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Abstract: Voltage-gated sodium channels (NaVs) are membrane proteins that are involved in the
generation and propagation of action potentials in neurons. Recently, the structure of a complex made
of a tetrodotoxin-sensitive (TTX-s) NaV subtype with saxitoxin (STX), a shellfish toxin, was determined.
STX potently inhibits TTX-s NaV, and is used as a biological tool to investigate the function of NaVs.
More than 50 analogs of STX have been isolated from nature. Among them, zetekitoxin AB (ZTX) has a
distinctive chemical structure, and is the most potent inhibitor of NaVs, including tetrodotoxin-resistant
(TTX-r) NaV. Despite intensive synthetic studies, total synthesis of ZTX has not yet been achieved.
Here, we review recent efforts directed toward the total synthesis of ZTX, including syntheses of
11-saxitoxinethanoic acid (SEA), which is considered a useful synthetic model for ZTX, since it
contains a key carbon–carbon bond at the C11 position.
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1. Introduction

1.1. Voltage-Gated Sodium Channel Isoforms

Voltage-gated sodium channels (NaVs) are membrane proteins involved in neuronal excitation
and transmission [1]. Ten subtypes, NaV1.1–1.9 and NaVX, have been identified based on sequence
determination (Table 1) [2]. These subtypes can be grouped into two types depending upon their
sensitivity to the pufferfish toxin, tetrodotoxin (TTX) [3–7]: tetrodotoxin-sensitive NaVs (TTX-s NaVs
1.1–1.4, 1.6, and 1.7) are significantly inhibited by TTX, while tetrodotoxin-resistant NaVs (TTX-r NaVs
1.5, 1.8, 1.9) are not [8–23]. Subtype-selective modulators of NaVs are required for studies to establish
the biological functions of these subtypes. Some of the subtypes are also considered to be potential
drug targets; for example, NaV1.7 and 1.8 are potential targets for pain treatment [24–29]. Therefore,
there is great interest in the development of drugs targeting specific subtypes [30,31].
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Table 1. Isoforms of a voltage-gated sodium channel (NaV) and their classifications.

NaV Isoform Primary Locations Related Diseases TTX IC50 (nM)
TTX-sensitive

NaV1.1 CNS, PNS, heart Epilepsy 5.9
NaV1.2 CNS Epilepsy 7.8
NaV1.3 Embryonic CNS, injured DRG Nerve injury 2.0
NaV1.4 Skeletal muscle Myotonia 4.5
NaV1.6 CNS, PNS, SMCs, DRG CNS disorders 3.8
NaV1.7 PNS, DRG Pain sensation 5.5

TTX-resistant
NaV1.5 Heart, embryonic CNS Cardiac arrhythmias 1970
NaV1.8 PNS, DRG Pain sensation 1330
NaV1.9 PNS, DRG Pain sensation 59,600

TTX: tetrodotoxin; CNS: central nervous system; PNS: peripheral nervous system; DRG: dorsal root ganglion; SMCs:
smooth muscle cells.

