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Abstract

Free, amoeboid movement of organisms within media as well as substrate-dependent cellular crawling processes of cells
and organisms require an actin cytoskeleton. This system is also involved in the cytokinetic processes of all eukaryotic cells.
Myxozoan parasites are known for the disease they cause in economical important fishes. Usually, their pathology is related
to rapid proliferation in the host. However, the sequences of their development are still poorly understood, especially with
regard to pre-sporogonic proliferation mechanisms. The present work employs light microscopy (LM), electron microscopy
(SEM, TEM) and confocal laser scanning microscopy (CLSM) in combination with specific stains (Nile Red, DAPI, Phalloidin),
to study the three-dimensional morphology, motility, ultrastructure and cellular composition of Ceratomyxa puntazzi, a
myxozoan inhabiting the bile of the sharpsnout seabream. Our results demonstrate the occurrence of two C. puntazzi
developmental cycles in the bile, i.e. pre-sporogonic proliferation including frequent budding as well as sporogony,
resulting in the formation of durable spore stages and we provide unique details on the ultrastructure and the
developmental sequence of bile inhabiting myxozoans. The present study describes, for the first time, the cellular
components and mechanisms involved in the motility of myxozoan proliferative stages, and reveals how the same elements
are implicated in the processes of budding and cytokinesis in the Myxozoa. We demonstrate that F-actin rich cytoskeletal
elements polarize at one end of the parasites and in the filopodia which are rapidly de novo created and re-absorbed, thus
facilitating unidirectional parasite motility in the bile. We furthermore discover the myxozoan mechanism of budding as an
active, polarization process of cytokinesis, which is independent from a contractile ring and thus differs from the
mechanism, generally observed in eurkaryotic cells. We hereby demonstrate that CLSM is a powerful tool for myxozoan
research with a great potential for exploitation, and we strongly recommend its future use in combination with in vivo
stains.
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Introduction

Most animals are motile. Three main types of animal movement

can be differentiated, movement via skeletal muscles, via cilia and

flagella, and amoeboid movement or cellular crawling. Amoeboid

movement is typical of amoebae and unicellular organisms, but

also of metazoan cells like leukocytes [1]. The motility mechanisms

in all cells rely on key molecular components functionally

conserved from protozoans to vertebrates [2]. The machinery

that powers cell migration is built from the actin cytoskeleton, and

amoeboid movement is generally accepted to be based on a

cytoskeleton which allows membrane protrusion [3]. Protrusion or

forward motility is based on the extension of pseudopodia that can

be of three kinds: filopodia, lamellipodia or blebs [4]. Filopodia

and lamellipodia are produced by polymerization of actin, but

blebs are membrane bulgings that are actomyosin-dependent [5].

In eukaryotes, the actin system also provides the force for cell

divisions, representing the key in the process of division of one cell

into two by the formation of a contractile ring during cytokinesis

[6]. Animal cytokinesis is explained by the purse-string model or

cytokinesis A, i.e. a contractile ring composed of actin and myosin

II that drives the equatorial furrowing [7], and it has been

demonstrated that filamentous actin (F-actin) polymerization is

important for the assembly, maintenance and closure of the

contractile ring between two cells [6]. However, other cytokinetic

modes have been observed in animal cells: Cytokinesis B is an

attachment-assisted cleavage whereas cytokinesis C is a traction-

mediated cytofission of multinucleate cells [7–11]. Both modes are

driven by actin polymerization [7,12–14]. Motility and cytokinetic

mechanisms based on actin polymerization appear to be more

primitive than those based on ATPase motor proteins (myosins,

dyneins and kinesins) [3]. Thus, cytokinesis B and C seem to be
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primitive methods of division of eukaryotic cells, while cytokinesis

A, is functionally more evolved [11].

The study of cytokinesis in parasites has mainly been centred in

protozoans revealing unusual mechanisms of cytokinesis, e.g.

Giardia intestinalis [15] or Trypanosoma [16].

The Myxozoa is an economically important group of microscopic

metazoan endoparasites. Myxozoans have an indirect life cycle

involving an invertebrate host, usually an annelid, and a vertebrate

host, usually a teleost fish. In both hosts, the parasite proliferates and

then forms durable spore stages that infect the other host. A number

of species within the phylum Myxozoa are recognised as important

pathogens of commercially exploited wild and cultured finfish [17–

20]. Pathology in myxozoans is usually associated with the presence

of large numbers of parasites, produced by rapid proliferation of

vegetative stages [21–22]. However, little is known about the

developmental sequences and the cytokinetics resulting in the

multiplication of myxozoan parasite stages.

Members of the myxozoan genus Ceratomyxa generally inhabit

the bile and have been reported to show motility and amoebic

movement [23–26]. Amoebic movement has also been reported

from sporoplasms after release from the spore, e.g. in T.

bryosalmonae [27] and M. cerebralis [28–29].While motility of the

sporoplasms allows the parasite to burrow into the epithelia of the

fish, thus allowing entry into or, later on, active displacement

within the host’s tissues, motility in myxozoans inhabiting body

cavities filled with fluids probably serves suspension rather than

displacement. As myxozoans occurring in the bile are often

present in large numbers and can be easily extracted without host

tissue contamination, they provide an excellent opportunity to

study the structures facilitating parasite motility and the mecha-

nisms underlying parasite movement, in order to fill this important

gap in our knowledge of this parasite group.

Traditionally, light microscopy and electron microscopy are

being used to describe the morphology of different stages. In 2005,

McGurk et al. [30] published the first three-dimensional view of

myxozoans by studying spores of T. bryosalmonae using confocal

laser scanning microscopy. This powerful technique allows for the

visualization of different cell components in whole parasites, with

minimal processing of the material and a wide range of fluorescent

dyes available for the visualization of different morphological

features [30], and is awaiting further exploitation.

We recently found large numbers of different developmental

stages of Ceratomyxa puntazzi in the bile of the sharpsnout seabream

Diplodus puntazzo [31]. These parasite stages showed strong motility

and a high rate of cell proliferation. In this paper we combine a

variety of microscopic techniques, i.e. light microscopy, scanning

and transmission electron microscopy as well as confocal laser

microscopy, to study different C. puntazzi development stages’ in

order to elucidate their three-dimensional morphology, ultrastruc-

ture and composition, and to better understand the mechanisms

underlying myxozoan locomotion and the structural components

allowing motility and cytokinesis in this parasite group. Further-

more, we aim to ascertain the sequence of parasite development

resulting in successful proliferation and spore formation.

