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Abstract: Bacteria can bind on clothes, but the impacts of textiles leachables on cutaneous bacteria
remain unknown. Here, we studied for the first time the effects of cotton and flax obtained through
classical and soft ecological agriculture on the representatives S. aureus and S. epidermidis bacteria
of the cutaneous microbiota. Crude flax showed an inhibitory potential on S. epidermidis bacterial
lawns whereas cotton had no effect. Textile fiber leachables were produced in bacterial culture media,
and these extracts were tested on S. aureus and S. epidermidis. Bacterial growth was not impacted, but
investigation by the crystal violet technique and confocal microscopy showed that all extracts affected
biofilm formation by the two staphylococci species. An influence of cotton and flax culture conditions
was clearly observed. Flax extracts had strong inhibitory impacts and induced the formation of
mushroom-like defense structures by S. aureus. Conversely, production of biosurfactant by bacteria
and their surface properties were not modified. Resistance to antibiotics also remained unchanged.
All textile extracts, and particularly soft organic flax, showed strong inhibitory effects on S. aureus and
S. epidermidis cytotoxicity on HaCaT keratinocytes. Analysis of flax leachables showed the presence
of benzyl alcohol that could partly explain the effects of flax extracts.

Keywords: skin bacteria; textiles leachables; Staphylococcus aureus; Staphylococcus epidermidis; growth;
biofilm; biosurfactants; surface polarity; resistance to antibiotics; cytotoxicity

1. Introduction

Because of its role in skin homeostasis, aging, and welfare, the cutaneous microbiota is
now as a major industrial and societal center of interest [1]. It is now almost impossible to
launch new cosmetic products without claims on the respect of the cutaneous microbiota,
when this microbiota is not used itself as a target or a tool for the final product [2,3]. By
its size and diversity, the cutaneous microbiota is the second of the human body after the
intestinal microbiota and includes bacteria, viruses, yeast, fungi, and archaea. In adults, the
bacterial microbiota includes three major phyla, Actinobacteria, Firmicutes and Proteobacteria.
The more representative species are Corynebacterineae, Propionibacterineae, Microococcineae,
and Staphylococcaceae [4,5]. This microbiota is in constant interaction with the skin and
represents the first barrier of the human body against environmental factors such as UV
and pollutants [6–9]. Bacteria colonize not only the surface but also the depths of the
stratum corneum where they associate preferentially with sweat ducts, hair follicles, and
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furrows [10]. Then, skin-associated bacteria are largely diffused in sweat, and some genera
including Corynebacterium, Staphylococcus, and Anaerococcus are at the origin of body odor
formation through sweat molecule metabolization [11–13]. Humidity and friction favor
the transfer of bacteria to textiles [14]. Some species such as Staphylococcus aureus can
survive on cotton or polyester for up to 3 weeks [15]. The nature and composition of
textiles are determinant parameters controlling colonization by skin microorganisms [16].
Bacteria adhere preferentially to artificial fibers such as polyamide and polyester and
much less to natural fibers such as cotton [17,18]. This process is also modulated by the
effect of textiles on the cutaneous microenvironment which directly affects skin physiology
and sweat production [19] as well as cutaneous microflora composition [20]. Bacterial
adhesion to textile fibers has multiple consequences including surface alteration, biofilm
formation, and biodegradation [21,22]. Textiles and clothes can even favor skin colonization
by environmental opportunistic pathogens [23].

Whereas the association of microorganisms to textiles has been a major center of inter-
est [18], the effect of textile fibers on cutaneous bacteria remains almost non-documented.
Some natural fibers, such as flax, have been used since antiquity for their positive influence
on skin [24]. Flax seed oil has a broad antibacterial spectrum against pathogens [25], but the
direct impact of flax fabric and clothes on cutaneous bacteria remains to be studied. Origi-
nally, the unique study on the effect of clothes on the cutaneous microbiota was realized
on specific high technology textiles employed by astronauts. This work did not show any
significant variation of the microbiome distribution and composition [26]. However, as all
materials, textiles release leachables with potential toxic and stress-inducing potential [27].
It was even demonstrated that textile fibers are keeping traces of the culture conditions
of plants from which they were produced, including pesticides and fertilizers [28]. The
cutaneous microbiota can evolve under the influence of its microenvironment not only in
term of composition but also in regard of its level of virulence. The intrinsic virulence,
biofilm formation activity, and resistance to antibiotics of cutaneous microorganisms such
as Staphylococcus epidermidis, Staphylococcus aureus, or Cutibacterium (former Propionibac-
terium) acnes can be affected by natural skin molecules such as substance P [29], calcitonin
gene related peptide [30], and natriuretic peptides [31], and also exogenous factors such
as cosmetics [32,33] or air pollutants [8,34,35]. Then, even without acting on their growth,
textiles can directly modify cutaneous microbiota virulence and alter skin homeostasis.

In the present study, we investigated the impact of cotton and flax obtained through
classical and soft ecological agriculture on two representative species of the cutaneous
microbiota, S. aureus and S. epidermidis. The direct effect of textiles was assayed on the two
bacteria, and extracts were produced to investigate the potential of textile leachables on
the growth kinetic, biofilm formation activity, biosurfactant production, surface properties,
resistance to antibiotics, cytotoxicity, and inflammatory potential of both microorganisms.
Chemical analysis of the extracts suggested a potential explanation of observed effects.