1.2. Saxitoxin As A NaV Modulator

Saxitoxin (STX, 1) is a guanidine alkaloid with potent and specific inhibitory activity towards
NaVs (Figure 1) [32,33]. It has long been known as a shellfish toxin. In 1937, Sommer and co-workers
found that toxin-free bivalves, including the dinoflagellate Gonyaulax catenella, became poisoned in
seawater, and they revealed that the real producer of STX (1) is algae [34,35]. Then, STX (1) was first
isolated from Alaska butter clams by Schantz’s group in 1957 [36,37]. Rapport’s group subsequently
isolated the same toxin from the same shellfish, and named it saxitoxin [38]. Structural elucidation
was troublesome. Initially, tri- or tetracyclic structures were proposed based upon the molecular
formula and the presence of two guanidines as functional groups. Finally, the structure of STX (1)
was independently determined by the two groups by means of X-ray analysis in 1975 [39,40]. STX
(1) consists of ten carbons, seven nitrogens, and four oxygens, and all the carbons except for C11 are
connected with heteroatoms. STX (1) contains five- and six-membered cyclic guanidines, which have
different pKa values of 8.7 and 12.4, respectively; the five-membered one is less basic, presumably due
to its less planar structure [41].
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STX (1) binds to the pore-forming region of the alpha-loop of NaV and blocks the influx of
sodium cation in a similar manner to tetrodotoxin (TTX) [42,43]. Recently, Yan’s group determined
the X-ray structure of the complexes of STX (1) with NaVPas derived from American cockroach and
human-derived NaV1.7 by using cryoEM (Figure 2) [44,45]. They found that the carbamoyl group at
C13 in STX (1) interacts with Gly1407 and Thr1409 in domain III, the two guanidines interact with
Glu364 in domain I and Glu930 in domain II, and the geminal diol interacts with Asp1701 in domain
IV. Interestingly, residues 1409 and 1410, located in the P2 loop of domain III in NaV1.7, were mutated
to Thr and Ile from Met and Asp, respectively, which may explain why STX (1) has a weaker affinity
for NaV1.7 compared with other subtypes (Met1409 and Asp1410 are conserved in the other subtypes
of TTX-s) [46,47].
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Figure 2. (A) Top view of the structure of the STX–NaV1.7 complex. (B) Specific interactions in the 
STX–NaV1.7 complex [45]. 

1.3. Natural Analogs of Saxitoxin, Including Zetekitoxin AB (ZTX) 

To date, more than 50 kinds of natural analogs of saxitoxin have been reported, of which most 
are modified at N1 (R1), C11 (i.e., R2 and R3), or C13 (R4) in the common structure shown in Figure 3A 
[48]. For example, neosaxitoxin (neoSTX, 2) is hydroxylated at N1, decarbamoylsaxitoxin (dcSTX, 3) 
has a hydroxyl group at C13, and gonyautoxins I–III (GTX I–III, 5–7, respectively) have a sulfate ester 
at C11; all of these analogs show similar NaV-inhibitory activity to STX (1).  

Among the STX (1) derivatives, zetekitoxin AB (ZTX, 8) has an unusual structure [49]. ZTX (8) 
was isolated from skin of the Panamanian dart-poison frog Atelopus zeteki in 1969 by Mosher and co-
workers [50,51]. It has extremely potent NaV-inhibitory activity (more than 600-fold greater than that 
of STX (1)), with IC50 values of 6.1 pM, 65 pM, and 280 pM for NaV1.2, NaV1.4, and TTX-r subtype 
NaV1.5, respectively [49]. Thus, there is great interest in the mode of action of ZTX (8), but studies are 
hampered by the fact that Atelopus zeteki is designated as an endangered species. Therefore, a 
chemical synthesis of ZTX (8) is needed. However, ZTX (8) contains a macrocyclic lactam structure 
in which isoxazolidine is bridged from C6 to C11, and an N-hydroxycarbamate is linked via a 
methylene group at N7 [49]. These structural features make ZTX (8) synthetically challenging. So far, 
several synthetic approaches have been reported, but a total synthesis of 8 has not yet been achieved. 
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1.3. Natural Analogs of Saxitoxin, Including Zetekitoxin AB (ZTX)

To date, more than 50 kinds of natural analogs of saxitoxin have been reported, of which most are
modified at N1 (R1), C11 (i.e., R2 and R3), or C13 (R4) in the common structure shown in Figure 3A [48].
For example, neosaxitoxin (neoSTX, 2) is hydroxylated at N1, decarbamoylsaxitoxin (dcSTX, 3) has a
hydroxyl group at C13, and gonyautoxins I–III (GTX I–III, 5–7, respectively) have a sulfate ester at C11;
all of these analogs show similar NaV-inhibitory activity to STX (1).
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AB (8) [49].

