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Background: Obesity has been reported to lead to increased incidence of depression.
Glycerol-3-phosphate acyltransferases 4 (GPAT4) is involved in triacylglycerol synthesis
and plays an important role in the occurrence of obesity. GPAT4 is the only one of GPAT
family expressed in the brain. The aim of this study is to investigate if central GPAT4 is
associated with obesity-related depression and its underlying mechanism.

Results: A high-fat diet resulted in increased body weight and blood lipid. HFD induced
depression like behavior in the force swimming test, tail suspension test and sucrose
preference test. HFD significantly up-regulated the expression of GPAT4 in hippocampus,
IL-1b, IL-6, TNF-a and NF-kB, accompanied with down-regulation of BDNF expression in
hippocampus and ventromedical hypothalamus, which was attributed to AMP-activated
protein kinase (AMPK) and cAMP-response element binding protein (CREB).

Conclusion: Our findings suggest that hippocampal GPAT4 may participate in HFD
induced depression through AMPK/CREB/BDNF pathway, which provides insights into a
clinical target for obesity-associated depression intervention.

Keywords: glycerol-3-phosphate acyltransferases 4, depression, high fat diet, hippocampus, ventromedical
hypothalamus, inflammation
INTRODUCTION

Obesity is a metabolic disorder caused by excessive accumulation of fat due to increased energy
intake. Both environmental factors and genetic factors are responsible for the development of
obesity (1, 2). With the development of social economy and lifestyle changes, the incidence of
obesity is increasing over years, and it has become a serious public health problem. The main clinical
consequences of obesity include diabetes, cardiovascular disease, respiratory distress syndrome,
sleep disorders, asthma, and tumors, as well as various mental and psychological diseases (3, 4).

Both epidemiological and clinical studies have shown that there is a positive correlation between
obesity and depression. Obese people have a significantly increased risk of depression (5, 6). Body
mass index (BMI) is positively correlated with the degree of clinical depressive symptoms (7).
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However, although high-energy food can alleviate negative
emotions and bad moods in a short period of time, the weight
gain caused by long-term consumption will aggravate the
depressive symptoms in patients (8, 9). Some scholars have
also discovered that depression and obesity have the same
candidate genes from the perspective of genetics. Depression
and obesity have a high incidence of comorbidities, which
seriously endanger the health of patients, but the mechanism is
still unclear.

Obesity is related to a high-risk of depression. Both clinical
studies and animal experiments have showed that there is a
positive relationship between the two. However, the
neuropathophysiological mechanism of depression caused by
obesity remains unclear. Based on previous studies,
neuroinflammation have been implicated in the development
of depression. Inflammation, especially neuroinflammation, is an
important link between obesity and depression. A high-fat diet
activates the inflammatory response in the animal’s brain.
Animal experiments have shown that IL-1b in the brain can
mediate chronic stress-induced depression-like behaviors, while
IL-1b receptor knockout mice will not show depression-like
behaviors after stress (10).

Glycerol-3-Phosphate Acyltransferases 4 (GPAT4) is the key
rate-limiting enzyme in the synthesis of triacylglycerols in the
glycerophosphate pathway. Gene overexpression and gene
knockout experiments (11, 12) confirmed that GPAT4 plays an
important role in the development of obesity, liver steatosis and
insulin resistance. Compared with wild-type mice, GPAT4-/-
(gene knockout) mice lose weight, have subcutaneous
lipodystrophy, reduce triacylglycerol (TAG) content in adipose
tissue and liver, and improve insulin resistance (13). And a
recent study (14) found that overexpression of GPAT4 in the
liver of mice resulted in liver insulin resistance and thus impairs
liver glucose metabolism, leading to increased liver
gluconeogenesis and reduced glycogen synthesis, and
ultimately destroys glucose homeostasis, indicating that
GPAT4 may be a new drug target for potential prevention and
treatment of obesity, insulin resistance and type 2 diabetes (15).
GPAT4 is important in the development of obesity. Besides,
GPAT4 is the only one in the GPAT family that is expressed in
the brain (16, 17). However, whether central GPAT4 is involved
in the development of depression remains unclear.