2. Materials and Methods
2.1. Textiles Samples

Four types of textiles were tested: on one side, classical industrial cotton (CIC) and
classical industrial flax (CIF) produced from genetically modified (GMO) crops using
pesticides and artificial fertilizers, and on the other side, soft organic cotton (SOC) and soft
organic flax (SOF) produced from non-GMO crops in the absence of chemical pesticides or
fertilizers. All textile samples were provided by Lin et Chanvre Bio (Saint Vaast Dieppedalle,
France). These textiles were selected for their production and weaving in the absence of
any treatment (chloride, dye, biocide, flame retardant . . . ). Textile samples were cut in
small pieces (1 × 1 cm for direct contact studies and 1 × 2.5 cm for extracts production).
Except samples used for testing by direct contact with bacteria, all samples were sterilized
by autoclaving at 121 ◦C for 30 min in an airtight container to protect from humidity. For
preparation of the extracts, fabric samples were incubated for 24 h at 37 ◦C in a bacterial
growth medium (reinforced Clostridium medium, RCM) as proposed by the regulation
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for preparation of leachables in content–container interaction studies [36]. Fragments and
fibers were removed by centrifugation (1500× g; 5 min) and filtration through 0.2 µm
acetate filters.

2.2. Bacterial Strains and Culture Conditions

S. aureus MFP03 and S. epidermidis MFP04 were isolated from the skin of healthy
volunteers [37]. These bacteria were initially characterized on API® strips and by 16S
ribosomal subunit DNA gene sequencing and MALDI-Biotyper® whole proteome analysis.
They were subsequently submitted to complete genome sequencing [38]. Strains were
stored on biobeads in cryofreezer at −140 ◦C. Before use, biobeads were transferred into
RCM and incubated overnight at 37 ◦C. Bacteria were then sub-cultured at 37 ◦C in normal
RCM or textile extracts in RCM produced as described in Section 2.1. Experiments were
realized using bacteria reaching the middle of the exponential growth phase.

2.3. Testing by Textiles Direct Contact

For these tests, Luria-Bertani (LB)-agar Petri dishes were seeded homogeneously in
surface by spreading with beads 200 µL of bacterial inoculum (1 × 107 CFU/mL). When
the surface dried, sterilized or not, 1 cm2 textiles samples were deposited at the center
of the dishes. The plates were incubated at 37 ◦C for 72 h. Every 24 h, Petri dishes were
observed and scanned. These experiments were carried out in at least three replicates.

2.4. Bacterial Growth Kinetics

For monitoring of the bacterial growth, an overnight bacterial culture in RCM medium
was diluted at OD580nm = 0.08 in fresh RCM or CIC, SOC, CIF, or SOF extracts in RCM.
Immediately after, 200 µL of each bacterial suspension was dropped in sterile 100-wells
flat-bottomed plastic culture plates (Honeycomb, Bioscreen, Helsinki, Finland). The plates
were incubated for 24 h at 37 ◦C under constant agitation in a Bioscreen microplate reader.
The OD of each well was measured at 580 nm every 15 min. Five wells were used for every
sample, and experiments were carried out in at least three replicates.

2.5. Measurement of Biofilm Formation Activity by Crystal Violet Staining

Biofilms formation was studied in 24-wells flat-bottom polystyrene plates (NUNC,
Fisher scientific, Roskilde, Denmark) following a procedure adapted from O’Toole [39].
Bacteria from overnight pre-cultures in RCM (mid exponential growth phase) were collected
by centrifugation (7500× g; 10 min) and rinsed with sterile physiological water (NaCl 0.9%).
One milliliter aliquots of bacterial culture adjusted to OD580nm = 0.1 (corresponding to
5.107 CFU/mL) were layered in plates and incubated for 2 h at 37 ◦C to allow primary
adhesion. Then, physiological water was removed from the wells, and RCM or textile
extracts in RCM were added. The plates were incubated for 22 h in static condition at 37 ◦C.
At the end of the incubation period, wells were washed two times with sterile physiological
water to remove remaining planktonic bacteria. The plates were dried and stained with 0.1%
crystal violet for 10 min at room temperature. Afterwards, washes with physiological saline
were repeated until the rinsing water became clear. The wells were dried, and 100 µL of
ethanol (80% in water) was added. When the biofilm was completely dissolved, the solution
was collected and homogenized. The OD570nm of the solution was measured over a linear
range from 0.1 to 0.9 using a Thermo Scientific Genesys 20 spectrophotometer (Thermo
Fisher Scientific, Illkirch-Graffenstaden, France). Results were expressed as percentage of
the control values. Two wells were used for every sample, and experiments were carried
out in at least three independent replicates.

2.6. Confocal Laser Scanning Microscopy

Biofilms were formed in the same conditions as for crystal violet studies using specific
thin flat glass 24-wells plates (Sensoplate, Greiner bio-One, Kremsmünster, Austria).
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For all biofilms, at the end of the incubation period, wells were washed with ster-
ile physiological water to remove remaining planktonic bacteria and were stained with
300 µL of 5 µM Syto 9 Green Fluorescent Nucleic Acid Stain (Fisherscientific, Invitrogen,
Waltham, MA, USA) prepared in sterile physiological water. This staining step was realized
at room temperature for 30 min in the dark. Then, biofilms were fixed with ProLong
Diamond Antifade Mountant (Molecular Probes R). They were observed using a Zeiss
LSM710 confocal laser scanning microscope (CLSM Carl Zeiss Microscopy, Oberkochen,
Germany) equipped with a 63 × oil immersion objective. Syto 9 was excited at 488 nm, and
fluorescence emission was detected using a band pass filter 481–587 nm.

Images were taken every micrometer throughout the whole biofilm depth. For vi-
sualization and processing of three-dimensional (3D) images, Zen 2.1 SP1 software (Carl
Zeiss Microscopy, Oberkochen, Germany) was used. Quantitative analyses of image stacks
were performed using COMSTAT software. Biomass volume (µm3/µm2) and maximal
and average thickness (µm) were determined using ImageJ software (National Institutes
of Health, Bethesda, MD, USA). Two wells were used for every sample, and experiments
were carried out in at least three replicates.

