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Abstract: S-nitrosoglutathione (GSNO) has emerged as a potent agent for the treatment of infected
cutaneous wounds. However, fabrication of GSNO-containing nanoparticles has been challenging due
to its high hydrophilicity and degradability. The present study aimed to fabricate nanoparticles using
newly synthesized GSNO-conjugated poly(lactic-co-glycolic acid) (PLGA) (GSNO-PLGA; GPNPs).
Since hydrophilic GSNO was covalently bound to hydrophobic PLGA, loss of GSNO during the
nanoparticle fabrication process was minimized, resulting in sufficient loading efficiency (2.32% of
GSNO, 0.07 µmol/mg of NO). Real-time NO release analysis revealed biphasic NO release by GPNPs,
including initial burst release within 3 min and continuous controlled release for up to 11.27 h, due to
the differential degradation rates of the –SNO groups located at the surface and inside of GPNPs.
Since GPNPs could deliver NO more efficiently than GSNO in response to increased interaction with
bacteria, the former showed enhanced antibacterial effects against methicillin-resistant Staphylococcus
aureus (MRSA) at the same equivalent concentrations of NO. Finally, the facilitating effects of GPNPs
on infected wound healing were demonstrated in MRSA-challenged full-thickness wound mouse
model. Collectively, the results suggested GPNPs as an ideal nanoparticle formulation for the
treatment of MRSA-infected cutaneous wounds.

Keywords: S-nitrosoglutathione (GSNO); poly(lactic-co-glycolic acid) (PLGA); nitric oxide; nitric
oxide-releasing nanoparticles; GSNO-conjugated PLGA; methicillin-resistant Staphylococcus aureus
(MRSA); infected wound healing

1. Introduction

Cutaneous wound infection is an intractable global problem that costs millions of dollars per
year for treatment [1,2]. Moreover, it can cause life-threatening complications, including sepsis, whose
mortality is approximately 30% in the United States [3]. In general, uninfected cutaneous wounds can
heal spontaneously via the three sequential wound healing processes: inflammation, cell proliferation,
and tissue remodeling [4,5]. However, wounds can be frequently contaminated by bacteria that induce
chronic inflammation, resulting in impaired wound healing [6,7]. Therefore, the eradication of infected
bacteria from the wound site is the primary step to facilitate wound healing [8].
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For the treatment of infected wounds, topical antibiotics are widely used due to their potent
effects on decreasing microbial burden at the wound site [9]. However, due to overuse of a wide range
of antibiotics, development of drug-resistant bacteria, including methicillin-resistant Staphylococcus
aureus (MRSA), has emerged as a serious problem; more than two million people are infected and
approximately 700,000 patients die as a result every year [10–12]. Although a few antibiotics, such as
vancomycin, are currently used for the treatment of MRSA infection, emergence of vancomycin-resistant
strains, namely vancomycin-resistant enterococci (VRE) and vancomycin-resistant Staphylococcus aureus
(VRSA) has been reported, [13]. Therefore, the development of novel therapeutics, which are functional
against drug-resistant bacteria without concerns of inducing resistance, is imperative for the treatment
of infected cutaneous wounds [14].

