alone.
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this action. Furthermore, the PKCβII AS- ODN treatment re-

versed the ProTα-induced necrotic PI staining (Fig. 5 j).

The molecular machineries for apoptosis are relatively 

better characterized than those for necrosis. In terms of the acti-

vation of various caspases, caspase-3 is believed to be the fi nal 

execution molecule for apoptotic cell death linked to DNA 

breakdown and nuclear fragmentation (Ferri and Kroemer, 

2001; Danial and Korsmeyer, 2004). ProTα activated caspase-3 

in the serum-free or permanent ischemia model (Fig. 6 a). 

 Similar activation was also observed for caspase-9, but not for 

caspase-8 or -12. These fi ndings suggest that ProTα causes apop-

tosis through a caspase-9–mediated mitochondrial pathway. 

This view was clearly confi rmed by the fi ndings that ProTα 

increased the expression of proapoptotic Bax and Bim, but 

slightly decreased the expression of antiapoptotic Bcl-2 and -xL, 

which regulate mitochondrial apoptotic signaling (Fig. 6 b). On 

the other hand, the PKCβII AS-ODN also reversed the ProTα-

induced proapoptotic Bax expression in the LOG stress model 

(Fig. 6 c). However, it should be noted that the Bax expression 

was also abolished by treatment with the AS-ODN for PKCβ1, 

but not that for PKCα.

To examine the role of Bax and Bim in the ProTα-induced 

apoptosis, we performed the experiments using siRNA in the 

LOG ischemic stress and reperfusion model. As shown in Fig. 6 d, 

the ProTα treatment markedly up-regulated the Bax expres-

sion in all cells. The pretreatment of Bax siRNA 24 h before 

ProTα treatment caused a complete loss of Bax in 10–18% of 

total cells, and these Bax-negative cells did not show any apop-

totic active caspase-3 or necrotic PI staining. This fi nding was 

also confi rmed by the quantifi cation of incidence of apoptotic, 

necrotic, and living cells in experiments without and with Bax 

siRNA treatment. As mentioned in Fig. 3 (b and c), the ProTα treat-

ment alone abolished the necrosis, whereas it increased the survival 

with some apoptosis (Fig. 6 e, left). A similar cell death ratio was 

observed in Bax-positive cells, which are unlikely to be transfected 

with siRNA. However, Bax-negative cells were all alive, or apop-

tosis and necrosis negative. However, the down-regulation of Bim 

showed less signifi cant changes in the number of cells showing 

apoptosis (Fig. S4, available at http://www.jcb.org/cgi/content/full/

jcb.200608022/DC1). These results strongly suggest that ProTα 

causes apoptosis through an up-regulation of Bax.

Discussion
ProTα is a highly acidic nuclear protein of the α-thymosin 

 family and is widely distributed throughout the body (Haritos 

et al., 1985; Clinton et al., 1991). It is generally thought to be an 

oncoprotein that is correlated with cell proliferation by seques-

tering anticoactivator, a repressor of estrogen receptor activity, 

in various cells (Martini et al., 2000; Bianco and Montano, 2002). 

On the other hand, ProTα has also been reported to act as an 

 extracellular signaling molecule, as observed in the activation 

of macrophages, natural killer cells, and lymphokine-activated 

killer cells, and in the production of interleukin-2 and TNF-α 

(Pineiro et al., 2000). Here, we isolated ProTα from CM of pri-

mary cultures of cortical neurons as a molecule providing pro-

tection against neuronal necrosis (Fujita and Ueda, 2003b). By 

using a specifi c antibody, ProTα was proven to be the major 

CM factor involved in density-dependent survival under condi-

tions of serum-starvation stress.