Among the STX (1) derivatives, zetekitoxin AB (ZTX, 8) has an unusual structure [49]. ZTX (8)
was isolated from skin of the Panamanian dart-poison frog Atelopus zeteki in 1969 by Mosher and
co-workers [50,51]. It has extremely potent NaV-inhibitory activity (more than 600-fold greater than
that of STX (1)), with IC50 values of 6.1 pM, 65 pM, and 280 pM for NaV1.2, NaV1.4, and TTX-r subtype
NaV1.5, respectively [49]. Thus, there is great interest in the mode of action of ZTX (8), but studies are
hampered by the fact that Atelopus zeteki is designated as an endangered species. Therefore, a chemical
synthesis of ZTX (8) is needed. However, ZTX (8) contains a macrocyclic lactam structure in which
isoxazolidine is bridged from C6 to C11, and an N-hydroxycarbamate is linked via a methylene group
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at N7 [49]. These structural features make ZTX (8) synthetically challenging. So far, several synthetic
approaches have been reported, but a total synthesis of 8 has not yet been achieved.

1.4. Scope of This Review

Synthetic studies of STX (1) and its analogs have been extensive, and several total syntheses
have been achieved [52–61], as recently reviewed by Du Bois [62]. Approaches for developing
of subtype-selective modulators based on the STX structure have also been explored [25,47,63–65].
However, in this review, we focus on recent synthetic work related to ZTX (8). As described above,
ZTX (8) has a characteristic macrolactam structure though C6 to C11 with an isoxazolidine ring system,
and is structurally quite distinct from other STX analogs. To achieve total synthesis of ZTX (8), two key
issues must be addressed: (i) carbon–carbon bond formation at the C11 position in the STX skeleton,
and (ii) macrolactam formation of the carboxylic acid at C6 with isoxazolidine nitrogen (Figure 4).
Regarding the first issue, the STX derivative 11-saxitoxinethanoic acid (SEA, 9) has been used as a
synthetic model for 8, since it also has a carbon–carbon bond at the C11 position. As for the second
issue, stereoselective synthesis of disubstituted isoxazolidine and oxidation to carboxylic acid at C13,
followed by amide formation with the isoxazolidine, have been examined. First, we will consider
recent progress in the total synthesis of SEA (9).
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2. Development of Carbon–Carbon Linkage at C11 of STX, And Application to The Synthesis of
11-Saxitoxinethanoic Acid (SEA, 9)

The STX analog 11-saxitoxinethanoic acid (SEA, 9) was isolated from Atergatis floridus, an Indo-Pacific
crab from the family Xanthidae, by Onoue and co-workers (Figure 5) [66]. SEA (9) has an acetic acid
moiety linked to C11 through a carbon–carbon bond, as seen in ZTX (8), and is regarded as a promising
synthetic model compound for 8 in terms of construction of the carbon–carbon connection at C11.
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ketone 10a was recovered. Next, they investigated the Mukaiyama aldol reaction [71–73]. Thus, silyl 
enol ethers 11a and 11b were synthesized from the ketone by reaction with tert-butyldimethylsilyl 
chloride in the presence of NaHMDS as a base. Then, the Mukaiyama aldol reaction was examined 
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Recently, three total synthesis of SEA (9) were independently reported, including one by our
group [67–69]. When 9 was first isolated, its toxicity to mice was reported to be 830 µmol/MU, which
is similar to that of gonyautoxin II (GTX II, 6) and one-third of that of STX (1), but no information
about the NaV-inhibitory activity was provided. After the synthesis of 9, Du Bois and our group
independently evaluated the NaV-inhibitory activity of 9. Nagasawa, Yotsu-Yamashita, and co-workers
evaluated the NaV-inhibitory activity of SEA (9) by utilizing neuroblastoma Neuro 2A cells, which is
known to express NaV1.2, 1.3, 1.4, and 1.7 [70], and found moderate inhibitory activity with an IC50