Results

We found a range of different stages of C. puntazzi in the bile of

D. puntazzo. Most importantly, two different developmental cycles

of the parasite were observed: 1. Pre-sporogonic proliferative

development and 2. Sporogony. Both developmental cycles were

found to occur in parallel but fish were observed to have either

predominantly stages lacking mature spores or predominantly

stages with mature spores.

Phalloidin staining reveals the distribution and function
of F-actin in myxozoan stages during motility and
budding

Proliferating stages presented high morphological plasticity and

locomotive activity, showing amoeboid movement. The earliest

and smallest stages were round or ellipsoidal (Figure 1A),

measured 3.7–6.5 mm in diameter, and showed dispersed

refractive bodies in their cytoplasm as well as the presence of 1–

3 filopodia of 0.9–3.1 mm length. As development progressed, the

parasites acquired a larger size (9.7–35.2 mm length, 5.89–

20.52 mm width; 3–11 filopodia of 1.7–7.5 mm length) and a

characteristic pyriform shape, which seemed to be closely

associated with the direction of movement (Figure 1B–1D).

Thereby, the round side was found to represent the anterior end

of parasites in motion, and it was characterized by a hyaline area

(ectoplasm) of 2.3–3.5 mm width and a concentration of filopodia

which were moving actively, and were sometimes ramified

(Figure 1B and 1I; Video S1). Using CLSM, a high concentration

of F-actin was detected at the round, anterior end of the parasites

(green phalloidin staining in Figure 1H–K), corresponding to the

hyaline ectoplasm area and in the filopodia. The posterior end of

the parasites was typically pointed, forming a single, large

cytoplasmic extension (8.1–13.9 mm length, 1.1–2 mm and 0.3–

1.3 mm width at base and at the tip, respectively) which had a

much more rigid appearance than the delicate filopodia at the

anterior end of the parasites, and which lacked accumulation of F-

actin (Figure 1C–D and 1I). We could observe an undulating

motion of the hyaline area in vivo, probably provoked by the

projection of the filopodia, which were formed at the anterior end

of the parasites and merged with the cell surface in the lateral,

posterior area (Video S1). The filopodia were projected in the

direction of parasite movement and then posteriorly, from the

median anterior end, which usually had the largest filopodia, to

the most posterior part of the body. Filopodia movement was

substrate-independent and occurred radially around the whole

parasite. Thereby the parasites rowed themselves forward in the

medium (Figure 2; Video S1). In the endoplasm of the live

parasites, cytoplasmic streaming was observed.

In the pyriform stages, vacuoles measuring 2.8–4.3 mm (neutral

red-positive) (Figure 1D; Video S2) and refractive bodies

measuring 0.9–1.8 mm were observed, and the latter seemed to

be concentrated at the rounded end, posterior to the hyaline area

(Figure 1B–D). The proliferative myxozoan stages showed intense

exogenous budding by plasmotomy (Figure 1E–G and 1J–K).

Thereby, the buds seemed to emerge actively from the ‘‘mother’’

parasite: The F-actin-rich ectoplasmic edge of still attached buds

was found to occur on the opposite side than that of the ‘‘mother’’

parasite (Figure 1J–K), thus causing separation from it. Until

complete separation, a cytoplasm bridge (approx. 6 mm length)

was observed between separating stages (Figure 1K).

Parasites prepared for SEM showed a slightly different

morphology than fresh material. Filopodia and the posterior,

pointed cytoplasm extension were often difficult to distinguish

(Figure 1F). However, the buds were clearly visible, and some of

them showed a well defined demarcation line, a cytoplasmic

constriction, at the point where they would eventually separate

from the ‘‘mother’’ parasite (Figure 1E–F). In addition, using

SEM, some small blebs (0.22–0.64 mm in diameter) were detected

on the surface of the proliferating parasites (Figure 1E–G). Nile

red-positive lipid droplets (1–2 mm in diameter) were very

common in the larger pyriform parasites (Video S3) but not in

the smallest ellipsoid stages.

Sporogonic stages of C. puntazzi were represented by pseudo-

plasmodia developing two crescent-shaped spores (Figure 3A).

Ceratomyxa puntazzi Development and Motility
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Figure 1. Motility and budding of Ceratomyxa puntazzi in the bile of Diplodus puntazzo. A–D: LM, E–G: SEM, H–K: CLSM (DAPI and Phalloidin
stained). A) Small ellipsoidal stage. B) Pyriform stage with a wide hyaline area and refractive granules at rounded, anterior end of parasite. C) Pyriform
stage showing large filopodia and abundant refractive bodies at rounded end and a large, rigid cytoplasm extension at posterior end. D) Pyriform
stage with abundant vacuoles present in almost the whole body. Refractive bodies were concentrated at anterior end. E–G) Exogenous budding with
several stages dividing by plasmotomy. Arrows indicate cytoplasm constrictions. Some filopodia and blebs can be seen on the surface of the stages.

Ceratomyxa puntazzi Development and Motility
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Early sporogonic stages were pyriform and continued to show a

high degree of activity and amoeboid-like movement as well as an

F-actin-rich anterior edge (Figure 3B), as seen in proliferative

stages. While more features of the mature spores became visible,

the parasite stages showed less locomotive activity and were more

rigid, due to the mechanical effect of the almost mature spores. As

sporogenesis proceeded, F-actin was more dispersed and no longer

concentrated at one extremity (Figure 3D). Filopodia were present

throughout the initial stages of sporogony (Figure 3F–G) but had

disappeared by the time spores neared maturity (Figure 3H). The

pyriform shape was found to change to an oval one and lipid

droplets were less abundant and had a more random distribution

(Figure 3H) in mature pseudoplasmodia. In some mature

pseudoplasmodia, more than one cytoplasmic extension could be

observed (Video S4). Mature spores were liberated into the bile.

Cellular composition and developmental sequence
Proliferative stages. TEM showed that the earliest,

spherical stages observed in the lumen of the gall bladder

represented a primary (P) cell containing one or two nuclei

(Figure 4A), which occupied most of the cell lumen. Larger,

pyriform stages with 1–2 nuclei in the P cell contained up to 6

secondary (S) cells (Figure 4B–C), and later, S cells were found to

harbour 1–2 tertiary (T) cells (Figure 4C and 4E–F). The largest

proliferative stages were found to contain 12 nuclei (Figure 1H).