In recent decades, nitric oxide (NO) has gained attention as a novel agent for healing infected
wounds due to its beneficial effects in modulating inflammation and facilitating wound healing
processes, such as cell proliferation and tissue remodeling [15–19]. Besides its wound-healing
promoting effects, NO possesses broad-spectrum antibacterial activity, which could be a desirable
property for the treatment of infected wounds [20]. By forming reactive nitrogen species or by direct
nitrosation, NO can damage bacterial cell membranes, proteins, and DNA, resulting in bacterial
cell death [21,22]. Due to multiple antibacterial mechanisms, NO can exert antibacterial effects on
drug-resistant bacterial strains, including MRSA [23]. In addition, developing resistance against
NO and surviving would require the accumulation of multiple favorable mutations over several
generations, which seems quite remote [24]. Taken together, NO-based formulations seem to be
desirable therapeutics for the treatment of infected cutaneous wounds. Moreover, with advancements
in nanotechnology that have been utilized for enhanced therapeutic effects [25,26], an array of
NO-releasing nanoparticle formulations have been recently developed and evaluated, including
polyethyleneimine-NONOates-doped PLGA nanoparticles, NO-releasing silica nanoparticles, and
NO-releasing metal nanoparticles, all of which have shown enhanced antibacterial and wound
healing activities [20,27–31]. However, these NO-releasing nanoparticle formulations achieved limited
success since most of them consisted of non-biodegradable materials, such as polyethyleneimine
and heavy metals, that can potentially accumulate in the skin tissue [32–34]. To avoid potential
toxicity, the development of NO-releasing nanoparticles consisting of biocompatible materials is
highly desirable.

S-nitrosoglutathione (GSNO) is an endogenously synthesized NO donor that changes to
glutathione (GSH) after releasing NO, the non-toxic and most abundant antioxidant in mammalian
cells [35,36]. Due to its endogeneity, various GSNO formulations, such as hydrogels, films, and
microparticles, have been developed as wound dressings [37–40]. However, until now, the fabrication
of a nanoparticle formulation using GSNO has been challenging owing to the high hydrophilicity of
GSNO, which remains a big hurdle to achieve sufficient loading of NO. Although several GSNO-loaded
nanoparticles have been developed to date [41–44], their in vivo therapeutic efficacy has not yet been
reported, possibly due to insufficient GSNO loading.

In this study, to generate a sufficient amount of GSNO-incorporated nanoparticles, we synthesized
GSNO-conjugated poly(lactic-co-glycolic acid) (PLGA) (GSNO-PLGA), and fabricated nanoparticles
using the novel polymer for the treatment of a MRSA-infected wound. By conjugating a small
hydrophilic GSNO molecule with hydrophobic PLGA, the loss of GSNO during the nanoparticle
fabrication process could be minimized, resulting in increased NO loading. Further, GSNO-PLGA
and GSNO-PLGA nanoparticles (GPNPs) were characterized in a series of in vitro experiments. After
characterization of the physicochemical properties of GPNPs, the enhanced antibacterial effects towards
MRSA were examined. Moreover, for exploring GSNO nanoparticle formulation as a drug for infected
wound healing, the in vivo wound healing effect of GPNPs was evaluated for the first time using a
MRSA-challenged full-thickness wound mouse model.
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2. Materials and Methods

2.1. Materials

Poly(d,l-lactide-co-glycolide) (PLGA, lactide/glycolide = 50/50, molecular weight (MW): 1728 Da,
acid end cap) was purchased from PolySciTech (AP037, Akina, Inc., West Lafayette, IN, USA).
Glutathione (GSH, reduced form), and N-hydroxysuccinimide (NHS) were purchased from Wako
Pure Chemical (Osaka, Japan). Poly vinyl alcohol (PVA), Mayer’s hematoxylin, tert-amyl alcohol,
2,2,2-tribromoethanol, and sodium nitrite were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Bacto™ tryptic soy broth (TSB) was purchased from BD Biosciences (San Jose, CA, USA). Agar,
N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC), and eosin-Y solution were
purchased from Daejung Chemicals & Metals (Siheung, Korea). A Twort’s Gram stain set was purchased
from Newcomer Supply (Middleton, WI, USA). Masson’s trichrome stain kit was purchased from
Abcam (Cambridge, MA, USA). The LIVE/DEAD® BacLight™ bacterial viability kit was procured
from Thermo Fisher Scientific (Waltham, MA, USA). All other reagents and solvents were of the highest
analytical grade commercially available.