value of 47.0 ± 1.2 nM (Figure 6B) [67]. Du Bois and co-workers evaluated the inhibitory activity of 9
against NaV1.4, and found that SEA (9) showed similar inhibitory activity to gonyautoxin III (GTX III,
7) (9: IC50 = 17 ± 1.9 nM; GTX III (7): IC50 = 14.9 ± 2.1 nM), even though it was a diastereomeric mixture
of α:β = 3:1 at C11 (Figure 6A) [68]. They suggested that the β-form of 9 binds to NaV preferentially,
and then the α-form of 9 isomerizes to the β-form, which shows a similar level of inhibitory activity to
GTX III (7) (Figure 6C).
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2.1. Carbon–Carbon Bond Formation at C11 by Mukaiyama Aldol Condensation Reaction, as Applied for The
Synthesis of (+)-SEA by Nagasawa’s Group

For the construction of a carbon–carbon bond at C11, Nagasawa and co-workers utilized ketone
10, which was previously developed by their group [67], to install an acetic acid equivalent at C11.
They firstly investigated the alkylation reaction of the enolate of ketone 10a with alpha-halo-ethyl
acetate. With various bases and halogens, the alkylation did not take place at all, and the starting
ketone 10a was recovered. Next, they investigated the Mukaiyama aldol reaction [71–73]. Thus, silyl
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enol ethers 11a and 11b were synthesized from the ketone by reaction with tert-butyldimethylsilyl
chloride in the presence of NaHMDS as a base. Then, the Mukaiyama aldol reaction was examined
with ethyl glyoxylate under various conditions. Lewis acids, such as TiCl4 or BF3 Et2O [74,75], removed
the tert-butoxycarbonyl (Boc) protecting group of guanidine, and no coupling products with ethyl
glyoxylate were obtained. In the case of the fluoride anion agent Bu4NF [76], the reaction did not
proceed at all. On the other hand, with anhydrous tetrabutyl bisfluorotriphenylphosphine stannate,
developed by Raimundo and co-workers [77], the coupling reaction with ethyl glyoxylate proceeded
very well to afford the aldol-condensation product 12a a 96% yield (Table 2). Aromatic aldehydes were
tolerated, as well as aliphatic aldehydes, and the corresponding aldol condensation products 12a–i
were obtained with 42%–80% yield. This reaction afforded mixtures of regioisomers in ratios of 5:1
to >10:1.

Table 2. Substrate scope of the Mukaiyama aldol condensation reaction of 11a and 11b with aldehydes.
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Entry. SM R2 12 (E:Z) a Yield (%)

1 11a CO2Et 12a (5:1) 96
2 11b CO2Et 12b (5:1) 85
3 11a 4-MeC6H4 12c (> 1:1) 45
4 11a 3-FC6H4 12d (> 10:1) 63
5 11a 4-ClC6H4 12e (> 10:1) 65
6 11a 4-NO2C6H4 12f (6:1) 80
7 11a 2-Furyl 12g (> 10:1) 80
8 11a C6H5 12h (> 10:1) 60
9 11b C6H5 12i (E:Z) a 42

a Ration at C11 were determined by 1H NMR spectroscopy.

With the aldol condensation product 12b in hand, Nagasawa and co-workers went on to achieve a
total synthesis of (+)-SEA (9) for the first time (Scheme 1). Thus, selective reduction of the enone moiety
in 12b was carried out with L-selectride, and the protecting group of tert-butyldimethylsilyl (TBS)
ether was removed with triethylamine trihydrofluoride (3HF-TEA). The resulting alcohol was reacted
with trichloroisocyanate, followed by hydrolysis of the trichloroacetyl group with triethylamine in
methanol to give carbamoyl 15. After hydrolysis of ethyl ester in 15 with lithium hydroxide, the Boc
group was removed with TFA to give (+)-SEA (9).
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2.2. Carbon–Carbon Bond Formation At C11 by Stille Coupling Reaction, As Applied for The Synthesis of
(+)-SEA by Du Bois’ Group