Commonly, units of 1–3 S cells, harbouring 0–2 T cells each

(Figure 4F) were found to be separated from larger stages and to

bud off (Figure 1E–F and 1J). Often, proliferation inside the

different compartments would continue while the buds were still

attached.

P cells had the largest nuclei and generally showed dispersed

heterochromatin. The cytoplasm of the P cell was generally less

electron-dense than that of S or T cells as it was less densely

packed with ribosomes. The smallest stages, i.e. the ones

harbouring 0–2 S cells, often contained very large mitochondria

(0.9–1.2 mm length) with various pronounced cristae (Figure 5A).

The number of mitochondria increased as the P cells grew

(Figure 4E) but their size was considerably smaller (0.2–0.8 mm

length) in larger parasites. Lipid droplets (Figure 5B) in the P cell

were absent or few and small in the youngest proliferative stages

(Figure 4A–C) but numerous and larger in multicellular stages

(Figure 4E). Lipid droplets were rarely observed in the cytoplasm

of S or T cells. The P cell of proliferative stages of all sizes had a

large number of non electron-dense vacuoles (Figure 5C). These

had a single membrane and were of variable size, measuring 0.9–

2.3 mm in diameter (Figure 5A), sometimes filled with granular

material (Figure 5D).

The cytoplasm of S cells contained mitochondria, abundant

ribosomes and rough endoplasmic reticulum (Figure 4F). Mito-

chondria of S cells were normally smaller (0.2–0.4 mm in length)

than mitochondria of early P cells. Between some S cells,

prominent cell junctions were observed (Figure 4D and 4G). In

some cases, partial engulfment was detected between attached S

cells (Figure 4G). Prominent eccentric nucleoli were sometimes

present in the nuclei of S cells (Figure 4C–D). A liberated cell

doublet was observed, with a highly electron dense cytoplasm,

probably representing an S cell harbouring a T cell in its

cytoplasm, and with remnants of the P cell membrane attached

(Figure 4H).

Generally, the T cell cytoplasm was even more densely packed

with ribosomes than that of S cells, and some small mitochondria

were also present (Figure 4F).

The cytoplasmic extensions corresponding to the rhizoid

filopodia at the anterior end and the rigid posterior cytoplasm

extension were also observed in TEM sections (Figure 5D). Small

blebs were identified on the surface of the P cell by SEM

(Figure 1E–G) and were also detected in TEM sections (Figure 5E–

H). Their content was either transparent (Figure 5E) or presented

the same structure as the cytoplasm of the P cells (Figure 5F–H).

Figure 2. Schematic drawing of the locomotive action of an active pyriform stage. Projection of filopodia from the anterior, median part
radially to most posterior part of the hyaline area, allowing active parasite movement.
doi:10.1371/journal.pone.0032679.g002

H) Three stages, a small ellipsoidal stage with 4 nuclei and two larger stages with 10 and 12 nuclei. I) Pyriform stage with abundant filopodia at round
side, where F-actin (green stain) is accumulated, and rigid cytoplasmic extension at the posterior end. Four nuclei are visible. J) Several stages with a
clear pattern of accumulation of F-actin in the hyaline area at the anterior end of the parasites where the filopodia are located. Upper parasite:
exogenous budding of a round stage with three nuclei (arrow head) and an F-actin rich surface at opposite end from the ‘‘mother’’ parasite it is
emerging from. K) Two stages showing exogenous budding with still attached buds moving in opposite directions. Abbreviations: HA: hyaline area;
CE: cytoplasmic extension; FP: filopodia; RG: refractive granules; V: vacuole; B: bleb; Nu: Nuclei. Scale Bar: A = 3 mm; B–D = 10 mm; E–K = 4 mm.
doi:10.1371/journal.pone.0032679.g001
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Sporogonic stages. Sporogony was initiated from a pyriform

P cell (the pseudoplasmodium) containing 4 S cells. Further

division led to the formation of 8 S cells and 4 T cells. These would

separate in two pairs of 4 S cells and 2 T cells, each forming a

spore. Valve cells were formed from S cells, whereas capsulogenic

cells were formed from T cells whose enveloping S cells were

found to form the sporoplasm (Figure 6A–B). In the beginning, the

sporoplasmogenic cells would take up most of the space inside the

developing spore. More mature capsulogenic cells were found to

be attached to the valve cells (Figure 6A).