Mushroom-like structures were studied by triple straining using Syto 9 Green Flu-
orescent Nucleic Acid Stain (Fisherscientific, Invitrogen, Waltham, USA), Sypro Ruby
(Fisherscientific, Invitrogen, Waltham, USA) and CalcoFluor White (Fluorescent Brightener
28, Sigma-Aldrich, Darmstadt, Germany) to visualize bacteria, matrix proteins, and ma-
trix polysaccharides, respectively. In these studies, wells were not washed between each
treatment to avoid biofilm destabilization and because planktonic bacteria were eliminated
during the different staining steps. Then, at the end of the incubation period and imme-
diately after removal of the culture medium by gentle aspiration, 300 µL of 200 µg/mL
CalcoFluor White was added for 30 min. This solution was removed and replaced by
300 µL of Sypro Ruby Protein Gel Stain. Subsequently, 300 µL of 5 µM Syto 9 was added.
All incubations were realized for 30 min in the dark. After staining, samples were fixed
with ProLong Diamond. Calcofluor, Syto 9 and Sypro Ruby were excited at 405, 488, and
633 nm, respectively. Fluorescence emission was detected between 399 and 479 nm for
Calcofluor, 493, at 575 nm for Syto 9, and between 607 and 797 nm for Sypro Ruby.

2.7. Evaluation of Bacterial Biosurfactant Production

In order to investigate the potential production of surfactant by the two strains, the
surface tension of the growth media collected after culture in RCM or fabric extracts for 24 h
at 37 ◦C was measured by the pendant drop method using a DSA30 controlled temperature
tensiometer equipped with a video camera (Kruss, Hamburg, Germany). After removal
of bacterial cell bodies by centrifugation (10 min, 20 ◦C, 7500× g), the supernatant was
collected in a syringe that was inserted in the tensiometer. A pressure was exerted on the
piston so that a drop of liquid formed in front of the camera. The drop shape was measured
at the limit before detachment. The surface tension was obtained from the drop shape
analysis software of the tensiometer using the Young-Laplace equation [40]. Volvic water,
considered as the reference for its constant surface tension value (72 mN.m−1), was used to
validate the measures. RCM, CIC, SOC, CIF, and SOF extracts in RCM were also tested as
internal controls. These experiments were carried out in at least three replicates.

2.8. Characterization of the Bacterial Surface Polarity

The surface polarity of bacteria was determined using the microbial adhesion to
solvents (MATS) technique [41]. This technique is based on the measurement of the affinity
of bacteria to polar (chloroform and ethyl acetate) and apolar (hexadecane and decane)
solvents. Briefly, in each case, 1.2 mL of bacteria resuspended in sterile physiological water
at OD400nm = 0.8 (corresponding to 4 × 108 and 4.8 × 108 CFU/mL for S. aureus and S.
epidermidis, respectively) was mixed for 60 s with 0.2 mL of solvent. After separation of the
two phases, bacteria were distributed between water and immiscible solvents following
their surface properties. Their affinity for each phase was determined by measurement
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of water OD400nm. Affinity of bacteria to hexadecane (apolar solvent) was selected as
representative of the bacterial surface hydrophobicity level. Lewis basicity and Lewis
acidity were given by the differences of affinity between apolar and monopolar solvents
couples (chloroform–hexadecane and ethyl acetate–decane, respectively). Three tubes were
used for every sample and experiments were carried out in at least five replicates.

2.9. Antibiotics Sensitivity Assay

The potential effect of fabric extracts on S. aureus and S. epidermidis sensitivity to
antibiotics was studied using the disk diffusion method as described in EUCAST (European
Committee on Antimicrobial Susceptibility Testing) [42]. Inoculation of the agar Mueller-
Hinton medium was carried out in 3 steps using a sterile swab that was immersed in a
suspension of bacterial physiological water at 0.5 McFarland. When the surface of the plate
dried, nine disks (Oxoid, Fisher Scientific, Santa Fe, USA) were placed on the inoculated
agar surface of a 90 mm diameter Petri dish. A total of twenty-four antibiotics were tested
against the two bacteria at the concentration defined by EUCAST (Table 1). Plates were
incubated at 37 ◦C for 22 h. The inhibition zone surrounding each antibiotic disk was
measured to the nearest millimeter using a ruler. These experiments were carried out in at
least three replicates.

Table 1. Antibiotics used for testing bacterial resistance and respective tested concentrations according
to EUCAST protocol.

Antibiotics Concentrations (µg)

Penicillin G 1

Erythromycin 15

Tetracyclin 30

Cefoxitin 30

Clindamycin 2

Chloramphenicol 30

Tobramycin 10

Kanamycin 30

Gentamycin 10

Ciprofloxacin 5

Ofloxacin 5

Trimethroprim-sulfamethoxazole 25

Levofloxacin 5

Norfloxacin 10

Trimethroprim 5

Moxifloxacin 5

Fusidic acid 10

Rifampicin 5

Aztreonam 15

Cephtazidim 10

Carbapenem 100

Vancomycin 30

Imipenem 10

Ticarcillin 75
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2.10. Assessment of Bacterial Cytotoxicity and Inflammatory Activities