Another approach for the construction of the carbon–carbon bond at C11 in STX was explored by
Du Bois and co-workers, who employed Stille coupling reaction conditions [68]. They firstly examined
the coupling reaction of zinc enolate of ethyl acetate or the stannane enolate of ethyl acetate-type
agents with vinyl halide 17, which was prepared from 20, developed by their group (Scheme 2), in the
presence of palladium catalyst (Table 3, entries 1 and 2) [78–83]. Under the conditions examined,
decomposition of the starting substrate was observed in the case of zinc agent, and no reaction occurred
with the stannane agent. Then they examined the Stille coupling reaction, using vinyl stannane for the
construction of the carbon–carbon bond at C11 [84]. A Stille coupling reaction of vinyl iodide 17 with
tributyl(vinyl)tin was examined in the presence of a catalytic amount of Pd(PPh3)4, with CuI as an
additive (a standard condition). Unfortunately, only a trace amount of the corresponding coupling
product of 18c was obtained (entry 3). Then, they changed vinyl stannane to cis-tributyl (2-ethoxyvinyl)
tin, and included LiCl as an additional additive. Under these conditions, the corresponding coupling
product 18d was obtained with 67% yield (entry 4) [85,86]. Interestingly, poor reproducibility or low
yield of the coupling reaction was observed when they used a highly oxidized vinyl stannane agent,
tributyl(2,2-diethoxyvinyl)stannane (entry 5). This issue was successfully overcome by switching from
CuI to copper(I) thiophene-2-carboxylate (CuTC), and 19 was obtained with 60% yield and with good
reproducibility (entry 6) [87].

Based upon the Stille coupling strategy, Du Bois and co-workers achieved a total synthesis of
SEA (9), as shown in Scheme 2, including the synthesis of vinyl halide 17 as a substrate for the
Stille coupling reaction. Firstly, vinyl halide 17 was synthesized from 20 via Mislow–Evans [2,3]
rearrangement: bisguanidine 20 was converted to N,S-acetal 21 by reaction with benzenethiol in the
presence of BF3·Et2O with 84% yield. Upon treatment of 21 with urea–hydrogen peroxide (UHP),
the Mislow–Evans [2,3] rearrangement reaction [88,89] took place under heating in the presence of
sodium benzenthiolate, and allylic alcohol 23 was obtained with 81% yield in two steps. After oxidation
of the alcohol with Dess–Martin periodinate, the resulting enone 24 was reacted with iodine in the
presence of pyridine to give vinyl iodide 17 [90,91], which was further elaborated to 19 by Stille
coupling reaction with 25 with 60% yield. Then, the double bond in enone 19 was hydrogenated under
high pressure in the presence of Crabtree catalyst 26. Deprotection of the tert-butyldiphenylchlorosilane
(TBDPS) ether in 27 with tetrabutylammonium (TBAF) was followed by installation of a carbamoyl
group on the resulting hydroxyl group. Finally, deprotection of Tces and Troc and hydrolysis of the
ester group were carried out to give (+)-SEA (9).
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Entry Conditions R Result

1 CH2C(OZnBr)OtBu, Pd2(dba)3/dppf, THF CH2CO2tBu 18a (decomp.)
2 CH2C(OSnnBu3)OEt, PdCl2(P(o-tol)3)2, CuF2 CH2CO2Et 18b (N.R.)
3 nBu3SnCH=CH2, Pd(PPh3)4, CuI CH=CH2 18c (< 5%)
4 nBu3SnCH=CH(OEt), Pd(PPh3)4, CuCl, LiCl, THF CH=CH(OEt) 18d (67%)
5 nBu3SnCH=C(OEt)2, Pd(PPh3)4, CuCl, LiCl, THF CH=C(OEt)2 19 (0–40%)
6 nBu3SnCH=C(OEt)2, Pd(PPh3)4, CuTC, THF CH=C(OEt)2 19 (60%)

CuTC = Copper (I) thiophene-2-carboxylate.