Brain-derived neurotrophic factor (BDNF) is mainly
expressed in the central nervous system, especially in
hippocampus and cortex. BDNF has been found to regulate
food intake and energy metabolism in the central nervous
system, promote body movement, suppress appetite, and
improve the leptin resistance and insulin resistance (18).
Besides, BDNF is also the main regulator of synaptic plasticity
and memory formation (19). It is the major regulator of
maintaining neuronal function, regeneration and repair, and
preventing neuronal degeneration (20). Obese mice
experienced a decline in cognitive function after a long-term
high-fat diet, accompanied by corresponding pathological
changes in hippocampal neurons, which are closely related to
the decline of BDNF levels in hippocampus. Recent studies have
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found that obesity can induce hippocampal inflammation and
impairs emotion related to the hippocampus (21).

High-fat-induced obese mice can lead to the inflammatory
state in hippocampus of the mouse and the decrease of BDNF.
Studies showed that GPAT4 is also highly expressed in the
hippocampus, and GPAT4 is the key rate-limiting enzyme for
the synthesis of triacylglycerols in the glycerophosphate pathway.
Therefore, this study aims to investigate whether central GPAT4
is associated with obesity-related depression and its
underlying mechanism.
MATERIALS AND METHODS

Laboratory Animals and Reagents
Twenty-four 5-week-old male C57BL/6 mice were purchased
from the Animal Experimental Center of Fujian Medical
University. All mice were housed under standard conditions
(constant temperature, constant humidity conditions, and a 12-h
light/dark cycle), with free access to food and water. The study
followed the National Guidelines for Laboratory Animal Welfare
and was approved by the Experimental Animal Ethics
Committee of the Second Affiliated Hospital of Fujian Medical
University (2020-388).

Establishment of Mice Model
The twenty-four mice were acclimatized for 1 week before
conducting the experiments. Then, they were randomized to
two groups: normal diet group (ND group, n = 12) and high fat
diet group (HFD group, n = 12). The ND group was fed a normal
diet (Research Diets, D12450h), and the HFD group were fed a
high-fat diet (Research Diets, D12451) for 8 weeks. Six mice in
each group were subjected to brain tissue isolation for
subsequent qPCR, and the remaining six mice were subjected
to perfusion to make frozen sections of brain tissue for
in situ hybridization.

Behavior Tests
Forced Swimming Test (FST)
The mice were forced to swim for 6 min in a transparent
cylindrical container (40cm in height and 20cm in diameter)
containing clean water (24°C, 20cm in depth). The duration of
immobility state was measured (22).

Tail Suspension Test (TST)
In brief, the mice were suspended approximately 28 ± 2 cm off
the floor by fixing its tail (2 cm from the tip of the tail) on the
hook. During the experiment immobility time of the mice were
automatically recorded for 6 mins (22, 23).

Sucrose Preference
Before starting the experiment, the mice were singly housed and
trained to freely drink water and sucrose water in two bottles (the
positions of the two water bottles were switched every day) and
the daily intake of sucrose water and regular water was recorded
for 1 week. The experiment was started after a stable sucrose
May 2021 | Volume 12 | Article 667773
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water consumption was evident. After 21 days, the sucrose
preference test was performed. The detailed test protocol was
as follows: after a 12 h period of water fasting, the animals were
allowed free access to two bottles respectively containing water
and 1% sucrose solution. This test lasted for two hours. Sucrose
preference was calculated as the ratio of sucrose water intake to
the total volume of liquid intake (24, 25).

Lipid Measurement
Fasting lipid levels including total cholesterol, low density
lipoprotein and triglyceride were measured with an automatic
biochemistry analyzer.