Figure 4. ProT𝛂 induced cell death mode switch and improvement of survival by neurotrophic factors. (a) Comparison of 80 nM ProTα-induced survival 
activity under serum-free and LOG stress conditions. The concentration (80 nM) corresponds to the initial concentration when ProTα was used at 25 pmol/cm2 
for precoating culture plates (Fig. 2 f). (b) Complete neuroprotection after the addition of various neurotrophic factors. Each neurotrophic factor (100 ng/ml) 
was added with 25 pmol/cm2 ProTα to serum-free cultures. (c) 25 pmol/cm2 ProTα induced cyto c release and its blockade by BDNF or BIP-V5. 
Double staining with the mitochondrial marker CMXRos and anti–cyto c IgG was performed as described previously (Fujita and Ueda, 2003a). ProTα and 
100 ng/ml BDNF, 100 μM zVAD-fmk, or 100 μM BIP-V5 were added at the beginning of serum-free culture. (d) Effects of various apoptosis inhibitors on 
the cell death modes of 25 pmol/cm2 ProTα-treated cells. Results represent the time-dependent changes in cell death modes after the start of serum-free culture. 
TUNEL- and PI-positive cells were evaluated as apoptotic and necrotic cells, respectively, whereas TUNEL- and PI-negative ones were as living cells. Data 
are expressed as the mean ± SEM from three independent experiments. *, P < 0.05 versus vehicle treatment; #, P < 0.05 versus ProTα alone.
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The identity of the target of ProTα in respect to cell death 

regulation is a very interesting issue. ProTα was reported to 

 inhibit apoptosome formation in NIH3T3 cells (Jiang et al., 

2003). This observation is in good contrast with the present 

fi nding that addition of ProTα to neuronal cultures caused 

apoptosis, suggesting that ProTα has opposite functions inside 

and outside of the cell. Furthermore, as a ProTα deletion 

mutant lacking the nuclear localization signal retained the 

full survival activity, it is unlikely to be the aforementioned 

 genomic action. The most probable candidate would be a cell 

surface receptor. Indeed, the presence of a cell surface ProTα 

receptor has been reported in lymphoid cells (Pineiro et al., 

2001; Salgado et al., 2005), and we confirmed this in cor-

tical neurons by using ProTα–Alexa 488 (Fig. S5, available at 

http://www.jcb.org/cgi/content/full/jcb.200608022/DC1). Further 

strong evidence to support the presence of a cell surface ProTα 

receptor is the fact that ProTα-induced membrane transport of 

GLUT1/4 was mediated through a Gαi/o-coupled receptor, 

which ac tivated PLC and PKCβII. Because ProTα-induced 

translocation of PKCβII was observed within 10 min, it is 

 evident that this signaling can be attributed to a direct action 

through a membrane receptor.