2.3. Carbon–Carbon Bond Formation at C11 by C-Alkylation, As Applied for The Synthesis of (+)-SEA by
Looper’s Group

In 2019, Looper and co-workers successfully constructed a carbon–carbon bond at C11 in STX,
and reported a total synthesis of SEA (9) [69]. They initially examined C-alkylation with ketone
28 and electrophiles in the presence of variety of bases, such as lithium bis(trimethylsilyi)amide
(LHMDS), lithium diisopropyl amide (LDA), potassium bis(trimethylsilyi)amide (KHMDS) and sodium
bis(trimethylsilyi)amide (NaHMDS). In addition, they examined various electrophiles (haloacetates,
allylic halides, and propargylic halides), but no reaction took place, as Nagasawa and co-workers had
found (Scheme 3) [67].
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On the other hand, they found that C-alkylation took place upon reaction of ketone 28 and
tert-butyl bromoacetate via the generation of zinc enolate by reaction with LiHMDS in the presence of
Et2Zn, affording a mixture of 29a and its Boc-deprotected derivative 29b with 60% yield (based on the
starting material) (Scheme 4). By means of this alkylation strategy, they succeeded in synthesizing
ZTX (9) as follows. Deprotection of TBDPS ether in 29 with TBAF followed by carbamoylation of the
resulting alcohol resulted in 30. Finally, total synthesis of SEA (9) was achieved by reaction with TFA
to hydrolyze the ester and deprotect the Boc and DPM groups.
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2.4. NaV-Inhibitory Activity of Synthesized, C11-Substituted Saxitoxin Analogs

Based on the method described above for constructing a carbon–carbon bond at C11 in STX,
Nagasawa and co-workers synthesized a series of STX analogs bearing substituents at C11, and
evaluated the NaV-inhibitory activity of these analogs at the cellular level [67].

Beside SEA (9), they synthesized dicarbamoyl SEA (dcSEA, 31), 11-saxitoxin ethyl ethanoate (SEE,
32), and 11-benzylidene STX (33a), and evaluated their NaV-inhibitory activity in mouse neuroblastoma
Neuro 2A cells, which is known to express NaV1.2, 1.3, 1.4, and 1.7 [70]. SEA (9) showed potent
inhibitory activity with an IC50 value of 47 ± 12 nM, which is twice as potent as decarbamoyl saxitoxin
(dcSTX (3), IC50 = 89 ± 36 M) (Figure 7, Table 4). The dcSEA (31) and SEE (32) showed IC50 values
of 5700 ± 3.1 and 185 ± 74 nM, respectively. Interestingly, 11-benzylidene STX (33a) was a potent
inhibitor, with an IC50 value of 16.0 ± 6.9 nM. Although the inhibition mode of 33a has not been
clarified yet, the non-hydrated keto group at C12 in 33 might bind efficiently with NaV, resulting in
potent inhibitory activity.
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Table 4. NaV-inhibitory activity of 9, 31, 32, and 33a in a cell-based assay with Neuro 2A cells.

Compound IC50 (mean ± SD) (nM) n

dcSTX (3) 89 ± 36 3
SEA (9) 47 ± 12 3

dcSEA (31) 5700 ± 3.1 3
SEE (32) 185 ± 74 4

11-benzylidene STX (33a) 16 ± 6.9 5

Next, they further synthesized 11-substituted STX analogs 33b–f, and elucidated their subtype
selectivity towards NaV1.2, 1.5, and 1.7, using the whole-cell patch-clamp recording method (Figure 8,
Table 5) [92]. They found that 11-fluorobenzylidene STX (33c) showed selective and potent inhibitory
activity against NaV1.2 (IC50 = 7.7 ± 1.6 nM), compared to the other subtypes tested. 11-Benzylidene
STX (33a) and 11- nitrobenzylidene STX (33d) showed potent inhibitory activity against NaV1.5, with
IC50 values of 94.1 ± 12.0 nM and 50.9 ± 7.8 nM, respectively. These compounds are the most potent
TTX-r modulators among STX derivatives so far reported, except for ZTX (8) [49].
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Table 5. NaV-inhibitory activities of 33a–f, using whole-cell, patch-clamp recording.