In Situ Hybridization (ISH) by RNAscope Technology
to Determine the mRNA Expression of BDNF in the
Hippocampus and Ventromedical Hypothalamus
The animals were perfused with phosphate buffered solution (PBS)
at a pH of 7.4 by a cannula inserted in the left ventricle after
anesthesia, followed by 4% paraformaldehyde. After perfusion, the
brains were immediately removed and were fixed in 4%
paraformaldehyde in PBS at 4°C for 12 h and passed through 20
and 30% sucrose gradients prior to embedding in optimum cutting
temperature compound(OCT). 20mmtissue sectionswere air-dried
at−20°C andmoved to−80°C for long-term storage. Commercially
available RNAscope brown reagent kit and RNAscope probes
(Advanced Cell Diagnostics, Hayward, CA, Cat No. 322300) were
used for transcript detection. ISH was performed according to the
manufacturer’s instructions for fixed-frozen tissue. The detection
was operated in a hybridization oven (HybEZ™, ACD) with
RNAscope Probe-Mm-BDNF (ACD 518751). Each set of probes
contained a tag that enabled target transcription to bevisualized in a
brown color. To compare the expression differences between the
two groups, we quantified the integral optical density (IOD) of
positive BDNF staining using ImageJ and normalized it by stained
area. Themean intensities from three randomareas of the same size
in target areas were measured for each probe.
Frontiers in Endocrinology | www.frontiersin.org 3
Quantitative RT-PCR (qRT-PCR)
At the end of each experiment, a microdissection procedure was
used to isolate hippocampus. Total RNA was extracted with
TRIzol (RNAiso Plus) method (Takara, Japan). RNA was
reversed transcribed into cDNA using the two-step method
with PrimeScript™ RT reagent Kit with gDNA Eraser (Takara,
Japan), according to the manufacturer’s instructions. mRNA
qRT-PCR was performed with the TB Green™ Premix Ex
Taq™ (TliRNaseH Plus) (Takara, Japan) according to the
manufacturer’s instruction. The procedure was 95°C for 1 min;
95°C for 15 s and 60°C for 34 s, for 40 cycles; 95°C for 15 s, 60°C
for 1 min and 95°C for 15 s. The primers were shown in
(Table 1).

Statistical Analyses
All statistical analyses were performed using the SPSS Statistics
20 software. Data have been expressed in terms of mean ±
standard deviation. Statistical significances between two groups
of data were determined using unpaired, two-tailed Student’s
t-test. A P value >0.05 was not considered significant, P value
<0.05 was labeled as (*), P value <0.01 was labeled as (**),
P value <0.001 was labeled as (***).
RESULTS

Metabolic Phenotype in Dietary-Induced
Obesity Mice
To determine the metabolic phenotype of mice after a fat-
dense diet, we measure the body weight of mice every week.
Besides, at the end the of experiment, blood lipid level was
measured. We found that 8 weeks of high-fat diet caused
increased body weight (Figures 1A, B), and blood lipid level
including total cholesterol (Figure 1C), low density lipoprotein
(Figure 1D), and triglyceride (Figure 1E), compared with
ND group.

Depression-Like Phenotype in Dietary-
Induced Obesity Mice
To determine whether the consumption of a fat-dense diet plays
a causative role in the development of depression, we examined
depression-related behaviors among mice fed a ND or HFD.
After 8 weeks of high-fat diet (HFD), we examined depression-
related behaviors including forced swimming test, tail suspension
test and sucrose preference test. Increased immobilization time
was observed during forced swim tests (Figure 2A) and tail
suspension tests (Figure 2B) in HFD mice. Also, consumption of
sucrose solution (Figure 2C) was less in HFD mice compared
with control mice on a normal diet.

GPAT4 Expression in Hippocampus Was
Decreased After High Fat Diet
GPAT4 is the key rate-limiting enzyme in the synthesis of
triacylglycerols in the glycerophosphate pathway and plays an
important role in the development of obesity. Besides, GPAT4 is
the only one in the GPAT family that is expressed in the brain.
TABLE 1 | Primers of qRT-PCR.