2.2. Synthesis of GSNO

GSNO was synthesized by the method previously described, with some modifications [45]. Briefly,
GSH and sodium nitrite were dissolved in cold HCl solution (final concentrations of sodium nitrite,
GSH, and HCl were adjusted to 0.625 M) and stirred at 300 rpm for 20 min. GSNO was separated
from the solution by adding excessive amount of acetone, and the precipitate was washed twice with
acetone and thrice with ether. Residual solvent was removed by vacuum drying and GSNO was stored
at −20 ◦C till future use.

2.3. Synthesis of GSNO-Conjugated PLGA

GSNO-conjugated PLGA (GSNO-PLGA) was synthesized via an EDC/NHS coupling reaction
between the carboxylic group of PLGA and the primary amine group of GSNO. First, PLGA was
activated using EDC/NHS as previously described with some modifications [46]. Briefly, for PLGA
activation, 5 g of PLGA, 1.13 g of EDC, and 0.67 g of NHS (molar ratio of PLGA:EDC:NHS = 1:2:2) were
dissolved in 30 mL of DMSO and incubated for 24 h at room temperature. PLGA-NHS was collected
and purified by adding an excessive amount of distilled water (DW), and eventually freeze-dried to
remove residual DW. Dried PLGA-NHS was stored at −20 ◦C. For conjugation of GSNO to PLGA, 4 g
of PLGA-NHS and 1.6 g of GSNO (molar ratio of PLGA-NHS:GSNO = 1:2) were dissolved in 30 mL of
DMSO and incubated for 24 h at room temperature. After incubation, GSNO-PLGA was collected by
adding an excessive amount of DW, followed by centrifugation at 20,000× g for 10 min. The pellets
were collected and washed twice with ice-cold DW to remove unconjugated GSNO. Subsequently,
GSNO-PLGA was freeze-dried and stored at −20 ◦C.

Synthesis of GSNO-PLGA was confirmed by proton nuclear magnetic resonance (1H-NMR)
spectroscopy (Avance NEO 500 MHz, Bruker, Germany). Samples were dissolved in DMSO-d6
(Alfa Aesar, Ward Hill, MA, USA) before 1H-NMR analysis. The presence of -SNO groups in
GSNO-PLGA was analyzed using UV/Vis spectroscopy. UV/Vis spectra were recorded using different
concentrations of GSNO-PLGA in DMSO.

2.4. Fabrication of GPNPs

GSNO-PLGA NPs (GPNPs) were fabricated using an oil-in-water emulsion solvent evaporation
method. Briefly, 100 mg of GSNO-PLGA was dissolved in 4 mL of dichloromethane (DCM) and poured
into 20 mL of ice-cold 1% PVA solution. The mixture was sonicated at 150 W for 90 s and stirred at
550 rpm for 4 h in ice slurry to remove DCM by evaporation. After solvent evaporation, GPNPs were
collected, washed twice by centrifugation (20,000× g, 30 min), and freeze-dried for future use (50 mg of
trehalose was added for cryoprotection).
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After fabrication of GPNPs, scanning electron microscopy (SEM, SUPRA 25, Carl Zeiss, Jena,
Germany) was performed to investigate their morphology. Hydrodynamic particle size and the zeta
potential of GPNPs were measured using a Zetasizer Nano ZS90 (Malvern Instruments, Worcestershire,
UK) [47,48]. The loading efficiency of GPNPs was measured using a Sievers Nitric Oxide Analyzer
(NOA 280i, GE Analytical Instruments, Boulder, CO, USA). The instrument was calibrated with
NO-free air and a 45-ppm NO gas standard. NO gas released from the medium was transported to the
instrument at a flow rate of 80 mL/min by Ar gas. After instrument stabilization, 5 mg of GPNPs were
dissolved in 1 mL of 1 M NaOH solution and added to the fast-degrading medium at 37 ◦C, consisting
of phosphate buffered saline (PBS) and 30 mM ascorbic acid. GSNO loading efficiency was calculated
as per Equation (1).