The distinctive advantage of ProTα-induced neuroprotec-

tion can be attributed to the inhibition of necrosis. Necrosis is 

characterized by bioenergetics failure and rapid loss of plasma 

membrane integrity, which may result from decreased glucose 

transport (Fujita and Ueda, 2003a), as well as enzymatic de-

struction of cofactors required for ATP production, increased 

Figure 5. ProT𝛂 induced inhibition of necrosis through PKC𝛃II. (a and b) ProTα induced reversal of the decreases in the cellular ATP level (a) and [3H]2-DG 
uptake (b) after serum-free stress. [3H]2-DG uptake was performed for 2 h immediately after the start of the culture. (c) Time course of the ProTα-induced re-
versal of the decrease in the cellular ATP level after LOG stress. 80 nM ProTα was added to the culture from the time of LOG stress to the end of experiments. 
(d and e) Decreased translocation of GLUT1 and -4 to the plasma membrane at 2 h after LOG stress and its reversal by ProTα. All the proteins on the outer 
surface of cortical neurons (LD cultures) were biotinylated and subjected to immunoprecipitation by streptavidin (e). (f) ProTα induced PKC activation in 
terms of phosphorylation of PKCα (p-PKCα) and translocation of PKCβI and -βII at 10 min after ProTα treatment in serum-free culture. No substantial ProTα-
induced activation of other PKC isoforms was observed in experiments using a rabbit anti-PKCγ antibody (1:100), goat anti-PKCε antibody (1:100), rabbit 
anti–phosphorylated PKCδ antibody (1:100), or rabbit anti–phosphorylated PKCζ antibody (1:100; not depicted). (g) Immunoblot analysis of the protein 
expression of phosphorylated or total PKCα at 2 h after LOG stress. (h) Signal transduction for ProTα-induced reversal of the LOG stress–induced de-
crease in GLUT1/4 membrane translocation (n = 3). The method for quantifying the GLUT1/4 membrane localization is described in Fig. S2 (available at 
http://www.jcb.org/cgi/content/full/jcb.200608022/DC1). Cells were treated with 1 μM U73122, 1 μM U73343, or 100 ng/ml pertussis toxin (PTX) 
from 30 min before the LOG treatment. Treatment of LD cultures with AS-ODNs for PKCα, PKCβI, PKCβII, or Gαq/11 was started 3 d before the LOG treatment. 
Selective down-regulation of Gαq/11 by its AS-ODN was confi rmed by Western blot analysis (Fig. S3). (i) Selective down-regulation of PKCβII by its 
AS-ODN. The specifi cities of the other AS-ODNs are shown in Fig. S3. (j) ProTα induced inhibition of necrotic cell death through PKCβII activation. PI was 
added to the cells at 12 h after reperfusion and incubated for 30 min. 80 nM ProTα was added to the culture from the time of LOG stress. *, P < 0.05 versus 
vehicle; #, P < 0.05 versus ProTα. Error bars indicate mean ± SEM.
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mitochondrial reactive oxygen species production, and channel-

mediated calcium uptake (Nordberg and Arner, 2001; Xiong 

et al., 2004; Zong and Thompson, 2006). In our serum-free or 

LOG stress model, most cortical neurons died by necrosis. We 

found that rapid cell death or necrosis was accompanied by de-

creased glucose uptake and cellular ATP levels. The glucose 

transport mechanism is one of the most important sets of mole-

cules for maintaining cell survival. Various species of GLUT 

have been identifi ed in different cell types (McEwen and Reagan, 

2004). Because GLUT3, which is most abundant in neurons, 

is constitutively localized in membranes, its function is un-

likely to be regulated by environmental factors. In contrast, it 

was reported that some survival factors induce translocation of 

GLUT1 and -4 into plasma membranes through activation of 

protein kinases, including AKT and PKCs (Perrini et al., 2004; 

Ishiki and Klip, 2005; Welsh et al., 2005). This is consistent 

with our previous study showing that serum-free stress reduces 

GLUT1/4 translocation (Fujita and Ueda, 2003a). Here, we suc-

cessfully demonstrated that ProTα prevented the stress-induced 

reduction of GLUT1/4 transport through PKCβII activation.

The second important issue is that ProTα switches the cell 

death mode by causing apoptosis. Because serum-free stress 

alone did not cause mitochondrial cyto c release, this stress by 

itself is unlikely to induce the machinery for apoptosis as well as 

that for necrosis. This view is supported by our previous report 

that addition of pyruvate to serum-free cultures to maintain the cel-

lular ATP levels prevented necrosis but did not induce apoptosis 

(Fujita and Ueda, 2003a). Although the possibility still remains 

that pyruvate has an unidentified mechanism to remove the 

 trigger for apoptosis, it is very likely that apoptosis does not 

 always occur after the prevention of necrosis. This finding 

strongly supports the view that ProTα induces apoptosis. In the 

present study, we have demonstrated that ProTα up-regulates 

proapoptotic Bax and Bim, and down-regulates antiapoptotic 

Bcl-2 and -xL. Because the treatment with Bax siRNA blocked 

the ProTα-induced apoptosis, and the treatment with BIP-V5 

blocked the ProTα-induced cyto c release and apoptosis, it is 

evident that the up-regulation of Bax plays an important role in 

ProTα-induced apoptosis. On the other hand, the caspase inhibitor 

zVAD-fmk blocked the ProTα-induced apoptosis and caused 

necrosis. This may be explained by the view that the up-regulation 

of Bax by ProTα causes a cyto c depletion from mitochondria, 

followed by the necrosis induction through a damage of mito-

chondrial ATP production (Chipuk et al., 2006; Malhi and 

Gores, 2006), as apoptosis is inhibited by zVAD-fmk.