Compound hNaV1.2 hNaV1.5 hNaV1.7

11-benzylidene STX (33a) 5.2 ± 6.0 94.1 ± 12.0 124.1 ± 20.6
11-methylbenzylidene STX (33b) 22.9 ± 8.6 >300 >300
11-fluorobenzylidene STX (33c) 7.7 ± 1.6 >300 >300
11-nitrobenzylidene STX (33d) 8.79 ± 0.96 50.9 ± 7.8 >300

11-furfuryl STX (33e) 542.7 ± 65.7 >300 >300
11-metoxybenzylidene STX (33f) 45.0 ±2.72 >300 >300

IC50 (mean ± SD) (nM).

3. Stereoselective Synthesis of The Isoxazolidine Moiety of ZTX (8), And Its Introduction at C13
in A Model Compound

As described in the introduction, ZTX (8) has a characteristic macrolactam structure from C6
to C11, involving an isoxazolidine ring system. Thus, stereoselective synthesis of the di-substituted
isoxazolidine unit in ZTX (8) has been examined. In the paper reporting the isolation of 8 in 2004,
the amide carbonyl group in ZTX (8) at C13 appeared at 156.5 ppm in the 13C nuclear magnetic
resonance (NMR) spectrum, which is a higher chemical shift compared to other amide carbonyls [49].
This interesting observation might be attributed to the unusual macrolactam structure in ZTX (8), and
synthetic studies of model compounds have been carried out to understand the origin of this unusual
chemical shift. In the following section, we discuss the stereoselective isoxazolidine syntheses reported
by Nishikawa’s [93] and Lopper’s groups [94].

3.1. Synthesis of The Isoxazolidine Part of Zetekitoxin (8) from D-ribose by Nishikawa And Co-workers

In 2009, Nishikawa and co-workers reported the stereoselective synthesis of isoxazolidine 42 from
D-ribose (34) (Scheme 5) [93]. They firstly synthesized nitroolefin 36 from aldehyde 35, which was
derived from D-ribose (34) by means of a Henry reaction followed by dehydration with mesylation.
After reduction of the double bond in 36 with NaBH4, the resulting nitroalkane 37 was treated with
Boc2O to produce dihydrooxazole 39a and 39b with 86% yield, as a diastereomeric mixture at C16
in a ratio of 3:1. In this reaction, nitrile oxide 38 was generated first, and a 1,3-dipolar cyclization
reaction occurred simultaneously. The major transition state model is shown in Scheme 5. The major
diastereomer 39a was reduced stereoselectively with NaBH3CN to isoxazolidine 40. After acetylation
of the amine in 40, isoxazolidine 42, which has the same stereochemistry as ZTX at C15 and C16,
was obtained in three steps: (1) deprotection of acetonide with TFA, (2) oxidative cleavage of diol with
NaIO4, and (3) reduction of the resulting aldehyde with NaBH4.
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3.2. Stereoselective Synthesis of The Isoxazolidine Part from Methyl α-d-glucopyranoside by Lopper and
Co-Workers

In 2015, Lopper and co-workers reported a synthesis of isoxazolidine 59 (Scheme 6) [94]. Aldehyde
45 was synthesized from commercially available methyl α-d-glucopyranoside (43) by the iodination
of 44 with iodine and PPh3, acetylation of the hydroxyl group, and reductive cleavage of the pyran
ring with zinc in acetic acid [95]. Then, intramolecular 1,3-dipolar reaction of the terminal olefin
with nitrone, which was generated from aldehyde 45 by reaction with hydroxylamine 46, took place
stereoselectively to afford 48 via 47 with 52% yield. After deprotection of acetate in 48 with sodium
methoxide [96,97], the resulting triol 49 was treated with NaOI4 followed by LiAlH4 to give diol 51
with 70% yield in two steps [98,99]. The isoxazolidine synthon 59 in ZTX (8) was synthesized from diol
51 in seven steps by selective functionalization of the two hydroxyl groups, followed by N-acylation.
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3.3. Comparison of the Chemical Shift at C13 in Zetekitoxin (8) with Those in Some Synthetic Models