GSNO loading (%) = NO loading (µmol/mg)/1000 × 336.32 × 100 (1)

2.5. NO Release from GPNPs

The real-time NO release profile of GPNPs was analyzed using a NOA 280i by the same method
described above, except for the medium. Simulated wound fluid (SWF), composed of 0.64% NaCl,
0.22% KCl, 2.5% NaHCO3, and 0.35% NaH2PO4 with pH adjusted to 7.4, was used as a releasing
medium. After instrument stabilization, 50 mg of GPNPs were introduced into the medium under
light protection.

2.6. Antibacterial Assay

The enhanced antibacterial effects of GPNPs were investigated relative to those of GSNO.
The colony forming unit (CFU) method was used for quantitative evaluation of the antibacterial effect
against MRSA (USA300). Briefly, MRSA was incubated in tryptic soy broth (TSB) at 37 ◦C with shaking
(200 rpm) for 24 h before initiating the experiment. Thereafter, MRSA was washed twice with PBS
and diluted until the optical density at 600 nm reached 0.15 to 0.2. After adjusting the concentrations
of the MRSA suspension, 0.5, 1, and 2 mM equivalent concentrations of NO in GPNPs and GSNO
were added and incubated at 37 ◦C for 24 h. The samples were serially diluted and 100 µL of each
dilution was plated on TSB-agar plates. After overnight incubation at 37 ◦C, colonies were counted
and bacterial concentration was calculated.

For visualizing antibacterial effects, an MRSA suspension treated with 2 mM NO-containing
GPNPs and GSNO at 37 ◦C for 24 h was stained with LIVE/DEAD® BacLight™ bacterial viability
kit consisting of SYTO 9 (Thermo Fisher Scientific, Waltham, MA, USA) and propidium iodide (PI),
according to the manufacturer’s protocol. After staining, samples were immediately visualized using a
fluorescence confocal laser scanning microscope (LSM 800, Carl Zeiss, Oberkochen, Germany) at a
magnification of 20×.

2.7. In vivo Wound Healing Study in an MRSA-Challenged Full-Thickness Wound Mouse Model

2.7.1. Macroscopic Assessment: Wound Size Reduction

All animal experiments were approved by Pusan National University Institutional Animal Care
and Use Committee (PNU-IACUC) (approval date: 17 April 2020; approval number: PNU-2020-2590).
Six-week-old male imprinted control region (ICR) mice were purchased from Samtako Bio Korea (Osan,
Korea) and acclimatized for a week before experiment initiation. For full-thickness wound generation,
mice were anesthetized with 0.6 mg/g of avertin (2,2,2-tribromoethanol) via intraperitoneal injection.
After anesthesia, hair on the dorsal area was removed using electric trimmers and hair removal cream
(Veet (for sensitive skin), Reckitt Benckiser, Slough, UK). A full-thickness wound was created on the
dorsal area of mice using an 8-mm diameter disposable biopsy punch (Kai medical, Tokyo, Japan).
To induce MRSA infection, 6 × 105 CFU of MRSA were introduced into each wound, and the latter
was covered with Tegaderm film and Durapore surgical tape (3M, St. Paul, MN, USA) as a protective
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dressing. After 2 days, mice were divided into three groups: GPNP treatment group, GSNO treatment
group, and untreated group. Photographs of the wounds were taken before drug treatment, and
20 mg of GPNPs and the same equivalent amount of NO in GSNO were applied to each wound before
covering them with a protective dressing, which was changed every alternate day. The wound size
was measured using ImageJ software.

2.7.2. Histological Assessment

On day 8, all mice were sacrificed, and wound tissues were collected for histological assessment
using an 8-mm biopsy punch. Samples were fixed in 10% buffered formalin solution for 24 h
and embedded in paraffin blocks. Five-micron sections were obtained, using microtome (Shandon,
Pittsburgh, PA, USA), for staining. Hematoxylin and eosin (H&E) staining, Masson’s trichrome staining,
and Twort’s Gram staining were performed according to the manufacturer’s protocol.