The pseudoplasmodia (P cells) were electron-lucent and, in the

early stages of sporogony, the P cells contained a large number of

mitochondria, lipid droplets and vacuoles (Figure 6A–B), but as

spore formation proceeded, the P cell cytoplasm appeared less

defined and less electron-dense, still containing lipid droplets but

having less vacuoles (Figure 7A–B). At the end of sporogenesis, the

Figure 3. End of motility and the lipid droplets of Ceratomyxa puntazzi from the bile of Diplodus puntazzo. A: LM, B–H: CLSM. B: phalloidin
stain, C–E: DAPI and phalloidin stains, F–H: Nile Red stain. A) Pseudoplasmodia with two almost mature spores. Hyaline area visible at rounded side of
parasites and one cytoplasmic extension at posterior end. B) A early sporogonic stage, still pyriform, with a F-actin rich hyaline area and filopodia.
Notice two polar capsules (arrow head) of the forming spores. C) Late pseudoplasmodium with two spores, where all nuclei, including the valvogenic
ones are visible. D) Mature stage with two spores, where F-actin accumulation can be noted. Valvogenic nuclei have disintegrated. E) Mature spore
liberated into the bile with two capsulogenic nuclei and two sporoplasm nuclei. Valve nuclei are absent. F) Pyriform stage with two early sporoblasts,
abundant lipid droplets, filopodia and one larger posterior cytoplasmic extension. G) Almost mature stage showing abundant filopodia at rounded
side (arrow) and abundant lipid droplets. Two polar capsules can be estimated (arrow head). H) Two mature stages harbouring two spores each,
presenting smaller and randomly distributed lipid droplets than in early pseudoplasmodia. Abbreviations: HA: hyaline area; CE: cytoplasmic extension;
VNu: Valvogenic nuclei; Ac: F-actin; SpNu: Sporoplasmogenic nuclei; CNu: Capsulogenic nuclei; FP: filopodia; SB: sporoblast; LD: Lipid droplets. Scale
bar: A = 10 mm; B = 8 mm; C–H = 4 mm.
doi:10.1371/journal.pone.0032679.g003
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Figure 4. Pre-sporogonic proliferative development of Ceratomyxa puntazzi from the bile of Diplodus puntazzo (TEM). A) Early stage
consisting of a P cell with two P cell nuclei. Notice the presence of vacuoles, mitochondria and absence of lipid droplets. B) Stage consisting of a P cell
and a S cell with their respective nuclei. In the P cell, vacuoles are well defined and large mitochondria. In the S cell, small mitochondria are visible. C)
Stage consisting in a P cell with two S cells, one of them with a forming tertiary cell (S-T doublet). Large mitochondria are present in the P cell and in
the S cells. One of the S cell nuclei has an eccentric nucleoli. Notice the presence of small lipid droplets in the P cell. D) Detail of a stage showing two
S cells and their nuclei, one of them with two eccentric nucleoli. Notice junction of the S cells (arrow head). Electron-dense lipid droplets where
observed in the cytoplasm of the P cell and abundant mitochondria in the S cells. E) Large stage with several S cells and S-T doublet. Abundant
electron-dense lipid droplets and mitochondria in the P cell. F) Detail of S-T doublet shown in Figure 4E, composed of an S cell and two T cells. Notice
abundant rough endoplasmic reticulum in S cell cytoplasm. G) A stage with three S cells in a P cell. Notice cell junction of two S cells (arrow head),
where partial engulfment was detected. H) Liberated cell doublet was observed, with a high electron dense cytoplasm, probably a S cell with a T cell
in its cytoplasm. Note remnants of the P cell membrane (arrows). Abbreviations: P: primary cell; PNu: primary cell nucleus; M: mitochondria; S:
secondary cell; SNu: secondary cell nucleus; V: vacuole; LD: lipid droplet; N: Nucleoli; T: tertiary cell; TNu: tertiary nucleus; rER: rough endoplasmic
reticulum. Scale Bar: A–C = 1 mm; D–E = 2 mm; F = 1 mm; G = 2 mm; H = 1 mm.
doi:10.1371/journal.pone.0032679.g004
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P cell cytoplasm had degenerated and contained hardly any

organelles apart from abundant lipid droplets (Figure 7B).

During sporogony, the valvogenic cells soon occupied an

external position enveloping all other sporogonic cells (Figure 3C,

6A and 7A). In one case, during early sporogony, the cytoplasm of

a valvogenic cell showed a constriction connecting an area

containing the nucleus of one valvogenic cell with the remainder of

the valvogenic cell and all other spore-forming cells (Figure 6B).

During spore maturation, the cytoplasm of the valvogenic cells

became progressively thinner. The two valvogenic cells joined to

Figure 5. Pre-sporogonic proliferative development of Ceratomyxa puntazzi from the bile of Diplodus puntazzo (TEM). A) Two large
mitochondria in the P cell with numerous well-developed cristae. B) Detail of electron-dense lipid droplet in a P cell. Notice the lack of a delimiting
membrane. C) Detail of non electron-dense vacuole with a single membrane (arrow head) filled with granular material. D) Pyriform stage with
filopodia at rounded side and a large cytoplasmic extension at posterior end. Notice vacuoles with granular material. E) Stage with blebs on the
surface. Notice electron-dense cytoplasm of an S cell densely packed with ribosomes. F) Large stage close to the epithelium of the gall bladder, with a
large bleb filled with the same material as the cytoplasm of the P cell. G) Stages with blebs. Notice the presence of material inside, similar to the P
cytoplasm content. H) Detail of a bleb. Abbreviations: P: primary cell; PNu: primary cell nucleus; M: mitochondria; S: secondary cell; SNu: secondary cell
nucleus; V: vacuole; FP: filopodia; CE: cytoplasmic extension; B: bleb; H: host epithelium. Scale Bar: A = 1 mm; B–C = 0.5 mm; D–E = 1 mm; F–G = 2 mm;
H = 1 mm.
doi:10.1371/journal.pone.0032679.g005
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form the suture (Figure 6F and 7A), in which the two cells

overlapped and formed a desmosome-like junction (Figure 7C–E).

Mature valve cells formed only a thin line surrounding the other

sporogonic cells and the valve cell nuclei had disintegrated

(Figure 3E).

Capsulogenic cells developed a capsular primordium with an

external tube in the cytoplasm (Figure 6A and 6D). As

capsulogenesis advanced, the capsular primordium and the

external tube grew. Later on, the polar filament was found to

condense (Figure 7A and 7D) and coil up inside the polar capsule,

forming five coils. The mature polar filament was typically twisted

and lay in a granular matrix (Figure 7D). Polar capsules had an

outer electron-dense layer and an inner electron-lucent layer

(Figure 7D). At the end of capsulogenesis, the polar capsules

acquired a pointed tip where the plug for polar filament discharge

was located (Figure 7C–D). Next to the plug, the junctions

between the capsulogenic cells and the valve cells were surrounded

by fibrous material (Figure 7D). Capsulogenesis was not

synchronised between the four capsulogenic cells of a pseudoplas-

modium (Figure 7A).

The two sporoplasmogenic cells (Figure 6A) formed a single

binucleate sporoplasm in mature spores (Figure 6C). The nuclei of

the sporoplasmogenic cells contained heterochromatin, only in

mature stages one eccentric nucleoli was detected in each nucleus

(Figure 6C). In contrast to the P cell, the cytoplasm of

sporoplasmogenic cells showed abundant rough endoplasmic

reticulum (Figure 7A). In the cytoplasm and between the

membranes of the two capsulogenic cells, an organized ‘‘vesicular

body’’ was observed (Figure 6D–G). The ‘‘vesicles’’ ranged from

32 to 60 nm in diameter: in some cases small electron-dense dots

were present inside the ‘‘vesicles’’ (Figure 6E and 6G). Spor-

oplasmosomes and membrane bound structures appeared in the

cytoplasm of the sporoplasm close to the end of sporogenesis

(Figure 7C and 7E).