Gene Primers sequence

b-actin Forward 5’ CTACCTCATGAAGATCCTGACC 3’
Reverse 5’ CACAGCTTCTCTTTGATGTCAC 3’

GPAT4 Forward 5’ AACCTCCTGGGTATCTCCCTG3’
Reverse 5’ CCGTTGGTGTAGGGCTTGT3’

IL-1b Forward 5’ GAAATGCCACCTTTTGACAGTG3’
Reverse 5’ TGGATGCTCTCATCAGGACAG3’

IL-6 Forward 5’ CTCCCAACAGACCTGTCTATAC 3’
Reverse 5’ CCATTGCACAACTCTTTTCTCA 3’

TNF-a Forward 5’ ATGTCTCAGCCTCTTCTCATTC 3’
Reverse 5’ GCTTGTCACTCGAATTTTGAGA 3’

NF-кB Forward 5’ CAAAGACAAAGAGGAAGTGCAA 3’
Reverse 5’ ACTTGATGATCCTCGAGATGTC 3’

AMPK Forward 5’ GTCAAAGCCGACCCAATGATA3’
Reverse 5’ CGTACACGCAAATAATAGGGGTT3’

CREB Forward 5’ AGCAGCTCATGCAACATCATC3’
Reverse 5’ AGTCCTTACAGGAAGACTGAACT3’
b-actin was used as mRNA reference gene, with the 2−DDCt method used for
quantitation. Triplicate experiments were performed and repeated at least 3 times.
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To investigate whether central GPAT4 is involved in the
development of obesity-related depression, GPAT4 mRNA
expression in hippocampus was measured after 8 weeks of
high-fat diet (HFD). We found that compared with ND group,
GPAT4 mRNA expression in hippocampus was significantly up-
regulated in HFD group (Figure 3A). We further investigated the
correlation between GPAT4 and body weight, we found that the
GPAT4 was positive correlated with body weight (p<0.05)
(Figure 3B)

High Fat Diet Induced Inflammation in
Hippocampus
Inflammation, especially neuroinflammation, is an important
link between obesity and depression. To measure the
inflammation in the central nervous system, we examined
inflammation markers between HFD mice and normal diet
Frontiers in Endocrinology | www.frontiersin.org 4
(ND) mice after 8 weeks of high-fat diet (HFD). We found
that HFD significantly up-regulated the expression of IL-1b
(Figure 4A), IL-6 (Figure 4B), TNF- a (Figure 4C) and NF-
kB (Figure 4D) in hippocampus.

BDNF Expression in Hippocampus and
Ventromedical Hypothalamus Were
Decreased After High Fat Diet
BDNF plays a role in emotion regulation, memory function and
energy homeostasis as well. To evaluate the role of central BDNF
in obesity-related depression, after 8 weeks of high-fat diet
(HFD), we examined BDNF expression in hippocampus and
ventromedical hypothalamus (VMH). Compared with ND
group, BDNF mRNA expression in hippocampus (Figure 5),
and VMH (Figure 6) were significantly down-regulated in
HFD group.
A B

C

E

D

FIGURE 1 | Body weight and blood lipid level after 8 weeks of HFD and ND. (A) body weight changes during the 8 weeks; (B) Body weight after 8 weeks; (C) total
cholesterol; (D) low density lipoprotein; (E) triglyceride. Results are mean ± standard deviation, *P value < 0.05, **P value < 0.01, comparison between the mice fed
HFD and ND. (n=6).
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AMPK/CREB Pathway Might Participate in
High Fat Diet Induced Depression
To further understand the molecular events underlying the high-
fat diet induced depression-like behavior, q-RT PCR was carried
out to measure the expression of AMPK and CREB mRNA
expression. Our study showed that AMPK and CREB mRNA
expression were decreased in HFD group compared with ND
group (Figure 7).
Frontiers in Endocrinology | www.frontiersin.org 5
DISCUSSION

The main findings in our present study include (1) high-fat diet
can lead to the development of depression through the use of
behavioral paradigms; (2) its mechanism is related to the up-
regulation of hippocampal GPAT4 expression and hippocampal
inflammation; (3) in situ hybridization shows BDNF mRNA
expression level, down-regulated in hippocampus and VMH; (4)
A

A

C

B

FIGURE 2 | Depression-like phenotype in dietary-induced obesity mice. (A) forced swim tests; (B) tail suspension tests; (C) Sucrose preference test.
*P value < 0.05, **P value < 0.01, comparison between the mice fed HFD and ND. (n=6).
A B

FIGURE 3 | (A) GPAT4 expression in hippocampus was decreased after high fat diet. **P value < 0.01, comparison between the mice fed HFD and ND.
(B) Correlation between GPAT4 expression and body weight. (n=6).
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Real-time quantitative PCR detects the down-regulation of
hippocampal AMPK and CREB expression levels in the HFD
fed mice.