2.8. Statistics

All statistical analyses were conducted using a one-way analysis of variance (ANOVA) or two-way
ANOVA, followed by Bonferroni’s post-hoc test equipped with GraphPad Prism 5.0 (GraphPad Software,
Inc., La Jolla, CA, USA). Results with p-values less than 0.05 were considered statistically significant.

3. Results

3.1. Synthesis of GSNO-Conjugated PLGA

GSNO-PLGA was synthesized via an EDC/NHS coupling reaction between the carboxylic group
of PLGA and the primary amine group of GSNO (Figure 1). After synthesis and purification,
hydrophobic pink-colored GSNO-PLGA was successfully collected. To confirm the presence of the
S-nitrosothiol group in GSNO-PLGA, UV/Vis spectroscopy was conducted. As shown in Figure 1,
a concentration-dependent characteristic peak was observed at a wavelength of approximately 335
nm, which matched with the previously reported peak of -SNO groups in GSNO [35]. In the 1H-NMR
spectra of GSNO-PLGA, big peaks from PLGA and small peak from GSNO were observed (Figure 1C).
Since one GSNO molecule was conjugated to PLGA, which possesses more than 10 repeating units of
glycolic and lactic acids, the peak area of GSNO was much smaller than that of PLGA. In addition,
physicochemical properties, such as solubility, resembled those of PLGA more than those of GSNO,
since the majority of GSNO-PLGA was made of the PLGA moiety.

3.2. Fabrication of GPNPs

After synthesizing GSNO-PLGA, GPNPs were fabricated using the oil-in-water emulsion solvent
evaporation method. As shown in Figure 2A, globular-shaped GPNPs were observed. In addition,
dynamic light scattering (DLS) measurement revealed the hydrodynamic diameter of GPNPs was
164.5 ± 2.2 nm, with a narrow poly disperse index (PDI) (0.12 ± 0.03) (Table 1, Figure 2A). Surface
charge characteristics of GPNPs were analyzed using a Zetasizer, and the mean zeta potential value
was −17 ± 0.6 mV (Table 1, Figure 2B). Owing to the presence of carboxylic groups in GSNO, GPNPs
showed a negative zeta potential. The amount of NO incorporated into GPNPs was confirmed using a
NOA. GPNPs were dissolved in 1 M NaOH solution and introduced into the degrading medium to
facilitate NO liberation from the nanoparticles. Approximately 0.07 ± 0.01 µmol/mg of NO was loaded
into GPNPs, which corresponded to 14.3% of theoretically ideal NO loading. Owing to the easily
degradable nature of NO donors, including GSNO, it was practically the highest loading in GPNPs.
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Table 1. Physicochemical properties of GPNPs.

Particle Size (Hydrodynamic
Diameter) (nm)

Poly-Disperse
Index

Zeta-Potential
(mV)

Loading
(GSNO, %)

Loading (NO,
µmol/mg)

164.5 ± 2.2 0.12 ± 0.03 -17 ± 0.6 2.32 ± 0.27 0.07 ± 0.01

Results were expressed as the mean ± standard deviation (SD) (n = 3).

3.3. NO Release from GPNPs

The release profile of GPNPs was evaluated in SWF at 37 ◦C using a NOA. As shown in Table 2
and Figure 3, GPNPs released NO for more than 11 h in a biphasic release pattern. Burst release of NO
was observed within 3 min of experiment initiation, due to the fast decomposition of –SNO groups
located on the surface of GPNPs (Figure 3A). After initial burst release, GPNPs continuously released
NO for 8 h in a controlled manner, and residual NO in GPNPs was released up to 11.27 h. Overall,
10% of NO was immediately released within 3 min, 90% was constantly released for 8 h, and less than
1% was released for 4 h (Figure 3B).

Table 2. NO release properties of GPNPs.