In order to summarize the results obtained from the

combination of different microscopic techniques and stains, we

produced diagrams representing different developmental stages of

C. puntazzi (Figure 8).

Discussion

CLSM: an unexploited tool for myxozoans
As the present study shows, the combination of light

microscopy, scanning and transmission electron microscopy and

three-dimensional confocal laser microscopy, successfully contrib-

uted novel information on the structure and morphology of

ceratomyxid parasite stages in the bile, and provided unique

insights into parasite composition, cell motility and cytokinesis in

myxozoans, which had not previously been studied. Thereby,

CLSM presents itself as a poorly exploited but extremely useful

tool for exploring the three-dimensional morphology of the

parasites as well as for determining the presence and location of

certain cellular components. By using DAPI nucleic acid stain in

CLSM in combination with TEM it was possible to determine the

number of nuclei in each parasite stage and during budding. The

occurrence of pre-sporogonic proliferation and spore formation at

the same site allows parasite multiplication directly prior to spore

formation and thus increases the parasite’s number and chance of

infecting the invertebrate host considerably. The co-location of

proliferative and sporogonic cycles in the same organ has also been

reported for other Ceratomyxa spp. [23,25–26,32–34].

F-actin appears to be a motility effector in myxozoans
The use of phalloidin, for the first time in myxozoan

proliferative stages, suggests that F-actin is an important effector

of cell motility in myxozoans. In C. puntazzi, and possibly in other

myxozoans inhabiting liquid-filled body cavities, motility of the

parasites is achieved by a highly active, polarized F-actin rich

cytoplasm area, the ectoplasm, which is located at the anterior

pole of the parasite. This area represents a cell membrane

protrusion or lamellipodium which further produces filopodia.

The filopodia showed a very high degree of mobility and de novo

creation and re-absorption by the P cell. Thereby, they were found

to extend forward in the direction of swimming and then moved

postero-laterally, thus facilitating directional movement. The

involvement and function of the structures and F-actin have not

previously been studied or documented in the Myxozoa. However,

previously, Ceratomyxa spp. have been described to possess

cytoplasmic extensions [26,34–35]. However, they have been

related predominantly to anchorage in the host epithelium and to

a potential increase in the absorptive surface which is in contact

with host cells [36–39]. In myxozoans, pinocytosis has been

observed as a means of energy transfer from host to parasite, with

the P cell taking up material from the surrounding host cell, but

also from P cells to S cells [40]. In the case of C. puntazzi, none of

the cytoplasmic extensions detected were found to be in contact

with the epithelium of the gall bladder, and all parasites were

found to be in suspension in the bile. Based on this observation as

well as on the high activity level of the filopodia in C. puntazzi, it is

strongly suggested that they have a locomotive rather than an

anchoring or energy providing function. However, it remains

unclear, if the parasite’s energy to fabricate new cellular

components can come exclusively from the bile.

Information on the occurrence and distribution of effectors of

cell motility in myxozoans is scarce. F-actin has been previously

described to be present in the stinging tube of the polar capsules

and in the cytoplasm of the amoeboid sporoplasm of actinospor-

ean spores of Myxobolus pseudodispar [41]. However, this is the first

report of the presence of an F-actin rich cytoskeleton in

proliferating stages, confirming the active role of these stages.

Almost mature pseudoplasmodia showed much more dispersed F-

actin and less locomotive activity and flexibility. The loss of F-actin

Figure 6. Sporogenesis of Ceratomyxa puntazzi from the bile of Diplodus puntazzo (TEM). A) Initial sporoblast with two capsulogenic cells
developing the external tube. Both capsulogenic cells are enveloped by a sporoplasmogenic cell harbouring two sporoplasmic nuclei. Laterally, a
valvogenic cell and its nucleus. Lipid droplets and vacuoles are abundant in the cytoplasm of the P cell. B) Sporoblast with two capsulogenic cells, a
sporoplasmogenic cell with two nuclei and two valvogenic cells. The nucleus of the valvogenic cell is connected by a cytoplasmic bridge (*). Notice
formation of suture (arrows). C) Detail of a sporoblast, showing the binucleate sporoplasm, with two eccentric nucleoli. Abundant rough endoplasmic
reticulum is present in the cytoplasm of the sporoplasmogenic cell. D) Capsulogenic cell with a prominent external tube and a capsular primordium.
Note vesicular body associated to the membrane of the capsulogenic cell. E) Detail of the vesicular body of Figure 6D. F) Detail of a sporoblast with
vesicular body between the membranes of the two capsulogenic cells and the sporoplasmogenic cell. Suture forming between the two valvogenic
cells (arrows). G) Detail of vesicular body shown in Figure 6F. Abbreviations: P: primary cell; PNu: primary nucleus; CC: capsulogenic cell; CNu:
capsulogenic nucleus; SP: sporoplasmogenic cell; SpNu: sporoplasmogenic nuclei; VC: valvogenic cell; VNu: Valvogenic nucleus; ET: external tube; rER:
rough endoplasmic reticulum; LD: lipid droplets; M: mitochondria; V: vacuole; Cp: capsular primordium; N: nucleoli; VB: vesicular body. Scale Bar:
A = 2 mm; B = 5 mm; C = 2 mm; D = 1 mm; E = 0.2 mm; F–G = 1 mm.
doi:10.1371/journal.pone.0032679.g006
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Figure 7. Sporogenesis of Ceratomyxa puntazzi from the bile of Diplodus puntazzo (TEM). A) Pseudoplasmodium harbouring two
sporoblasts, with capsulogenic cells in different stages of maturation. One capsulogenic cell has a mature polar capsule, where sections of the coiled,
twisted polar filament can be observed. The other three capsulogenic cells show an external tube and capsular primordium in their cytoplasm. Note
abundant rough endoplasmic reticulum in the cytoplasm of the sporoplasmogenic cell. Formation of suture line between valvogenic cells can be
observed (arrows). B) Two mature spores inside a P cell. Abundant lipid droplets are present in the degenerated P cell. C) Mature spore with two polar
capsules, the opening for the extrusion of the polar filament, the suture (arrow head), one sporoplasm nucleus and sporoplasmosomes present in the
sporoplasm cytoplasm. D) Detail of a mature polar capsule with twisted appearance of polar filament and capsular plug; polar capsule with an outer
electron-dense layer and an inner electron-lucent layer. Apical junctions of the mature spore, surrounded by fibrous material between the
capsulogenic cell and the valve cell (arrows). Suture between valves (arrow head). E) Detail of a mature spore: desmosome-like junction of the suture
(arrow head) and sporoplasmosomes in sporoplasm cytoplasm. Abbreviations: CC: capsulogenic cell; CNu: capsulogenic nucleus; SP:
sporoplasmogenic/sporoplasm cell; SpNu: sporoplasmogenic/sporoplasm nucleus; VC: valvogenic cell; PC: polar capsule; Cp: capsular primordium;
ET: external tube; M: mitochondria; rER: rough endoplasmic reticulum; LD: lipid droplets; Spl: sporoplasmosomes; Op: opening for the extrusion of the
polar filament; PF: polar filament; Pl: capsular plug; IL: inner electron-lucent layer; OL: outer electron-dense layer; GM: granular matrix. Scale Bar:
A = 2 mm; B = 5 mm; C = 2 mm; D = 1 mm; E = 0.5 mm.
doi:10.1371/journal.pone.0032679.g007
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may reflect the end of the active swimming period and may cause

sinking and thus allow expulsion from the gall bladder via the

common bile duct, resulting in the release of spores via the

intestine.

