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Abstract: Filled skutterudites are currently studied as promising thermoelectric materials due to their
high power factor and low thermal conductivity. The latter property, in particular, can be enhanced
by adding scattering centers, such as the ones deriving from low dimensionality and the presence
of interfaces. This work reports on the synthesis and characterization of thin films belonging to the
Smy(FexNi1−x)4Sb12-filled skutterudite system. Films were deposited under vacuum conditions by
the pulsed laser deposition (PLD) method on fused silica substrates, and the deposition temperature
was varied. The effect of the annealing process was studied by subjecting a set of films to a thermal
treatment for 1 h at 423 K. Electrical conductivity σ and Seebeck coefficient S were acquired by the
four-probe method using a ZEM-3 apparatus performing cycles in the 348–523 K temperature range,
recording both heating and cooling processes. Films deposited at room temperature required three
cycles up to 523 K before being stabilized, thus revealing the importance of a proper annealing
process in order to obtain reliable physical data. XRD analyses confirm the previous result, as only
annealed films present a highly crystalline skutterudite not accompanied by extra phases. The
power factor of annealed films is shown to be lower than in the corresponding bulk samples due to
the lower Seebeck coefficients occurring in films. Room temperature thermal conductivity, on the
contrary, shows values comparable to the ones of doubly doped bulk samples, thus highlighting the
positive effect of interfaces on the introduction of scattering centers, and therefore on the reduction
of thermal conductivity.

Keywords: thermoelectricity; skutterudites; thin films; pulsed laser deposition; power factor; ther-
mal conductivity

1. Introduction

The increasing global energy demand, together with the very real greenhouse emis-
sions and global warming issues, is becoming increasingly alarming, leading scientists to
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search for new sustainable energy sources and energy-saving routes. Undoubtedly, in order
to reduce the carbon footprint, several alternatives should be explored, such as solar [1] and
wind [2] power, as well as fuel cell [3,4] technologies. In this scenario, thermoelectricity is a
promising and attractive property of materials which could play a notable role in the future
global requirement of energy due to its dual function in power generation and refrigeration.
Thermoelectric generators (TEGs) can be employed for a wide spectrum of purposes, for
example as radioisotope heat sources for space applications, or as power supplies in remote
areas, or in the automotive field [5,6]. Especially for the thin films discussed in this paper,
the applicative possibilities as thermoelectric energy harvesting to power Internet of Things
(IoT) sensors and devices are important [7–10].

The thermoelectric (TE) materials’ performance is evaluated through the dimension-
less figure of merit ZT:

ZT =
σS2

k
(1)

with σ being the electrical conductivity, S the Seebeck coefficient, T the absolute tempera-
ture and k the thermal conductivity. Furthermore, k consists of the sum of the electronic
thermal conductivity ke and the lattice thermal conductivity kL [11]. In addition, ke and σ
are firmly correlated to each other through the Wiedemann–Franz law:

ke/ σ = L T (2)

with L being the Lorentz number. The optimization of ZT points toward boosting power
factor (PF), namely the σS2 product, and abating thermal conductivity. σ and S show an
opposite behavior depending on doping and charge carrier concentration; since, as shown
before, σ and ke are interdependent, individually adjusting these parameters is a very
difficult task, which requires deep knowledge of the material band structure. The phonon
contribution to thermal conductivity kL, on the contrary, is essentially independent of σ
and S, and the attempt to minimize its value by reducing the phonon mean free path is the
most easily accessible phenomenological approach to the optimization of thermoelectric
materials. This idea relies on the expression of kL:

kL =
1
3

Cvvl (3)

where Cv is the specific heat at constant volume, v the sound velocity, and l the phonon
mean free path. The most common technique consists of the introduction of scattering
centers, for instance through density enhancement [12], porosity control [13], nanostruc-
turing [14], mesostructuring [15] or precipitation of nano-sized secondary phases [16]. A
further method, consisting of the introduction of substitutional and/or interstitial atoms,
underlies the optimization of skutterudites.

Given all the described conditions, it has become clear that the best compromise,
able to reconcile the maximization of σ and S and the minimization of kL, can be found
in semiconductors [17]. Among the many classes of materials currently studied, such as
Heusler phases [18] and clathrates [19], filled skutterudites play a relevant role due to
the possibility of obtaining n- and p-conducting materials within the same system just by
changing the number of doping ions [20].