The cytotoxicity of bacteria and their supernatants was studied in the HaCaT human
keratinocyte cell line. These cells, provided by Cell Line Services (Eppelhein, Germany),
were grown in 24-wells plates at 37 ◦C in 5% CO2 atmosphere, in Dulbecco’s modified
Eagle’s Medium (DMEM, Lonza, Leva, France) containing 25 mM glucose, 10% fetal bovine
serum (FBS, Panbiotech, Aidenbach Germany), 2 mM L-glutamine (Lonza, France), and
1% antibiotic mix (penicillin 100 IU/mL and streptomycin 100 µg/mL, HyClone Thermo
Scientific, Illkirch-Graffenstaden, France). When the cells reached 80% of confluence, the
medium was removed, cells were washed twice with phosphate buffer saline (PBS Lonza,
Levallois-Perret, France), and medium without FBS and antibiotics was added during 8 h.
Bacterial cultures were centrifugated for 10 min at 7500× g, supernatants were collected,
and bacteria were diluted in fresh DMEM (v/v:1/9). Bacteria were resuspended and rinsed
again with DMEM. The cells were incubated for 2 h with bacteria at a multiplicity of
infection (MOI) 10:1 or bacterial culture supernatant at the same v/v ratio. Controls were
realized by addition of normal RCM or CIC, SOC, CIF, or SOF extracts diluted in DMEM
in the same proportions. The amount of lactate dehydrogenase (LDH) released by HaCaT
cells following membrane disruption was determined using the Cytotox 96 enzymatic
assay (Promega, France) as described by Picot et al. [43]. Two wells were used for every
sample, and experiments were carried out in at least three replicates.

The inflammatory response of HaCaT cells to control and fabric-extracts-treated bac-
teria was evaluated by assaying interleukin 8 (IL8) secretion. HaCaT cells were exposed
to bacteria or their supernatants as previously described in the “cytotoxicity studies” sub-
section. The amount of IL8 released by HaCaT cells was determined using the Human IL-8
ELISA Kit (KHC0081) (Fisherscientific, Invitrogen, Waltham, USA). Two wells were used
for every sample, and experiments were carried out in at least three replicates.

2.11. Chemical Analysis of Fabric Extracts

In order to understand the differences between classical industrial and soft organic
fabrics, cotton and flax extracts were analyzed by high performance liquid chromatogra-
phy (HPLC) coupled to ultra-violet detection (Thermo Fisher Scientific U3000RS HPLC
pump equipped with UV-DAD detector set at 220 nm). For that, 1 mL of each sample was
submitted to extraction using 49 mL methanol/water (50/50 v/v) with ortho-phosphoric
acid 0.085% (Sigma-Aldrich, Darmstadt, Germany). After 2 h incubation under constant
agitation (300 rpm), the solution was filtrated on 0.45 µm regenerated cellulose syringe
filters (Thermo Fisher Scientific, Illkirch-Graffenstaden, France). Separation was realized
by gradient elution using methanol/water with 0.085% ortho-phosphoric acid (from 5/95
to 75/25 v/v) and a RP NUCLEODUR C18 Isis 5 µm 250 × 4 mm Machery Nagel column.
A molecule of interest was further identified by gas chromatograph coupled to mass spec-
trometry using a HP Hewlett Packard Agilent 6890 Plus GC System Gas Chromatograph
with HP 5973 MSD Mass Selective Detector.

2.12. Statistical Analysis

Means with standard error of the mean (SEM) were calculated and plotted.
The non-parametric Mann–Whitney test was used to compare the means within the

same set of experiments when they were not normally distributed (Gaussian). When they
were normally distributed, the Student’s t test was used. P values were calculated with
Past 3.x software.

3. Results
3.1. Effects of Crude and Sterilized Cotton and Flax Textiles on Staphylococcus aureus and
Staphylococcus epidermidis Bacterial Lawns in Petri Dishes

Fragments of classical industrial cotton (CIC), soft organic cotton (SOC), classical
industrial flax (CIF), or soft organic flax (SOF) were layered on S. aureus MFP03 (Figure 1A)
or S. epidermidis MFP04 (Figure 1B) bacterial lawns. Crude or sterilized classical industrial
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and soft organics cotton showed no effect on S. aureus growth. Conversely, a growth
inhibition halo was observed around fragments of crude CIF and SOF. The diffusion halo
was particularly visible around SOF. Sterilization of the flax fabric led to a complete loss of
this activity. Same results were obtained when the fabrics were layered on S. epidermidis
bacterial lawns. Crude or sterilized cotton were without effect while crude industrial and
soft organic flax locally inhibited the bacterial growth. This effect was not observed with
sterilized flax fabric.
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Figure 1. Effects of crude or sterilized cotton or flax textile samples produced by classical industrial
or soft organic agricultural practices on (A) Staphylococcus aureus MFP03 and (B) Staphylococcus
epidermidis MFP04 lawns on solid medium. CIC: classical industrial cotton, SOC: soft organic cotton,
CIF: classical industrial flax, SOF: soft organic flax. Arrows indicate growth inhibition areas.

3.2. Effects of Sterilized Cotton and Flax Textile Extracts on Staphylococcus aureus and
Staphylococcus epidermidis Growth and Biofilm Formation

Production of fabric extracts requiring incubation in bacterial culture medium (RCM)
for 24 h at 37 ◦C was only possible to realize using sterilized fabric. For that, S. aureus
MFP03 and S. epidermidis MFP04 growth kinetics were studied by culture in undiluted
fabric extracts, prepared as described in Materials and Methods Section 2.1, and compared
to controls realized using fresh RCM. No significant variation of the generation time
was observed between the different growth conditions, and the kinetics were similar
(data not shown).