Formulation [NO]T
(µmol/mg)

[NO]max
(ppb/mg) t[NO]max (h) t1/2 (h) td (h)

GPNPs 0.07 132 0.05 5.55 11.27

[NO]T: total NO release, [NO]max: maximum NO flux, t[NO]max: time to reach [NO]max, t1/2: half-life of NO release,
td: duration time (99.9% of NO-released time point).
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3.4. Antibacterial Assay

The enhanced antibacterial effects of GPNPs against MRSA were examined by the CFU method
and fluorescence confocal microscopy using the LIVE/DEAD® BacLight™ bacterial viability kit. Since
the antibacterial effects of GSNO against MRSA have been widely explored in previous studies, in the
present study, the antibacterial effects of GPNPs were evaluated in comparison to those of GSNO.
As shown in Figure 4A, GPNPs showed antibacterial effects at a concentration of 2 mM NO, whereas
GSNO did not exhibit any such effect at the same equivalent concentration of NO. More than a four-log
reduction of MRSA was observed in the GPNPs-treated groups incubated with 2 mM NO equivalent of
GPNPs for 24 h at 37 ◦C. Due to their increased interaction with MRSA, GPNPs showed an enhanced
antibacterial effect against MRSA than GSNO.
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Figure 4. Antibacterial effects of GPNPs against methicillin-resistant Staphylococcus aureus (MRSA)
compared to that of GSNO. (A) Enhanced antibacterial effects of GPNPs by the colony forming unit
(CFU) method. MRSA was incubated with GPNPs and GSNO at 37 ◦C for 24 h. Data are presented as
the mean ± SD (n = 3). (B) Fluorescent confocal microscopic images of MRSA treated with GPNPs and
GSNO at 37 ◦C for 24 h followed by LIVE/DEAD® BacLight™ staining. Green fluorescence (SYTO 9)
and red fluorescence (propidium iodide) indicate live and dead bacteria, respectively. Scale bar =

50 µm.

The increased antibacterial effects of GPNPs were visualized using the LIVE/DEAD® BacLight™
bacterial viability kit, containing a widely used fluorescence dye consisting of PI and SYTO 9 for
distinguishing normal bacterial cells from damaged cells. As shown in Figure 4B, distinct red
fluorescence was observed in the images from the GPNPs-treated group, while prominent green
fluorescence was observed in the GSNO-treated group at the same equivalent concentrations of NO
(2 mM). Since PI cannot penetrate normal bacterial cells, red fluorescence signals were considered to
represent damaged bacteria while green fluorescence from SYTO 9, which can penetrate all bacterial
cell membranes, was considered to represent normal bacteria. Owing to the enhanced antibacterial
effects, the majority of the MRSA incubated with GPNPs for 24 h were dead, whereas those from the
GSNO-treated group survived due to insufficient antibacterial activity.

3.5. In vivo Wound Healing Study

3.5.1. Macroscopic Assessment: Wound Size Reduction

Enhanced wound-healing promotion effects of GPNPs were evaluated in a MRSA-challenged
full-thickness wound mouse model. Two days after wound creation and MRSA challenge (day 0),
a yellowish biofilm formed at the wound site due to replicating MRSA. As shown in Figure 5,
the GPNPs-treated group showed reduced wound size relative to the untreated and GSNO-treated
groups. Four days after treatment initiation, the wound site of GPNPs-treated mice showed cleaner
morphologies than other groups, where biofilms were still visible on the wound site of the GSNO-treated
and untreated groups (Figure 5B). On day 8, mean wound size had considerably decreased and was
slightly more than 20% of the initial size, whereas that of the GSNO-treated and untreated groups
was approximately 50% (Figure 5C). As a result of successful bacterial eradication, GPNPs showed
enhanced wound healing effects immediately after treatment initiation. However, GSNO could not
facilitate wound healing as effectively, owing to its quick clearance from the wound site and poor
biofilm penetration, resulting in decreased bactericidal effects on MRSA.
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(n = 5).