ProTα-induced up-regulation of Bax was found to be me-

diated by PKCβI and -βII activation, consistent with previous 

reports that PKCβ activates the I-κB kinase complex, IKK 

(Mattson and Camandola, 2001; Herrmann et al., 2005), leading 

to NF-κB activation followed by Bax up-regulation. Thus, 

PKCβII is likely to be an important switch molecule to deter-

mine the cell death mode. The lack of contribution of PKCβ1 to 

the ProTα-induced necrosis inhibition may be related to the 

 defi ciency of the membrane-anchoring C-terminal peptide of 

PKCβII (Ono et al., 1986).

By use of acid-phenol extraction and blue staining, the 

amount of ProTα in the CM was determined to be 66 pmol/cm2. 

Figure 6. ProT𝛂 induced stimulation of apoptosis through PKC𝛃I and -𝛃II. 
(a and b) ProTα induced activation of caspase family proteins (a) and up-
regulation of apoptosis, and down-regulation of anti-apoptotic Bcl-2 family 
proteins (b), in serum-free stress cultures. (c) PKCβI and -βII AS-ODNs block 
the ProTα-induced up-regulation of Bax at 12 h after LOG stress. (d) The 
blockade of ProTα-induced apoptosis by Bax siRNA treatment at 24 h 
 after the LOG stress of cultured cortical neurons. Apoptosis and necrosis 
were evaluated by the immunostaining of active caspase-3 or by PI stain-
ing, respectively. The cells indicated by arrows represent Bax-negative 
ones. (e) Quantifi cation of Bax siRNA–induced blockade of apoptosis in 
the presence of ProTα. Double caspase-3– and PI-negative cells were 
counted as living cells. The Bax-positive and -negative cells represent the 
cells without and with Bax down-regulation by the siRNA treatment, 
 respectively. Results are expressed as the mean ± SEM from three independent 
experiments. *, P < 0.05 versus vehicle treatment; #, P < 0.05 versus 
Bax-positive group.
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The data of Fig. 2 c revealed that CM amounts are �50% of the total 

(CM + cells) at 6–12 h after the start of serum-free HD culture. 

As this value in CM (�30 pmol/cm2 of ProTα) corresponds 

to the concentration of ProTα (25 pmol/cm2) required to make 

the conversion of necrosis to apoptosis, this mechanism seems 

to be physiologically relevant.

The possible in vivo roles of ProTα in brain stroke repre-

sent the most important issue to be discussed. ProTα inhibits 

the rapid cell death of neurons after serum-free ischemic stress 

by inhibiting necrosis. This property seems to be benefi cial, as 

the representative growth factors used in the present study had 

no effects on the necrosis, although they have potent antiapop-

tosis activities. Furthermore, ProTα is a unique cell death regu-

latory molecule in that it converts the intractable cell death 

necrosis into the controllable apoptosis. Because this apoptosis 

would be inhibited by growth factors secreted upon ischemic 

stress, it is expected that ProTα may have neuroprotective roles 

in brain stroke. As mentioned in Fig. 4 (b–d), the combined use of 

ProTα with growth factors, but not caspase inhibitors, may have 

a potential clinical availability. In conclusion, we have identifi ed 

the survival factor secreted from cortical cultures as the nuclear 

protein ProTα. We have also demonstrated that this protein plays 

an in vivo neuroprotective role in brain ischemic events. Moreover, 

it has the potential for clinical use against brain strokes.