The effect of fabrics extracts on bacterial biofilm formation activity of the bacteria was
initially studied by a global approach using the crystal violet staining method. Results
were expressed as percentages of the basal biofilm values (OD570nm of dye solutions from
control biofilms). All fabric extracts showed a marked inhibitory effect on S. aureus MFP03
biofilm formation ranging from –47.1 ± 0.1 and −59.7 ± 2.1% with CIC and SOC extracts,
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respectively, to –74.6 ± 0.9 and –54.9 ± 4.1% with CIF and SOF extracts, respectively
(p < 0.001) (Figure 2A). Fabric extracts also showed marked effects on S. epidermidis MFP04
biofilms formation with inhibitions reaching −65.9 ± 3.6, −71.3 ± 5.2, and—52.6 ± 4.1%
for SOC, CIF, and SOF extracts, respectively (Figure 2B). CIC extract had no significant
effect on S. epidermidis biofilm formation in these experimental conditions.
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Figure 2. Effects of classical industrial cotton (CIC), soft organic cotton (SOC), classical indus-
trial flax (CIF), and soft organic flax (SOF) extracts on (A) Staphylococcus aureus MFP03 and
(B) Staphylococcus epidermidis MFP04 biofilm formation studied by the crystal violet technique on
flat-bottom polystyrene plates. Results are representative of three independent experiments. (NS: not
significant; FFF = p < 0.001).

In order to further investigate the effect of fabric extracts, the biofilms structure was
studied by confocal laser scanning microscopy. The maximal biomass and mean thickness
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of S. aureus MFP03 biofilms was increased by CIC extract (+43 ± 8.4 and +63.2 ± 10.7%,
respectively, p < 0.001), whereas SOC extract induced a marked decrease (−48.5 ± 4.9 and
−26.0 ± 1.4%, respectively p < 0.001) (Figure 3). The reaction of S. aureus MFP03 to flax
extracts (CIF and SOF) was characterized by the formation of mushroom-like structures.
The mean biomass, mean thickness, and maximal thickness values were then measured
on flat areas. In these regions, CIF extracts induced an increase of the mean biomass and
thickness (+64.2 ± 5.5 and +66.0 ± 1.7%, respectively p < 0.001), whereas SOF extracts led to
a moderate decrease of the biomass (−26.7 ± 1.6%, p < 0.01) and had no effect on the mean
thickness of the biofilms. None of the extracts affected S. aureus biofilm maximal thickness
values. The response of S. epidermidis MFP04 to fabric extracts was homogeneous, and no
mushroom-like structures were observed. As shown by the crystal violet straining method,
CIC extracts had a limited effect on S. epidermidis biofilm structure (Figure 4). An increase
in the mean biomass (+21.6 ± 2.6%, p < 0.001) was noted, whereas the mean thickness
remained unchanged. Only the maximal thickness of the biofilms was marginally reduced
(−10.4 ± 0.9%, p < 0.001). Conversely, SOC extracts induced a mean reduction of the
biomass, mean thickness, and maximal thickness of the biofilms (−54.0 ± 2.3, −60.2 ± 1.4,
and −41.7 ± 1.3%, respectively, p < 0.001). These results were coherent with data from the
crystal violet assay. CIF extracts had a more important impact on S. epidermidis biofilm
structure with −88.5 ± 0.5, −88.5 ± 1.8, and –57.1 ± 6.1% reduction in the mean biofilm
biomass, mean thickness, and maximal thickness, respectively (p < 0.001). The effects of
SOF extracts were more limited with −33.3 ± 5.3, −38.5 ± 3.7, and −38.4 ± 6.3% reduction
of biomass, mean thickness, and maximal thickness, respectively (p < 0.001).
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Figure 3. Effects of classical industrial cotton (CIC), soft organic cotton (SOC), classical industrial flax
(CIF), and soft organic flax (SOF) extracts on Staphylococcus aureus MFP03 biofilm formation studied
by confocal laser scanning microscopy. Figure’s top views show (A) the calculated mean biofilm
biomass, (B) mean thickness, and (C) maximal thickness. Images (x/y top views and x/z lateral views)
of representative biofilms formed in the absence or presence of textile extracts are shown in lower
cases. (NS: not significant; FF = p < 0.01, FFF = p < 0.001).
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Figure 4. Effects of classical industrial cotton (CIC), soft organic cotton (SOC), classical industrial
flax (CIF), and soft organic flax (SOF) extracts on Staphylococcus epidermidis MFP04 biofilm formation
studied by confocal laser scanning microscopy. Figure’s top views show (A) the calculated mean
biofilm biomass, (B) mean thickness, and (C) maximal thickness. Images (x/y top views and x/z lateral
views) of representative biofilms formed in the absence or presence of textile extracts are shown in
lower cases. (NS: not significant; FF = p < 0.01, FFF = p < 0.001).

Mushroom-like structures formed by S. aureus in the presence of flax extracts were
studied independently by triple straining using Syto 9 Green, Sypro Ruby, and CalcoFluor
in order to visualize bacteria, matrix proteins, and matrix polysaccharides, respectively
(Figure 5). Comparison of x/z transversal reconstructed views revealed that bacteria and
the polysaccharides matrix were localized at the basis of the biofilm, whereas protein
matrix elements were distributed all over the biofilm thickness and were the essential, if not
exclusive, compounds in the mushroom-like structures. This organization was the same in
biofilms formed after exposure to CIF or SOF.

3.3. Effects of Cotton and Flax Textile Extracts on Staphylococcus aureus and Staphylococcus
epidermidis on Biosurfactant Production and Surface Polarity