Depression and obesity are closely related, interact, and are
supported by a large amount of epidemiological evidence (26). A
systematic review and meta-analysis of the longitudinal
relationship between depression, overweight, and obesity
discovered that obesity increases the risk of depression (27).
Frontiers in Endocrinology | www.frontiersin.org 6
Vagena et al. (28) discovered that a high-fat diet can promote the
development of depression-like behavior in both groups of mice
fed with a high-fat diet for 3 weeks and 8 weeks. In this study, we
found that a high-fat diet for 8 weeks induces depression-like
behavior, which is consistent with previous studies.

However, the specific mechanism of depression caused by
obesity needs to be further explored. The hippocampus is a key
area that controls emotions and cognitive behavior in the brain.
A B

C D

FIGURE 4 | High fat diet induced inflammation in hippocampus. (A) IL-1b; (B) IL-6; (C) TNF- a; (D) NF-kB. *P value < 0.05, **P value < 0.01, comparison between
the mice fed HFD and ND. (n=6).
FIGURE 5 | (A) BDNF expression in hippocampus in ND group; (B) BDNF expression in hippocampus in HFD group; (C) percentage of positive area between ND
and HFD group; (D) higher magnification of (A); (E) higher magnification of (B); (F) hippocampus area in the brain. ***P value < 0.001, comparison between the mice
fed HFD and ND. (n=6).
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In obese animal models, high levels of hippocampal and cortical
cytokines are expressed in this area (29–31).

GPAT catalyze the first step of synthesis of TAG, which also
acts as the rate-limiting enzyme in the de novo pathway of
glycerophospholipid synthesis. Besides, GPAT4 is the only one in
the GPAT family that is expressed in the brain including the
hippocampus and the cerebellum. The present study reveals that
high fat diet induced GPAT4 overexpression in hippocampus,
suggesting that GPAT4 in the hippocampus might play a role in
diet-induced depression.

Studies have shown that neurotrophins including BDNF have
been documented to play a crucial role in depression. BDNF
plays a role in emotion regulation and memory function,
especially in the hippocampus area (32). The down-regulation
of hippocampal BDNF levels is associated with impaired
Frontiers in Endocrinology | www.frontiersin.org 7
emotion-related behaviors (33). Many kinds of antidepressants
and electroconvulsive therapies significantly increase the
expression of BDNF in the hippocampus and prefrontal cortex
(34). In addition, direct injection of BDNF into the hippocampus
can also show antidepressant effects (35). BDNF plays an
important regulatory role in the plasticity of hippocampal
structure, and mediate protective effects by enhancing neuron
survival (36). What’s more, the expression and signal
transduction of hippocampal BDNF mRNA negatively
regu la ted by pro inflammatory cy tok ines (37–39) .
Dexamethasone can reduce the level of pro-inflammatory
cytokines, increase the level of anti-inflammatory cytokines,
and prevent the decline of BDNF level caused by inflammation
(40). The expression of low levels of BDNF in the nervous system
may trigger energy homeostasis, thereby developing obesity and
A B

FIGURE 7 | (A) AMPK expression; (B) CREB expression. *P value < 0.05, comparison between the mice fed HFD and ND. (n=6).
FIGURE 6 | (A) BDNF expression in VMH in ND group; (B) BDNF expression in VMH in HFD group; (C) percentage of positive area between ND group and HFD
group; (D) higher magnification of (A); (E) higher magnification of (B); (F) VMH area in the brain. ***P value < 0.001, comparison between the mice fed HFD and ND.
(n=6).
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glucose intolerance, and metabolic disorders. BDNF is an
important part of the central nervous circuit and participates
in regulating energy homeostasis (41). Integrate hippocampus
BDNF signal affect the efficacy of antidepressants and the
anxiety-like behavior (33).