Polarized F-actin distribution allows budding
The present study further demonstrates for the first time, that F-

actin seems to be of major importance in the process of budding.

Budding has previously been observed in many members of the

genus Ceratomyxa, e.g. in Ceratomyxa appendiculata, Ceratomyxa herouardi,

Ceratomyxa blennius and Ceratomyxa protopsettae [23,26,32,35]. How-

ever, a mechanism resulting in the separation of newly formed

‘‘daughter’’ parasites has so far not been suggested. In contrast to

the majority of eukaryotic cell divisions, in the present study,

cytokinesis A, the purse string model, was not observed, as an F-

actin rich contractile ring was absent during the budding process.

Separating buds were always found to ‘‘head’’ away from the

‘‘mother’’ parasite, demonstrating polarization of the F-actin

cytoskeleton at the opposite end of its attachment to the ‘‘mother’’

parasite, thus resulting in the active separation of buds. Cytokinesis

B and C are modes of cell division which seem to be carried out by

passive constriction and active protrusion [14] as observed in the

present case, and they are considered primitive modes of

cytokinesis, due to their lower demand of proteins and

functionality [11]. Cytokinesis B and C are defined as substrate

dependent. However, attachment of C. puntazzi to the gall bladder

epithelium was not observed in the present study, although widely

reported in other Ceratomyxa spp. [42–44]. The type of cytokinesis

observed for the Myxozoa in the present study does not match all

characteristics of the existing models type B or C and it is still

unclear if it can be ascribed to one of them, however, it is clear

that it excludes the formation of a myosin II-dependent contractile

ring (Cytokinesis type A). It thus differs from the general mode of

cell division in eukaryotes. Further research is needed to confirm

the active role of F-actin in myxozoan motility and budding by

using anti-microfilament drugs. Furthermore, it would be

Figure 8. Diagrams of some representative developmental stages of Ceratomyxa puntazzi in the bile of Diplodus puntazzo. A) Early,
active ellipsoidal stage with a few filopodia at anterior part, showing a primary cell with two primary nuclei and two secondary cells with a nucleus
each, and refractive granules. B) Budding of a small stage from the ‘‘mother’’ parasite. Both stages show accumulation of F-actin in opposite poles
allowing separation. ‘‘Daughter’’ parasite shows our suggestion of a secondary-tertiary cell doublets as proliferative stages. C) Active, pyriform stage,
with many filopodia, at anterior part, some of them ramified. This stage possesses a primary cell with a primary nucleus, three single secondary cells
and a secondary cell with two tertiary cells, abundant lipid droplets and refractive granules. D) Sporogonic stage with two forming spores, still
showing motility and abundant lipid droplets. E) Sporogonic stage close to the end of spore development, with loss of motility and reduced size and
number of lipid droplets. F) Mature spore with a binucleate sporoplasm, showing two capsulogenic cells with their nuclei and two polar capsules.
doi:10.1371/journal.pone.0032679.g008
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important to determine whether other proteins are implicated in

the cytokinesis of myxozoans to be able to determine their

evolutionary relatedness. Thereby, the related proteins may be of

particular interest for phylogenetic studies as the exact origin of the

myxozoans is still unclear, despite their recent adscription to the

Cnidaria [45–47].

Composition of ‘‘daughter’’ parasites: The fate of the P
cell

Plasmotomy appears to be the process leading to the division of

the P cell during exogenous budding as observed in SEM of C.

puntazzi. Plasmotomy has also been reported from other marine

coelozoic myxosporeans [23,32,48]. However, despite the large

number of TEM sections examined, the exact composition of

‘‘daughter’’ parasites remains unknown. ‘‘Daughter’’ parasites

contained 1–3 S cells, harbouring 0–2 T cells each, but it is

unclear whether they contained a P cell nucleus, as it was not

observed in the buds. However, in the present study, the P cells of

C. puntazzi appeared to be rather inactive with no more than 2

nuclei present in any parasite stage, at any given time, when

compared with S and T cells, which multiplied frequently and

were present in larger numbers. This suggests that ‘‘daughter’’

parasites do not contain a P cell nucleus but only part of the P cell

cytoplasm, which probably disintegrates or is being reabsorbed

resulting in the liberation of S cells enveloping T cells. Support for

this idea is found in the observation that some small stages of one

cell enveloping another one were found to have a very electron-

dense cytoplasm (Figure 4H), similar to that of S and T cells found

within the P cell (Figure 4C and 4E) and remnants of a cell

membrane (presumably that of the P cell) were attached to it. The

formation of a demarcation line between buds and ‘‘mother’’

plasmodium seems to indicate that the release of buds does not

result in the disintegration of the P cell of the ‘‘mother’’

plasmodium, unlike in proliferative blood stages of myxozoans

[49]. Despite the large number of sections examined, the

mechanism producing S or T cells in C. puntazzi could not be

determined with certainty, however S cells engulfing other S cells

were observed. Engulfment of one cell by another to form an S-T

cell doublet was clearly demonstrated for Ceratomyxa sparusaurati

[25] and supports the idea that T cells are generally produced by

engulfment [50], however, this process has never been observed in

P cells (resulting in the formation of S cells), and further

ultrastructural studies of sequential sections is necessary to clarify

whether engulfment is the only process of endogenous cell

formation in myxozoans, as stated by Morris [50].

Cell junctions between S cells have previously been observed in

other myxozoans [34,42]. S cell junctions might make it easier for

one S cell to envelop another S cell, and this might explain why

they were observed frequently. It is likely that, after mitosis, S cells

remain somehow attached, establishing the observed cell junc-

tions.

The role of the lipid droplets
Nile Red had not previously been used for CLSM in

myxozoans, but allowed for the visualisation of the distribution

of lipid droplets during parasite development. Lipid droplets were

extremely common in medium-sized pyriform stages and less

common in the smallest, ellipsoid stages or in late sporogonic

stages. Lipid droplets were almost exclusively present in the P cell.