To obtain further insight into the effects of fabric extracts on biofilm formation, biosur-
factant production was investigated by measuring the surface tensions of the RCM medium,
containing textile extracts or not, after a 24 h culture with S. aureus MFP03 or S. epidermidis
MFP04 (Figure 6). The RCM medium showed a mean surface tension of 62 mN.m−1. All
surface tensions of fabric extracts were lower, suggesting that the extraction process in-
troduced some surfactive compounds from the textile. Moreover, except for CIF extracts,
the surface tension of fabric extracts was lower than that of both bacterial supernatants.
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Growing S. aureus MFP03 or S. epidermidis in the RCM medium did not modify surface
tension values. When S. aureus MFP03 was grown in CIC extracts, the surface tension of the
medium was close to that of CIC extract. In comparison to pure CIC extracts, the surface
tension of CIC extracts after S. epidermidis culture was marginally decreased (−10.8 ± 1.0%,
p < 0.001). A limited decrease of the surface tension of SOC extracts (−5 ± 1.5%, p < 0.05)
was measured after culture with S. aureus, whereas an increase (+12.2 ± 1.3%, p < 0.001)
was detected after culture of S. epidermidis in SOC. The surface tension of CIF extracts was
not affected by culture with S. aureus or S. epidermidis. In the case of SOF extracts, both S.
aureus and S. epidermidis increased the mean surface tension (+17.2 ± 0.9 and +10.4 ± 2.0%,
respectively, p < 0.001). In all cases, these variations remained marginal, and the surface ten-
sion values of fabric extracts exposed to the bacteria never reached the limit of 40 mN.m−1

which is considered an indication of biosurfactant production [44,45].
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Figure 5. Visualization of mushroom-like structures formed by S. aureus in the presence of classical
industrial flax (CIF) and soft organic flax (SOF) extracts. Biofilms were studied by triple straining
using Syto 9 (green), Sypro Ruby (red), and CalcoFluor (blue) labelling bacteria, matrix proteins, and
matrix polysaccharide, respectively.
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Figure 6. Surface tension of the control RCM medium, classical industrial cotton (CIC), soft organic
cotton (SOC), classical industrial flax (CIF), and soft organic flax (SOF) extracts in RCM and same
solutions after growth of Staphylococcus aureus MFP03 or Staphylococcus epidermidis MFP04 for 24 h.
The red line shows the value of 40 mN.m−1 which is considered as the limit indicative of the presence
of biosurfactant in the medium. Differences were calculated in regard to the corresponding medium
(NS: not significant; F = p < 0.05; FF = p < 0.01; FFF = p < 0.001).

As biofilm formation is linked to bacterial surface properties, the surface polarity and
Lewis acid and base properties of S. aureus MFP03 and S. epidermidis MFP04 grown in
control RCM or fabric extracts were measured by the MATS technique (Figure 7). While
S. aureus MFP03 showed a marked hydrophobic surface (65 ± 3.7% affinity to solvents), that
of S. epidermidis MFP04 was clearly hydrophilic with extremely limited affinity to solvents
(0.3 ± 1.8% affinity to solvents). The two bacteria were also quite different in regard to the
Lewis acid and base surface properties. S. aureus was moderately basic (28 ± 1.2% Lewis
basicity) and acidic (45 ± 0.9% Lewis acidity), whereas the Lewis basicity of S. epidermidis
was null and its acidity was limited (12 ± 1.2%). None of the fabric extracts had a significant
impact on the surface polarity and Lewis acid and base properties of S. aureus. A marginal
increase of the Lewis basicity was only observed in S. epidermidis.

3.4. Effect of Cotton and Flax Extracts on Staphylococcus aureus and Staphylococcus epidermidis
Resistance to Antibiotics, Cytotoxicity, and Inflammatory Potential

The potential influence of fabric extracts on bacterial resistance to antibiotics was
tested over twenty-four antibiotics (Figure 8). The sensitivity of S. aureus MFP03 to all
antibiotics was partial, with imipenem showing the maximal inhibitory effect. S. epidermidis
MFP04 also showed partial sensitivity to all tested antibiotics. As previously observed,
imipenem but also carbapenem and ticarcillin had maximal inhibitory effects. No difference
in sensitivity to antibiotics was noted between bacteria grown in the control RCM medium,
CIC, SOC, CIF, or SOF extracts.
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Figure 7. Effect of classical industrial cotton (CIC), soft organic cotton (SOC), classical industrial flax
(CIF), and soft organic flax (SOF) extracts on the surface hydrophobicity, Lewis basicity, and Lewis
acidity of Staphylococcus aureus MFP03 (A) or Staphylococcus epidermidis MFP04 (B) determined by the
microbial adhesion to solvents (MATS) technique.

The intrinsic cytotoxicity of S. aureus MFP03 and S. epidermidis MFP04 on HaCaT
keratinocytes was moderate with 14.0 ± 1.2 and 6.7 ± 0.52% of maximal cell death measured
by LDH assay after exposure to the bacteria (Figure 9). S. aureus grown in CIC extract
showed a 45.7 ± 8.2% decrease in cytotoxicity in comparison to its mean basal cytotoxicity
(p < 0.01). The effect of SOC, CIF, and SOF extracts was more pronounced. The cytotoxicity
of S. aureus was reduced to 8.5 ± 0.9 and 7.4 ± 0.9% of the control after culture in SOC
or CIF extracts, respectively (p < 0.001). After growth in SOF extracts, the cytotoxicity
of S. aureus was almost abolished (−99.6 ± 0.05% reduction, p < 0.001). The effect of
fabric extract on S. epidermidis was somehow different, although a net reduction in the
cytotoxicity was also observed. CIC, SOC, and SOF extracts led to an almost complete loss
of S. epidermidis virulence. CIF had a lower impact with only a 66.1 ± 14.0% decrease in the
cytotoxicity (p < 0.01).
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Figure 8. Evaluation of Staphylococcus aureus MFP03 (A) and Staphylococcus epidermidis MFP04
(B) resistance to 24 antibiotics after growth in RCM medium, classical industrial cotton (CIC), soft
organic cotton (SOC), classical industrial flax (CIF), or soft organic flax (SOF) extracts in RCM using
the disk diffusion method.

Tests realized using S. aureus MFP03 or S. epidermidis MFP04 culture supernatants did
not show any cytotoxicity on HaCaT cells that should be attributed to the production of
soluble toxins.