3.5.2. Histological Assessment

For further investigation of wound healing, wound tissues were paraffin-embedded, and
morphologies were analyzed by H&E staining, Masson’s trichrome staining, and Twort’s Gram
staining. As shown in Figure 6A, the GPNPs-treated group but not the GSNO-treated and untreated
groups exhibited morphologies similar to the healthy group. Distinct epidermis and hair follicles were
also observed in H&E-stained images of healthy and GPNPs-treated groups, while large numbers
of immune cells and granulation tissue were observed in the GSNO-treated and untreated groups.
To evaluate collagen deposition in the dermis of the wounds, Masson’s trichrome staining was
performed. Images from the healthy and GPNPs-treated groups showed prominent blue-colored
regions in dermis, which indicated the presence of a large amount of collagen synthesized by fibroblasts
(Figure 6B). Conversely, since the majority of the dermis in tissues from GSNO-treated and untreated
groups consisted of granulocytes and immune cells that are unable to produce collagen matrix, only
a small blue colored region was observed. To visualize bacteria at the wound site, Twort’s Gram
staining was conducted. In Figure 6C, a large number of round-shaped, 1- to 2-µm-sized purple dots
representing Gram-positive cocci (MRSA) were observed in GSNO-treated and untreated groups.
In contrast, in healthy and GPNPs-treated groups, the purple dots were rarely seen, implying low levels
of bacteria that were hard to detect by Gram staining [39,49]. Collectively, the GPNPs-treated group
showed recovered morphology, with increased collagen deposition and tissue remodeling compared to
the GSNO-treated and untreated groups as a result of enhanced bacterial removal from the wound site.
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4. Discussion

Although NO-releasing therapeutics using GSNO have gained attention due to their
biocompatibility (endogenously synthesized from glutathione), the fabrication of a nanoparticle
formulation of GSNO retaining the benefits of nanoparticles as well as GSNO has been challenging
due to the highly hydrophilic nature of GSNO which limits loading efficiency and reduces therapeutic
efficacy. In this study, GPNPs were fabricated using a newly synthesized GSNO-PLGA to achieve
sufficient loading of GSNO.

GSNO-PLGA was synthesized by an EDC/NHS coupling reaction between the carboxylic group
of PLGA and the primary amine group of GSNO (Figure 1A). Since GSNO-PLGA mainly consisted
of PLGA (molecular weight ratio of GSNO:PLGA = 1:5), peaks from the GSNO moiety were not
as clearly detectable by 1H-NMR spectroscopy as those from the PLGA moiety, which has a large
number of repeating groups of lactic and glycolic acids (Figure 1C). In addition, the presence of the
NO-releasing moiety in GSNO (–SNO group) was confirmed using UV/Vis spectroscopy with the
detection of characteristic peaks from the -SNO group at approximately 335 nm (Figure 1B).

After characterization of GSNO-PLGA, GPNPs were fabricated using the oil-in-water emulsion
evaporation method. As shown in Figure 2, SEM and hydrodynamic size measurement revealed
GPNPs to be of globular shape, with a mean particle size of 164.5 ± 2.2 nm. There were no significant
changes in the mean particle size after 24 h, indicating that GPNPs can be stable during application to
the wounds (data not shown). Owing to the presence of carboxylic groups in GSNO-PLGA, the surface
of GPNPs was negatively charged (zeta potential: −17 ± 0.6 mV). Since the GSNO molecule was
conjugated to the hydrophobic PLGA, loss of GSNO was prevented during the nanoparticle fabrication
processes, resulting in sufficient loading efficiency of NO (2.32 ± 0.27% of GSNO, 0.07 ± 0.01 µmol/mg
of NO).
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To investigate NO-release pattern of GPNPs, real-time NO-release analysis was performed using
a NOA 280i. Interestingly, GPNPs showed biphasic NO release in SWF at 37 ◦C (Figure 3). Since -SNO
groups in GSNO-PLGA (located on the surface of GPNPs) were exposed to the medium, burst release
of NO was observed within 3 min of introducing GPNPs to SWF. On the contrary, wetting of –SNO
groups located inside the GPNPs was suppressed by the hydrophobic PLGA moieties of GSNO-PLGA;
therefore, hydrolysis of –SNO occurred in a sustained manner, resulting in the controlled release of
NO from GPNPs for up to 11.27 h. This may have resulted from the degradation and erosion of the
PLGA moiety that caused multiphasic drug release from the PLGA particles [50–52].