Materials and methods
Materials
Cell culture medium and FCS were purchased from Invitrogen. The anti-
bodies used in the present study were GULT1 and -4; BDNF; phosphory-
lated PKCα, -βI, -βII, -γ, -ε, and -δ (all from Santa Cruz Biotechnology, Inc.); 
activated caspase-3 and phosphorylated PKCζ (Cell Signaling); and cyto c 
(BD Biosciences). The reagents for staining were PI (Sigma-Aldrich), TUNEL, 
Hoechst 33342 (Invitrogen), and Gelcode blue stain reagent (Pierce 
Chemical Co.).

Purifi cation of ProT𝛂
After several trials, we optimized our procedures for purifying ProTα. Purifi -
cation was started with 20 ml CM, which had been collected at 72 h after 
the start of HD culture, as previously reported (Fujita and Ueda, 2003b). 
The CM was fi rst subjected to ultrafi ltration (Vivaspin 2; Sartorius KK), and 
the active materials observed in the >5-kD fraction were applied to an ion-
exchange membrane spin column (Vivapure Q Mini; Sartorius KK), which 
had been equilibrated with 20 mM sodium acetate, pH 5.2. The sample 
was eluted with different concentrations of NaCl (0.2–1 M), and the active 
fraction was fi nally separated by SDS-PAGE and stained with Gelcode 
blue stain. The appropriate band was excised from the gel, washed with 
50 mM NH4HCO3 and 50% acetonitrile, and incubated with 100% aceto-
nitrile for 10 min. The gel segment was rehydrated in 50 mM NH4HCO3 
and then dehydrated in 100% acetonitrile. The resulting gel plug was incu-
bated overnight with 5 ng/μl trypsin in 25 mM NH4HCO3. The digested 
peptide mixture was diluted with the matrix 4-hydroxy-α-cyanocinnamic 
acid (HCCA) in 1:1 acetonitrile/0.1% TFA (vol/vol), deposited on a target, 
and dried to allow MALDI-TOF MS analysis (Bruker Daltonik).

Preparation and detection of recombinant proteins
Purifi cation of recombinant rat ProTα was performed as described previ-
ously (Evstafi eva et al., 1995). This procedure using acid phenol was 
also available for simple purifi cation of endogenous ProTα for SDS-
PAGE  analysis. In the recombinant protein preparation, the genes for ProTα 
and its deletion mutants (∆1–29 and ∆102–112) were fi rst amplifi ed 
from  cDNAs derived from rat embryonic brain using specifi c primers 
(rat and mouse 5′-primer, 5′-A A C A T A T G T C A G A C G C G G C A G T G G A -3′; 
rat 3′-primer, 5′-A A G G A T C C A G T G G A G G G T G A A T A G G T C A C -3′; rat 
∆1–29 5′-primer, 5′-A A G A A T T C G G A A G A G A C G C A C C T G C C -3′; rat 3′-
primer, 5′-G A G T C G A C C T A G T C A T C C T C A T C A G T C T T C -3′; rat ∆102–112 
5′-primer, 5′-A A G A A T T C A T G T C A G A C G C G G C A G T G -3′; rat 3′-primer, 

5′-G A G T C G A C C T A C T C A A C A T C A T C A T C C T C A T C -3′). The PCR products 
were cloned into pGEM-T Easy and subcloned into pET16b. BL21 (DE3) 
cells were transformed with pET16b-ProTα. Recombinant rat ProTα and its 
derivatives were induced by 0.1 mM IPTG, purifi ed (Biophoresis; ATTO), 
and dialyzed against PBS for later use. Recombinant and endogenous 
ProTα isolated by the acid-phenol extraction procedure were detected as 
described previously (Evstafi eva et al., 1995).