The effect of fabric extracts on the bacterial inflammatory potential was investigated
by assay of IL8 section by HaCaT cells. As previously observed [46], the basal level of IL8
in control conditions was undetectable and no increase of IL8 was measured after exposure
to S. aureus MFP03 or S. epidermidis MFP04 grown in control medium or CIC, SOC, CIF, or
SOF fabric extracts (data not shown).

3.5. Cotton and Flax Extracts Analysis

HPLC analysis of CIC and SOC extracts revealed multiple peaks but did not show any
difference between culture conditions (data not shown). When flax extracts were analyzed,
one peak of higher amplitude was detected in SOF extracts (Figure 10). This peak was
identified by gas chromatography coupled to mass spectrometry as benzyl alcohol, an
aromatic compound of formula C6H5CH2OH.
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Figure 9. Effect of classical industrial cotton (CIC), soft organic cotton (SOC), classical industrial
flax (CIF), and soft organic flax (SOF) extracts on Staphylococcus aureus MFP03 (A) and Staphylococcus
epidermidis MFP04 (B) cytotoxicity on HaCat cells measured by the lactate dehydrogenase (LDH)
release assay. (FF = p < 0.01; FFF = p < 0.001).
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Figure 10

Figure 10. Comparison of chromatogram of classical industrial flax (CIF) and soft organic flax (SOF)
extracts after separation by HPLC, indicating the presence of a specific peak (arrow) that was only
observed in SOF extracts (A). Structure of benzyl alcohol identified by GC-ESI MS as the molecule
present in this peak (B).

4. Discussion

Many international standards and regulations including UE 1007/2011 [47] and
REACH [48] have been defined to evaluate textiles safety. Specific challenge tests pro-
cedures were even recently described for hospital textiles [49]. However, considering
their interactions with microorganisms, they are limited to the evaluation of antimicrobial
activity, particularly for textiles treated with biocides (DIN EN ISO 20645 2001 [50] and
AATCC 147 [51]). These methods have been adapted for assessment of bacterial colo-
nization on untreated fabrics. However, chemicals without effects on bacterial growth
can affect their physiology, and particularly virulence [52], and these effects can remain
undetectable. Moreover, none of the regulations address the question of the behavior of the
microorganisms in their natural cutaneous environment.

In the present study, we focused on two organic textiles, with cotton as the more
employed organic fiber all over the world [53] and flax as the more ancient fiber known for
its positive effects on skin [54]. Textile samples used in this study were selected as they were
not submitted to any post-harvesting treatment. The two model bacteria, S. aureus MFP03
and S. epidermidis MFP04, were collected on normal skin and their draft genomes were
recently described [38]. As shown by direct contact on bacterial lawns, independently of its
culture conditions, cotton fabric had no visible antibacterial activity. Conversely, a growth
inhibition halo was observed on both staphylococci cultures around crude flax fabrics,
suggesting that flax leachables with antimicrobial activity diffused around the samples. This
observation is agreement with investigations showing an antibacterial activity of flax fibers
characterized by a reduction in the size and number of S. aureus colonies on agar plates [55].
The effect of flax extracts was more important with SOF, revealing a potential influence
of agricultural practices. Autoclaved samples did not show the same growth inhibitory
effect, indicating that the diffusible antimicrobial activity was heat sensitive. However, it is
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impossible to know if the diffusible compound(s) with antimicrobial activity originated
from the flax fiber itself or from its associated microbiota. Fungi residing on flax fibers
have shown to secrete enzymes with antibacterial properties [55], but this question requires
a qualitative and quantitative analysis of the flax-associated microbiota and deserves a
complete separate study.

As we aimed to investigate the effect of textile leachables on cutaneous bacteria, we
produced extracts allowing work in vitro on bacterial biofilm formation and virulence.
As previously observed, heat treatment abolished flax antimicrobial activity but it was
not possible to generate extracts without sterilization and prolonged incubation. Then,
we hypothesized that even after autoclaving, extracts should keep sufficient activity on
bacterial physiology. In order to interpret results, we tested the effects of extracts on biofilm
formation in conditions where they had no effect on bacterial growth kinetics. In agreement
with studies realized on textile fragments, none of the textile extracts realized by incubation
in the culture medium after sterilization showed growth inhibitory effects.