This was also observed in Enteromyxum spp. [22,51]. However, lipid

droplets have been observed in S and T cells, e.g. in sporoplasmo-

genic cells [52–53] or in capsulogenic cells [54–55]. In the case of

C. puntazzi, the high concentration of lipid droplets in the P cell

and the presence of considerably more rough endoplasmic

reticulum and ribosomes in the S cells than in the P cell, may

be indicative of different cell functions. In this respect, the non-

dividing P cell may serve as a ‘‘container’’ and potential energy

supplier for S and T cells, which divide frequently and are actively

synthesizing cellular components. Thus, the lipid droplets might

represent energy reserves for parasite proliferation and sporogony.

At the same time, the lipid droplets might have some hydrostatic

function, contributing to keeping the parasites neutrally buoyant in

the bile. Surface enlargement by the formation of pseudopodia,

their mobility and the presence of small blebs on the surface of the

parasite’s P cell might further increase hydrostasis and buoyancy.

Further ultrastructural observations
Many ultrastructural details of C. puntazzi are similar to that of

other Myxozoa, however, there are some structures that differ or

are extraordinary and these are discussed briefly in the following

section:

The P cells of C. puntazzi presented a very large number of

vacuoles, sometimes filled with granular material. Their function is

unclear. In the case of Enteromyxum scophthalmi, a nutritional role

was ascribed to vacuoles in the P cell, with transport of nutrients to

the S cells [22]. However, as the composition of the vacuoles is

unknown, an excretory function could also be assigned. Addition-

ally, the bile is rich in salts and vacuoles of the P cell could have an

osmotic function, offsetting the loss of water of the parasite.

Shrinkage of the stages during fixation and staining may explain

the discrepancy in the size of the vacuoles of the P cell between

fresh LM samples and fixed TEM samples. A similar phenomenon

was reported for myxozoan spores [56–57]. In a similar way,

parasites prepared for SEM showed a slightly different morphol-

ogy than fresh material, possibly due to fixation. Future studies will

include rapid-freeze cryo-microscopy to circumvent these prob-

lems.

Mitochondria were considerably smaller in S cells than in early

P cells, where extremely large mitochondria were observed. This

could be related to the high energy production required for the

motility of the highly active parasite stages, with locomotive

actions likely to be conducted exclusively by the P cell.

A vesicular body was observed in the cytoplasm of the

sporoplasmogenic cell, and it was found to be associated with

the two capsulogenic cells, often demonstrating the only structure

located between the membranes of the capsulogenic cells. A

similar structure, described as aggregates of microtubules, was

described in the capsulogenic cells of Ceratomyxa tenuispora [58],

however, the diameter of the microtubules was slightly smaller

(25 nm) than that of the vesicles (32–60 nm) of the vesicular body

in C. puntazzi. Furthermore, both distribution and morphology

were different. In Polysporoplasma mugilis from Liza aurata,

icosahedral virus-like particles measuring 18–20 nm were ob-

served [59]. These virus-like particles and the vesicular body of C.

puntazzi share similarities: both structures represent a cluster of

small vesicles surrounded by membranes, with an electron-dense

core and are associated with the capsulogenic cell. However, the

vesicular body in C. puntazzi differed considerably with regard to

vesicle size, lacked icosahedral shape and was not associated with

pathological effects. The vesicular body observed in the present

study was previously reported in Unicapsula pflugfelderi where

vesicles measured 40–60 nm. In U. pflugfelderi the vesicular body

was also found in close vicinity to developing polar capsules, and a

secretory function was suggested [60]. Due to its location and its

vesicular structure it is suggested that the presence and function of

the vesicular body is related to capsulogenesis, possibly secreting

carbohydrates or other substances required for polar capsule

formation.
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To conclude, we demonstrate here that the combination of a

three-dimensional microscopy method applying different specific

stains together with the details of the cellular ultrastructure of the

different parasite stages is the best approach to capture and

understand the developmental cycles of myxozoan parasites,

which are still poorly understood, due to their extremely reduced

size and the lack of information on the basic principles of cell-in-

cell formation. The material from the present study and

comparison with existing reports showed that the development

of Ceratomyxa spp. in the bile seems to follow a sequence which

includes pre-sporogonic proliferation by budding and spore

formation. Most importantly, previously undescribed details on

the concentration of F-actin in certain cytoplasmic areas and the

formation of active cytoplasmic extensions provided a first insight

into the fascinating locomotive behaviour of myxozoans and the

mechanisms of cytokinesis underlying the unique process of

budding, which were found to differ from the general eukaryotic

model. The knowledge of the presence of F-actin in myxozoan

stages might contribute to design antiparasitic drugs that target F-

actin affecting actin dynamics and cell motility, as some

chemotherapeutics have been reported to perform at this level

[61]. The use of other specific stains in CSLM is strongly

encouraged as they are likely to provide further information on

these processes and on the distribution and function of other

important cellular components. Particularly exciting prospects are

presented by the possibility to use CLSM in combination with vital

stains and to observe the aforementioned processes in vivo.

Materials and Methods

No ethic statement is required for this study. Fish handling was

carried out according to the Spanish legislation (Real Decreto

1201/2005) and the Valencian regional legislation (Decreto 13/

2007) for the protection of animals used for experimental and

other scientific purposes. All animal work was approved by the

ethics committee for animal welfare of University of Valencia,

Valencia, Spain (license number: A1312449905843).

Fish and parasite collection
Between January 2008 and June 2010, 81 specimens of

sharpsnout seabream D. puntazzo (6–29 cm total length; 3.75–

448.6 g) were obtained from San Pedro del Pinatar, Mar Menor,

Murcia (Mediterranean, Spain), where they had been caught by

netting. Fish were transported live to the aquaria facilities at the

University of Valencia. For study of the myxozoan development in

the fish, fish were euthanized by neural pithing. Whole infected

gall bladders as well as parasite stages in freshly collected bile were

analysed. Parasites were observed in vivo, as well as after fixation

and differential staining, using a variety of microscopic techniques

to obtain the most comprehensive information on the morphology

and development of C. puntazzi in the gall bladder of D. puntazzo.