As discussed above, the 13C NMR chemical shift of the carbonyl group at C13 in ZTX (8) has
been observed at 156.5 ppm [49], which is a higher value compared with usual amide carbonyl groups
(170–175 ppm). To address the issue, Nishikawa’s and Looper’s groups independently examined
the 13C chemical shifts of the carbonyl group at C13 in some model compounds (Figure 9) [93,94].
Simple N-acyl isoxazolidine models 60, 42, and 59 showed chemical shifts of 171.0, 172.7, 171.0 ppm,
respectively, which are quite similar to those of regular cyclic N-acyl amides. However, model
compounds 61–63 bearing alpha-guanidinoacetyl amide groups showed chemical shifts of 166.0, 168.3,
and 167.0 ppm, respectively, being shifted ca. 5 ppm upfield compared to the other simple models.
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Nagasawa and co-workers examined the chemical shift at C13 of 70, which has an STX skeleton;
its synthesis is depicted in Scheme 7 [100]. They firstly aimed to obtain carboxylic acid 66 from alcohol
64 by oxidation. They examined various oxidants and conditions, but it appeared that the hydroxyl
group in 64 was unreactive due to its axial orientation, and no reaction occurred, or unexpected
side reactions proceeded. Finally, they found that 2-azaadamantane N-oxyl (AZADO)–NaClO
and NaClO2 [101,102] were effective, resulting in carboxylic acid 66, which was obtained with
79% yield after TMSCHN2 treatment of the crude carboxylic acid 66 to hydrolyze the methyl
ester 67. Condensation of carboxylic acid 66 with isoxazolidine 40 [93] in the presence of 4-(4,
6- dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM,68) [103], followed by
deprotection of the Boc group and acetal with TFA, gave amide 70 in 98% yield. Unfortunately, the
chemical shift of the carbonyl group in 70 was observed at 166.1 ppm, slightly higher than that of 62
or 63, but still lower than that of ZTX (8). The chemical shift in ZTX (8) may reflect the characteristic
spatial structure associated with the presence of the macrolactam moiety.
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4. Synthesis of The Characteristic Macrocyclic Structure of ZTX (8) by Looper’s Group

Looper and co-workers have reported macrocyclic compound 72 as a model for ZTX (8)
(Scheme 8) [71]. After deprotection of the TBDPS ether group at C13 with TBAF, the resulting alcohol
was reacted with iodoacetic acid in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide
(EDC) and N,N-dimethyl-4-aminopyridine (DMAP) to give iodoester 71 with 58% yield. When
iodoester 71 was treated with a strong base, tert-butylimino-tri(pyrrolidino)phosphorane (BTPP),
intramolecular alkylation proceeded at C11, and the corresponding macrolactone 72 was obtained
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in 48% yield. It should be possible to construct the macrolactam structure of 8 via a similar strategy,
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5. Conclusions

Here, we have reviewed recent progress towards the total synthesis of zetekitoxin AB (8, ZTX).
Although this goal still remains elusive, there have been some significant synthetic advances in the
construction of characteristic structures of ZTX, such as (i) the carbon–carbon bond at C11 in the STX
structure, (ii) stereoselective construction of the substituted isoxazolidine moiety at C15 and C16,
and (iii) the macrocyclic structure from C6 to C11. Since ZTX has potent inhibitory activity, even
towards tetrodotoxin-resistant (TTX-r) NaVs, a total synthesis of ZTX and its analogs is expected
to provide useful tools for chemical biological studies of NaVs, overcoming the severely restricted
availability of natural ZTX.
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