Skutterudites MX3 [21,22] (M ≡ transition metal, X ≡ pnictogen atom) crystallize
in a body-centered cubic cell (Pearson symbol cI32, Im3 space group, isotypic crystal:
CoAs3) with two different atomic sites, namely the 8c (1/4, 1/4, 1/4) and the 24g (0, y, z),
occupied by M and X, respectively. MX6 strongly tilted corner-sharing octahedra, and
an X12 icosahedral cage with its center in the 2a site located in (0, 0, 0), consequently
form. Such a material is characterized by a value of k that is too high to be exploited for
thermoelectric applications [23], but if a proper R atom (R ≡ rare earth or alkaline-earth
element) enters the cavity, kL is significantly lowered thanks to the vibrational modes of
the vibrating guest, which hinder the propagation of heat-carrying phonons [24], and ZT
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is consequently enhanced. In this respect, filled skutterudites RM4X12 follow the phonon-
glass electron-crystal (PGEC) concept [11], stating that ideal thermoelectric materials should
conduct heat like glass and electricity like a crystal, and thus have low thermal conductivity
and high electrical conductivity. Some examples of high-quality outcomes are the n-type
(Sr,Ba,Yb)Co4Sb12 with ZT ≈ 2.0 at 835 K [25] and the p-type DD0.7Fe3CoSb12 with ZT > 1.3
at 856 K [26]. As previously mentioned, in the majority of filled skutterudite systems, both
p- and n-type compounds can be synthesized from the same parent compound by tuning
the filling ratio of the R atom and the partial substitution of the M atom, thus creating a
lot of different compounds, such as Fe/Ni- [27,28] and Fe/Co- [29,30] based ones. At the
same time, the insertion of two different M atoms, similarly to the doping by two different
rare earths [27] or the partial substitution of Sb by Sn [31] or Ge [32], is responsible for the
creation of additional scattering centers, and thus for a further lowering of kL.

The reasons behind the study of skutterudite thin films are therefore twofold: on one
hand, a basic scientific motivation leads us to investigate the effect of low dimensionality
and the presence of interfaces, which make thin films particularly interesting as a source of
further phonon scattering [33,34]. On the other hand, from a technological point of view, it
is desirable to produce flexible and robust TE devices, able to harvest heat from curved or
irregularly shaped surfaces, overcoming the flat, bulky and fragile commercial TE devices.
Nevertheless, in spite of the relevance of these issues, very few works are devoted to the
deposition of skutterudite thin films and to their characterization, and almost all of them
deal with CoSb3 [35,36] and CoSb3-deriving compounds [33,37,38].

This work reports on the deposition by pulsed laser deposition of thin films of two
filled skutterudites belonging to the Smy(FexNi1−x)4Sb12 system. The effects on the struc-
tural and transport properties of the deposition and the annealing temperature were
studied. The deposition at room temperature, followed by an annealing process at 423 K,
was revealed to be essential for the obtainment of crystalline films and preferable to a high-
temperature deposition. While power factor is lower in films than in the corresponding
bulk samples due to the lower Seebeck coefficients, room temperature thermal conductivity
exhibits values comparable to the ones of doubly doped bulk samples; this encouraging
result suggests the positive effect of the presence of interfaces on the introduction of scatter-
ing centers, and therefore on the reduction of thermal conductivity. Starting from this point,
our future works will be focused on achieving further reduction in thermal conductivity
by introducing artificial nanoparticles.

2. Materials and Methods
2.1. Preparation of Porous Samples and Dense Targets

Two compositions of the Smy(FexNi1−x)4Sb12 filled skutterudite system were prepared
by the conventional melting–quenching–annealing technique with nominal (x = 0.63;
y = 0.20) and (x = 0.70 y = 0.40), being the former at the n/p crossover, and the latter p-
conducting, respectively [39]. The Sm content was chosen based on the results described
in [28]. Additionally, Sb was added in a slight excess compared to the stoichiometric
quantity in order to compensate for the possible loss caused by its non-negligible vapour
pressure (0.133 Pa at 873 K [40]). Small pieces of pure elements (Fe, Alfa-Aesar, 99.99 wt.%;
Ni, (Alfa-Aesar, Kandel, Germany), 99.99 wt.%; Sm (NewMet, Waltham Abbey, UK);
99.9 wt.%; and Sb (Mateck, Jülich, Germany), 99.99 wt.% were weighted in the specified
amounts and placed under vacuum in quartz tubes. The mixtures were then thermically
treated at 1223 K for 1 h to ensure the homogenization of the liquid phase, and then hastily
cooled in a water bath to improve microcrystallinity and facilitate the subsequent annealing
process. As-cast samples were then annealed in vacuum at 873 K for 7 days in order to
promote the formation of the desired phase, and subsequently ground in mortar operating
within an Ar-filled glovebox in order to prevent oxidation.