Primary culture
Primary culture of the cerebral cortex from 17 d of embryonic rats was per-
formed according to the previously reported protocol (Fujita et al., 2001; 
Fujita and Ueda, 2003b). They were seeded onto 96-well culture dishes, 
8-well Lab-Tek chambers (Nunc), and 3.5- and 9.0-cm culture dishes that 
had been all coated with poly-DL-ornithine (Sigma-Aldrich) and cultured in 
DME/F-12 medium at 37°C in 5%-CO2 atmosphere. For ProTα coating, re-
combinant ProTα was added to culture dishes and incubated for 2 h at 
25°C. The dishes were washed twice with PBS for immediate use.

In vitro ischemia-reperfusion stress model
Primary cultures of 17-d-old embryonic rat cerebral cortex were prepared 
as described previously (Fujita and Ueda, 2003b). After being cultured for 
3 d, cortical neurons were washed twice with glucose-free balanced salt 
solution (BSS; 116 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 0.8 mM 
MgSO4, and 1 mM NaH2PO4, pH 7.3), which had been deaerated using 
a vacuum. After replacement of the BSS with fresh BSS containing 1 mM 
glucose, neurons were exposed to hypoxia (<0.4% O2, 5% CO2, and 
95% N2) for 2 h at 37°C in a commercially available culture incubator 
(Nuair). After the ischemic stress, the culture medium was exchanged for 
fresh DME/F-15 medium (1:1) containing 5% horse serum and 5% FBS, 
and the neurons were further incubated for the indicated periods in a 5% 
CO2 atmosphere (reperfusion).

Characterization of the modes of cell death
Survival activity was determined by the WST-8 reduction assay throughout 
the experiments. The modes of cell death were determined by various 
means, including PI staining, activated caspase-3, GLUT1, GLUT4, TUNEL, 
ATP measurement, and scanning and transmission EM analyses, as previ-
ously reported (Fujita et al., 2001; Fujita and Ueda, 2003a,b). In the 
GLUT translocation analyses, the cortical neurons were biotinylated (Pierce 
Chemical Co.), lysed, immunoprecipitated with streptavidin-conjugated 
beads, and subjected to Western blot analysis. Characterization of the 
modes of cell death and the immunocytochemistry analysis are described 
in the supplemental text.

Immunocytochemistry and immunoblot analysis for PKCs
Cortical cells on 8-well Lab-Tek chamber slides were fi xed with 4% PFA in 
PBS for 30 min at 25°C, followed by permeabilization with 50 and 100% 
methanol for 5 min each at 25°C. The cells were then rinsed twice with PBS 
and preincubated in blocking buffer (2% BSA with 0.1% Tween 20 in PBS) 
for 1 h at 25°C. Next, the cells were incubated with each primary anti-
bodies in blocking buffer overnight at 4°C, rinsed with PBS, and incubated 
with FITC-conjugated anti-rabbit IgG (1:200; Santa Cruz Biotechnology, 
Inc.) or FITC-conjugated anti-goat IgG (1:200; Rockland) for 2 h at 25°C. 
The immunolabeled cells were mounted with Permafl uor (Thermo Scientifi c). 
For imaging cells, a laser-scanning confocal microscope imaging system 
consisting of a microscope (Axiovert 200 M; Carl Zeiss MicroImaging, 
Inc.) and a scan module (LSM 510 META and LSM 5 PASCAL; Carl Zeiss 
MicroImaging, Inc.) with image browser software (Carl Zeiss MicroImaging, 
Inc.) were used at ambient temperature, equipped with 40×/1.3 and 
63×/1.4 oil-immersion lens and nonimaging photodetection device 
 (photomultiplier tube; Carl Zeiss MicroImaging, Inc.). The imaging medium 
used was immersion oil (Immersol 518; Carl Zeiss MicroImaging, Inc.). 
A dynamic range adjustment was used to optimize the signal for the fl uoro-
phores, and images were collected in multitrack mode (Carl Zeiss Micro-
Imaging, Inc.). Any brightness and contrast adjustments were performed in 
Photoshop (Adobe).