The antibacterial effects of GPNPs against MRSA were examined by comparing with the effects
of GSNO (Figure 4). Since nanoparticle formulations were reported to show enhanced antibacterial
effects over their molecular form via increased interaction with 1- to 2-µm-sized bacteria [20,53–55],
GPNPs were considered to deliver NO to bacteria more efficiently than GSNO. Furthermore, owing to
the short migration distance of NO under physiological conditions (40–200 µm, 5 s) [56], the increased
delivery efficiency of NO resulted in enhanced antibacterial activity. Therefore, GPNPs that could
release NO after coming in contact with bacteria showed more potent antibacterial activity than GSNO
against MRSA.

Based on the above in vitro experiments, we expected GPNPs to facilitate infected wound healing
by the rapid eradication of bacteria from the wound site. To prove this hypothesis, an in vivo wound
healing study was conducted using an MRSA-challenged full-thickness wound mouse model. After
infection induction, although daily treatment would have been better considering the NO release
profile, GSNO and GPNPs were applied at each wound site every alternate day to avoid the stress
caused by frequent anesthesia while changing dressings. On day 0, all wounds were covered with
yellowish biofilms of MRSA. After treatment with GPNPs, the biofilms disappeared and wound size
reduced compared to GSNO-treated and untreated groups due to the prompt eradication of MRSA
from the wound site (Figure 5). Conversely, GSNO did not show any wound healing promoting
effects due to the fast clearance of GSNO from the wound site and low penetration across the MRSA
biofilm, which led to decreased bactericidal effects at the wound site. On day 8, all mice were sacrificed
and wound tissues were collected for histological analysis. Owing to facilitated wound healing,
tissues from the GPNPs-treated group were morphologically more similar to normal tissues than
those from the GSNO-treated and untreated groups. Tissues from the GPNPs-treated group were
well-differentiated (hair follicles, glands, and clear epidermis were observed) with abundant collagen
deposition in the dermis region (Figure 6A,B). In contrast, tissues from the GSNO-treated and untreated
groups showed an inflammatory environment characterized by the presence of a large number of
immune cells and granulocytes. In addition, MRSA could easily be observed at the outer region of
wound tissues taken from GSNO-treated and untreated mice, inhibiting wound healing and causing
continuous inflammation, whereas bacteria were rarely observed in GPNPs-treated and healthy mice
(Figure 6C). Since inflammation was ongoing in the GSNO-treated and untreated groups, tissue
remodeling processes were inhibited, resulting in decreased collagen deposition and compromised
recovery of the dermis and epidermis. Taken together, as a result of enhanced antibacterial effects,
GPNPs showed potent wound healing promotion effects in an MRSA-challenged full-thickness wound
mouse model.

5. Conclusions

In this study, GPNPs were fabricated using newly synthesized GSNO-PLGA for the treatment of
infected cutaneous wounds. Since small hydrophilic GSNO molecules were covalently conjugated to
hydrophobic PLGA, loss of GSNO during nanoparticle fabrication was minimized, resulting in the
successful fabrication of sufficiently GSNO-loaded nanoparticles. In real-time NO release analysis,
a biphasic release pattern was observed in GPNPs, owing to initial burst-release of NO from surface
-SNO groups and continuous release of NO from interior -SNO groups in a sustained manner. GPNPs
showed enhanced antibacterial effects against MRSA, relative to GSNO, owing to their increased
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interaction with MRSA and the delivery efficiency of NO to MRSA. Most importantly, GPNPs exhibited
wound-healing promotion effects in an MRSA-challenged full-thickness mouse model. These results
suggest that GPNPs can be used as a desirable formulation for the treatment of MRSA-infected
cutaneous wounds.
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