Obviously, BDNF is related to depression. Previous studies
found that the expression of BDNF in hippocampus decreased in
depressed mice. However, it is not clear how high-fat diet affect
BDNF expression in the central nervous system. In this study, we
found that HFD simultaneously induced the down-regulation of
BDNFmRNA in hippocampus and VMH, suggesting that BDNF
may play a role in depression induced by high-fat diet.

VMH is the satiety center in the brain that regulates food
intake, glucose and energy metabolism via different downstream
targets. A recent research discovers the inhibition of peripheral
5-HT synthesis lead to resistance to HFD-induced obesity and
can attenuate HFD-induced depression-like behavior (42).VMH
is an important center that integrate peripheral metabolic signal
(43). Our previous study found that high fat diet-fed mice with
impaired glucose tolerance expressed lower level of BDNF
Frontiers in Endocrinology | www.frontiersin.org 8
mRNA in VMH. HFD leads to changes of BDNF in VMH by
affecting the central insulin signaling pathway (44).

Obesity is linked with chronic low-grade inflammation,
which actives the peripheral immunity, transform the
inflammation in the central nervous system by the humoral,
neural and cellular pathways (45). Central inflammation affects
the pathophysiological process of depression, including
monoaminergic neurotransmission. There were plenty of
evidence justify the role of immune inflammatory disorders. A
meta-analysis reported that the level of inflammation markers in
depressed patients were higher than those in the control group (46–
48). For patients with major depression with elevated plasma
inflammatory markers, they respond poorly to antidepressant
drugs (49). Higher IL-6 and CRP can predict the development of
depression (50). Prospective researches also show that depression
can predict the later level changes of IL-6 and CRP (51). A meta-
analysis including14 randomized placebo controlled trials showed
that anti-inflammatory treatments effectively reduce symptoms in
patients with depression (52). Higher levels of peripheral IL-6 were
related to brain inflammation (53, 54). IL-6 was negatively
FIGURE 8 | HFD resulted in obesity and depression like behavior. After 8 weeks of HFD, hippocampus GPAT4 and inflammation increased, which was attributed to
down-regulation of BDNF, AMP-activated protein kinase (AMPK) and cAMP-response element binding protein (CREB) expression in hippocampus. (n=6).
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correlated with hippocampal gray matter volume in healthy adults
(53), suggesting that inflammation was a contributing factor to the
reduction of hippocampal gray matter. Peripheral inflammation
affected hippocampal plasticity, which was due to the activation of
microglia and the effects of IL-6 and TNF-a (55, 56). Brain
inflammation may negatively affect emotion, study and memory
through processes related to neurodegeneration and structural
remodeling (57, 58), andmainly affected the hippocampus (59, 60).

5-AMP activated protein kinase (AMPK) is an enzyme
involved in energy balance and glucose, and adipose
metabolism to help maintain body homeostasis (61, 62). The
activation of AMPK can increase the expression of BDNF and
active CREB pathway (63). Depression model rats showed
overexpression of miR-124 and down-regulation of CREB1
and BDNF in the hippocampus. While knocking down miR-
124 improved depression-like behavior in depression rats, which
might be related to the increased expression of CREB1 and
BDNF in the hippocampus (64). Our study found out
downregulation of AMPK and CREB in high-fat fed mice.
Depression might be triggered by HFD through AMPK/CREB/
BDNF pathway.

There are some limitations in our study. The connection
between GPAT4 and BDNF still need to be further confirmed. In
our future studies, we will use specific hippocampal GPAT4
knockout mice to further confirm the role of GPAT4 in the
hippocampus in the development of depression.

In conclusion, we demonstrate that hippocampal GPAT4
might participate in HFD induced depression by activating
AMPK, CREB and BDNF pathways, which provides insights
into a clinical target for obesity-associated depression
intervention (Figure 8).
Frontiers in Endocrinology | www.frontiersin.org 9
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