Using the crystal violet technique, we observed that all tested textile extracts showed
inhibitory effect on S. aureus MFP03 biofilm formation. Conversely, only SOC, CIF, and SOF
extracts inhibited S. epidermidis MFP04 biofilms at different levels. CIC displayed no effect
in these tests. Altogether, these data showed that although all these textile extracts had no
effect on bacterial growth, they contained substance(s) of which some were surfactive, as
shown by the decrease in surface tension between extracts and control. These compounds
are capable of inhibiting the initial bacterial adhesion and/or biofilm matrix production.
In order to investigate the potential effect of textile extracts on biofilms structure, biofilm
formation was subsequently studied by confocal laser scanning microscopy. The biomass
and mean thicknesses of S. aureus biofilms was significantly increased by CIC extracts,
whereas it was reduced by SOC extracts. These results are consistent with crystal violet
studies, particularly in regard to the inhibitory effect of SOC extracts on S. aureus biofilms.
The increase observed using CIC extracts may be attributed to the difference in polarity of
PVC and glass used as contact surfaces in crystal violet and confocal microscopy studies,
respectively. While the former is hydrophobic, the latter is hydrophilic and polar [56].
Nevertheless, these results confirmed the important impact of agricultural practices on
textiles properties, suggesting that trace pesticides accumulated in cotton [28] could in-
fluence the effect of textiles on cutaneous bacteria. This is to be paralleled to the fact that
industrial cotton culture consumes more pesticides and insecticides than any other crop
culture [57]. Moreover, most pesticides are non-polar compounds and thus should have
high affinity with the S. aureus hydrophobic surface [58]. Studies realized on flax have
also pointed out the consequences of agricultural practices on the compatibility of textiles
with S. aureus. CIF increased the mean biomass and thickness of biofilms, whereas SOF
decreased its biomass. However, the situation was more complex since exposure of S.
aureus to flax extracts also led to the formation of mushroom-like structures. As shown by
triple labelling, bacteria and polysaccharides appeared localized at the basis of the biofilms,
whereas proteins were detected both in flat biofilm areas and in mushroom-like structures.
In fact, mushroom-like structures seem to be formed essentially from the proteins-based
matrix and should be designated as “empty mushrooms”, as seen in Oprf-protein-deleted
P. aeruginosa biofilms [59]. As suggested in P. aeruginosa [60], mushroom structures should
be formed by discrete bacterial subpopulations, and their assembly is regulated by specific
genes expression [61]. This is consistent with the difference in sensitivity to flax extracts
between bacteria assembled as flat biofilms or mushrooms. Another possibility is that the
density of the matrix proteins formed by mushrooms should protect bacteria located at the
basis, since matrix permeability can regulate molecules diffusion into biofilm structures [62].
Nevertheless, this formation of mushrooms by S. aureus, which can be considered as a
defense reaction, was only observed after exposure to CIF and SOF, suggesting that the
compound at the origin of this effect is specific to flax and not to flax culture conditions. The
impact of textile extracts on S. epidermidis MFP04 biofilms observed by confocal microscopy
was consistent with crystal violet studies, although a limited increase in mean biomass
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and decrease in mean thickness was observed with CIC. The effects of textile extracts on
S. epidermidis were homogeneous and no mushroom-like structures were visualized. Except
for CIC, all other textile extracts decreased the mean biomass, mean thickness, and maximal
thickness of the biofilms. The maximal effect was observed with CIF extracts.

Biosurfactant production and bacterial surface polarity were determinant parameters
in bacterial adhesion and biofilm development [63]. Exposure of bacteria to textile extracts
had limited influence on the surface tension values of the growth medium. These values
never decreased under the limit of 40 mN.m−1, indicating that bacteria were not producing
biosurfactant. Similarly, no difference in surface polarity and Lewis acid and base properties
were detected between bacteria exposed or not to textile extracts, although the surfaces of
S. aureus MFP03 and S. epidermidis MFP04 have opposite characteristics. The absence of
effects of textile extracts on the resistance of bacteria to antibiotics is reassuring, but may
also suggest that bacteria had no metabolic reaction to textile extracts and that all effects
on biofilm formation were due to differences in diffusion in the biofilm matrix structures.
However, this was not the case since we observed that all textile extracts affected the
bacterial cytotoxicity. On S. aureus, only SOF extracts totally inhibited the cytotoxic effect
of the bacteria on HaCaT keratinocytes. As observed in biofilm formation studies, CIC
had only a partial inhibitory effect. All textile extracts almost abolished the cytotoxicity of
S. epidermidis except CIF which had only partial efficiency. The inflammatory response to
both bacteria was investigated by IL8 assay, but IL8 levels remained undetectable. Then,
these results suggest that the effects of textile extracts on S. aureus and S. epidermidis biofilm
formation were multifactorial and resulted from both bacterial metabolic adaptation and
difference of biofilm matrix structure and/or composition.

Identifying all cotton and flax extractables should be a huge work requiring important
analytical means. For that reason, we compared HPLC chromatograms between cotton
and flax extracts from industrial and soft organic cultures. No differences were observed
between cotton extracts from the different origins, suggesting that the technique employed
was not sufficient to detect pesticide traces. However, when flax extracts were analyzed,
we observed a peak of higher amplitude in extracts from soft organic cultures. This peak
was identified as a benzyl alcohol by gas chromatography coupled to mass spectrometry.

Benzyl alcohol is an aromatic alcohol naturally produced by many plants, and it is
frequently found in fruits and tea extracts [64]. It is one of the more commonly employed
antimicrobial preservatives [65]. Benzyl alcohol disorganizes the membrane structure
and increases the membrane fluidity in Gram-positive and Gram-negative bacteria [66,67].
Flax organic production should apparently favor the presence of this molecule in the final
textile. Its presence in flax extracts, under the minimal inhibitory concentration, should
be sufficient to affect biofilm formation without acting on bacterial growth and explain, at
least in part, the impact on S. aureus and S. epidermidis of flax extracts. Indeed, as previously
shown by Hancock et al. [68], even at sub-lethal concentrations, antimicrobials can affect
bacterial physiology, including biofilm formation.

Considering its inhibitory activity as crude textile on S. aureus and S. epidermidis, flax
showed interesting properties, and particularly so did soft organic cultures that inhibited
biofilm development and strongly decreased bacterial cytotoxicity. Soft organic cotton also
revealed a valuable potential, although it has no intrinsic antimicrobial activity as crude
textile. The effects of cotton and flax extracts on S. aureus and S. epidermidis were observed
after a time of interaction with bacteria (22 to 24 h) exceeding the time that corresponds
to normal clothes use. However, these observations should be particularly considered in
extreme situations when textiles remain in contact with skin for a long time in confined,
hot, and humid environments such as during spaceflights or for people with sensitive skin.

5. Conclusions

Taken together, this study revealed that crude flax fibers can inhibit S. aureus and
S. epidermidis development and that cotton and flax sterile extract can modulate biofilm
formation by these bacteria. Flax extracts, and particularly those produced by organic
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agricultural practices, were particularly active, suggesting that even in the absence of
antimicrobial treatment, textile leachables can affect the physiology of cutaneous bacteria.
The impact of other types of textiles requires further evaluations.
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