Western blot analysis
SDS-PAGE using 10–15% polyacrylamide gels and immunoblot analyses 
were performed as described previously (Fujita and Ueda, 2003a). The 
primary antibodies were an anti-phosphorylated PKCα antibody, anti-
PKCα antibody, rabbit anti-PKCβI antibody, and rabbit anti-PKCβII  antibody 
(1:1,000; Santa Cruz Biotechnology, Inc.). Visualization of immunoreactive 
bands was performed using an enhanced chemiluminescent substrate 
(Super Signaling Substrate; Pierce Chemical Co.) for HRP detection.
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AS-ODN treatments
To determine the activation of various PKC isoforms and G protein in the 
mechanism of GLUT translocation, cultures were grown in the presence of 
AS-ODNs for PKCα, PKCβI, PKCβII, or Gαq/11. The AS-ODNs were diluted 
in water to a concentration of 20 μM and added to the cultures at a fi nal 
volume of 1/50 of the culture medium every 12 h after seeding for 3 d. 
In parallel, some cultures were treated with the corresponding missense 
ODNs containing the same bases as the AS-ODNs but in a random order. 
None of the ODNs resembled any other sequences in the GenBank data-
base. Using Western blot and immunocytochemical analyses, we demon-
strated that treatment of cortical neurons in culture with these AS-ODNs, 
but not the missense ODNs, reduced the levels of the target proteins. The 
probes had the following sequences: PKCα AS-ODN, 5′-C G G G T A A A C G T-
C A G C -3′ (Fleming et al., 1998); PKCβI AS-ODN, 5′-G T T T T A A G C A T T T C G -3′; 
PKCβII AS-ODN, 5′-G T T G G A G G T G T C T C T -3′; PKCβII missense ODN, 
5′-A C G A G C C C G A A C C A C C G T -3′ (Simpson et al., 1998); and Gαq/11 
AS-ODN, 5′-A T G G A C T C C A G A G T -3′ (Mizota et al., 2005). All the ODNs 
were purchased from QIAGEN.

Bax and Bim gene silencing by siRNA
Bax and Bim siRNA constructs were purchased from Ambion (siRNA ID 
49750 and 47149). Gene silencing was attained by transfection of siRNA 
into cells using Lipofectamine 2000 transfection reagent (Invitrogen) ac-
cording to the manufacturer’s instructions. The gene silencing was verifi ed 
by detecting protein with immunocytochemical analysis 48 h after the 
transfection of primary cortical neurons with siRNA. In brief, cells (1 × 105 
cells/cm2) grown in an 8-well Lab-Tek chamber slide were transiently trans-
fected with 50 nM siRNA using 20 μl/ml Lipofectamine 2000 in a total 
transfection volume of 0.2 ml DME (Invitrogen). After incubation at 37°C in 
5% CO2 for 6 h, the medium was replaced by fresh serum–containing 
 medium. 2 d after the incubation, treated neurons were used for the charac-
terization of cell death modes, as described.

Statistical analysis
Multiple comparisons of analysis of variance followed by t test were used 
for statistical analysis of the data. The criterion of signifi cance was set at 
P < 0.05. All the results are expressed as the mean ± SEM.

Online supplemental material
The supplemental text contains additional methodological details on char-
acterization of anti-ProTα IgG used, as well as protocols used for cell sur-
vival activity, intracellular ATP levels, [3H]-2-DG uptake, PKC kinase assay, 
and immunostaining protocol. Table S1 shows a summary of the pro-
cedures for purifying ProTα from CM. Fig. S1 shows a characterization of 
anti-ProTα IgG. Fig. S2 shows an evaluation of membrane localization of 
GLUT1/4 by fl uorescence imaging. Fig. S3 shows specifi c down-regulation 
of Gαq/11 and PKC isoforms by treatment with AS-ODNs. Fig. S4 shows 
immunostaining of ProTα-induced apoptosis under the Bim siRNA–treated 
LOG stress condition. Fig. S5 shows ProTα–Alexa 488 binding to cell 
 membranes. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200608022/DC1.
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