Microscopy
Light microscopy (LM). Several microliters of fresh bile

were pipetted onto microscopic slides, coverslipped and observed

by LM using Nomarski’s differential interference contrast on a

Leica DMR microscope under 1006objective lens. Digital images

of live material were taken with a Leica DC300 (Leica

Microsystems Ltd.). Using the computer software UTHSCSA

ImageTool Version 3.0 for Windows (The University of Texas

Health Science Center at San Antonio, Texas, USA),

measurements were taken on digital images and in relation to

images taken of a graticule of defined length. All measures are

maximum length and width.

Videos of live parasites were recorded with a Leica DFC295

(Leica Microsystems Ltd.) mounted on the same microscope. In

some cases, live parasites were stained with 1% neutral red. The

videos were edited with ArcSoft ShowBizH DVD 2 (ArcSoft Inc,

USA).

Scanning electron microscopy (SEM). Ethanol-washed

and 0.1% poly-D-lysine coated slides were incubated with bile,

containing different parasite stages, which were left to settle onto

the coated surface for 30 min. The parasites were then fixed for

30 min on the coverslips using 2.5% glutaraldehyde in 0.1 M

phosphate buffer (pH 7.4). After rinsing in PBS (2615 min) the

parasites on the coverslip were post-fixed with 1% osmium

tetroxide in 0.1 M phosphate buffer for 30 min. Coverslips were

then washed for 15 min in distilled water, dehydrated in an

ascending alcohol series and critical-point dried. Thereafter, the

coverslips were mounted on stubs, gold sputtered-coated and

examined with an FeG-SEM Hitachi S4100 electron microscope

(Hitachi High Technologies Co LTD, Tokyo, Japan).

Transmission electron microscopy (TEM). Infected gall

bladders were fixed in 2.5% glutaraldehyde in 0.1 M PBS (pH 7.4)

for several days. Once transferred to the fixative, the gall bladder

walls were penetrated using a syringe with a fine needle in order to

allow immediate access of the fixative to the parasite stages.

Fixation occurred over several days. Following several washes with

PBS, the gall bladders were post-fixed with 1% osmium tetraoxide

in 0.1 M PBS and washed again with distilled water. Gall bladders

were transferred to 2% uranyl acetate in 30% acetone and

incubated for 1 hour in the dark. Thereafter, they were

dehydrated in an ascending acetone series and transferred into

ALV resin, in which they were embedded and left to polymerise

for 16 hours at 65uC. Ultrathin sections were cut and mounted on

grids. Grids were examined in a TecnaiTM G2 Spirit BioTWIN

(FEI Company, Oregon, USA) or a JEM 100B (JEOL Ltd,

Peabody, MA, USA) transmission electron microscope.

Confocal laser scanning microscopy (CLSM). For CLSM,

4% formalin fixed samples of infected bile in 0.1 M PBS were left

to settle onto 0.1% poly-D-lysine coated slides for 30 min. The

parasites were stained with the following differential dyes: 1. Nile

Red (7-diethylamino-3, 4-benzophenoxazine-2-one), which is

lipophilic and stains intracellular lipid droplets, 2. Phalloidin

(Alexa FluorH 488 phalloidin, Invitrogen), which binds specifically

at the interface between the subunits of F(ilamentous)-actin, which

forms the cytoskeleton and functions as an important mediator

of cell motility, and 3. DAPI (4,6-diamidino-2-phenylindole,

dilactate; Molecular probes), which binds to DNA. Nile Red

stock solution (0.5 mg mL21 in acetone) was diluted by mixing

1.7 mL of the stock solution with 50 mL of a 75:25 glycerol:water

mixture. Nile red staining was conducted for 30 min in the dark,

thereafter the samples were washed with 0.1 M PBS. Phalloidin

was applied at 2.5 mL 100 mL21 in 0.1 M PBS and DAPI at

300 nM in ionised tap water. Parasites were stained for 30 min,

and no post-staining rinses were conducted before viewing. Cover

slips were placed over all the samples and sealed with nail varnish

to prevent evaporation of the medium. All CLSM samples were

examined using a Leica TCS SP2 AOBS confocal laser scanning

microscope (Leica Microsystems AG, Wetzlar, Germany).

Supporting Information

Video S1 Motility pyriform stages. Several pyriform stages

showing active locomotion, with a hyaline area at round side with

abundant active filopodia projected from the most anterior part to

the posterior part of the hyaline area. Largest stages presented

fewer motility activity. Notice the cytoplasmic streaming, the
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accumulation of refractive granules, large vacuoles and the long

and rigid posterior cytoplasmic extension.

(MPG)

Video S2 Neutral red stained active pyriform stage.
Notice the large vacuoles distributed throughout the body and the

abundant refractive granules at round side.

(MPG)

Vı́deo S3 CLSM reconstruction of a Nile red stained
pyriform stage. Lipid droplets distribution and two sporoblasts

located at the wider part of the body of the parasite can be

observed. Notice the distribution of the filopodia at the round side.

(MPG)

Vı́deo S4 Active sporogonic stage with spores. A

sporogonic stage with two spores, showing less motility activity

and more rigidity, due to the presence of the spores. Notice the

presence of cytoplasmic extensions and some small filopodia

moving.

(MPG)
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Georgévitch. Arch zool exp gen 56: 375–399 (in French).

33. Georgévitch J (1929) Recherches sur Ceratomyxa maenae nov. sp. Arch Protistenkd
65: 106–123 (in French).

34. Morrison CM, Martell DJ, Leggiadro C, O’Neil D (1996) Ceratomyxa

drepanopsettae in the gallbladder of Atlantic halibut, Hippoglossus hippoglossus, from

the northwest Atlantic Ocean. Folia Parasit 43: 20–36.

35. Maı́llo-Bellón PA, Gracia-Royo MP (2007) Vegetative stages, sporogenesis and
spore morphology of Ceratomyxa appendiculata, Thélohan, 1892 (Myxozoa:

Bibalvulida), from the gall bladder of Lophius budegassa, Spinola, 1807 (Teleostei:
Lophiidae). Acta Protozool 46: 247–256.
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38. Sitjà-Bobadilla A, Alvarez-Pellitero P (2001) Leptotheca sparidarum n. sp.
(Myxosporea: Bivalvulida), a parasite from cultured common dentex (Dentex

dentex L.) and gilthead sea bream (Sparus aurata L.) (Teleostei: Sparidae).
J Eukaryot Microbiol 48: 627–639.

39. Cuadrado M, Albinyana G, Padrós F, Redondo MJ, Sitjà-Bobadilla A, et al.
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