The sample with x = 0.63 was densified by spark plasma sintering (SPS, home-made
machine at the University of Pavia, Italy) at 773 K for 5 min under a pressure of 50 MPa.
Discs’ diameters ranged between 1 and 1.5 cm, depending on the availability of the starting
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material. Targets of specimens with x = 0.70 were prepared by the open die pressing
technique (ODP, at CNR-ICMATE in Lecco, Italy). Powders were encapsulated into an iron
sleeve; the inner surface was covered with a layer of BN to prevent sticking and to facilitate
the sample removal after the process. The specimen was preheated at 773 K for 3 min and
pressed with its axis horizontally oriented between two heated plates of a hydraulic press.
The dense sample is provided with a characteristic shape, giving the possibility to obtain
two distinct targets. Samples are named Fe63 and Fe70, depending on Fe % amount with
respect to the total (Fe + Ni) content.

2.2. Characterization of Porous Samples and Dense Targets

Morphology and composition of both porous and dense samples were studied by
electron microscopy coupled to energy dispersive X-ray spectroscopy (SEM-EDS, Oxford
Instruments, Abingdon, UK, model 7353 with Oxford-INCA software v. 4.07, Link Ana-
lytical – Oxford Instruments, Abingdon-on-Thames, UK, working distance: 15 mm, live
time: 40 s); to this purpose small pieces were encapsulated in resin and micrographically
polished prior to being analyzed. EDS analyses were performed on at least five points for
each selected area. Microhardness of porous samples was measured by means of a VMHT
microhardness tester (Leica, Wetzlar, Germany) provided with Vickers indenter. A test
load of 50 g was applied with a dwell time of 15 s; 10 tests were performed on each sample.

Powders obtained from grinding bulk samples were analyzed through X-ray diffrac-
tion by a Bragg–Brentano powder diffractometer (Philips PW1050/81, Amsterdam, The
Netherlands, Fe-filtered Co Kα radiation, power settings: 30 mA, 40 kV) making use of a
zero-background sample holder in the 20◦–110◦ angular range.

2.3. Deposition of Thin Films

Filled skutterudite thin films were grown by the pulsed laser deposition (PLD) tech-
nique using a Nd:YAG (266 nm, 10 Hz) laser (LOTIS TII, Minsk, Belarus). Squared silica
pieces were chosen as substrates, undergoing firstly a cleaning process at 773 K for 2 h,
and then being glued by means of silver paint on an Inconel plate which was then inserted
into the PLD chamber. The laser was shot on the dense Fe63 and Fe70 targets with an
energy density of about 4.2 J/cm2 for a deposition time of 60 min under high vacuum
(10−4 Pa). Films were deposited both at room temperature and at 423 K, and a set of the
former batch was subjected to an annealing process at 423 K for 1 h under a flux of argon
gas (200 cm3/min). Films are named Fe63_RT, Fe70_RT, Fe63_423, Fe70_423, Fe63_ann
and Fe70_ann according to the Fe amount, as previously elucidated, and to the process the
sample was subjected to: RT (deposition at room temperature), 423 (deposition at 423 K),
ann (annealed). In Table 1, an overview of the experimental conditions of film deposition
is reported.

Table 1. Experimental conditions of the thin film depositions.

Sample Deposition
Temperature [K]

Deposition
Time [min]

Target–Substrate
Distance [mm]

Annealing
[min-K]

Fe63_RT 293 60 35 -
Fe63_423 423 60 35 -
Fe63_ann 293 60 35 60–423
Fe70_RT 293 60 35 -
Fe70_423 423 60 35 -
Fe70_ann 293 60 35 60–423

2.4. Characterization of Thin Films

Morphology and composition of thin films’ surfaces were studied by electron mi-
croscopy coupled to energy-dispersive X-ray spectroscopy (lower electron detector, LED-
SEM, JEOL/JSM-7100F, Akishima, Japan); to this purpose, the surface of the films was
coated with gold prior to being analyzed. EDS analyses were performed on at least five



Materials 2021, 14, 5773 5 of 15

points for each selected area. The thermoelectric parameters, such as electrical conductivity
(σ) and Seebeck coefficient (S), were concurrently measured by the four-probe method
between 348 and 523 K using a ZEM-3 (ULVAC Advance-Riko, Chigasaki, Japan) appa-
ratus under a partial He pressure to assure the thermal transport between the heater and
the sample. The thickness of samples was evaluated by means of a Dektak 6M Stylus
profilometer (Bruker, Billerica, MA, USA).

All samples were subjected to the X-ray diffraction analysis, both before and after
the thermoelectrical characterization by a Bragg–Brentano powder diffractometer (Smart
Lab3 Rigaku Corporation, Tokyo, Japan) using the Cu Kα radiation in the 10◦–100◦ angular
range with angular step 0.02◦ (power settings: 40 mA, 40 kV).

The picosecond time-domain thermoreflectance (TD-TR) technique using a customized
focused thermal analysis system based on PicoTR (PicoTherm, Tsukuba, Japan) was utilized
to measure thermal conductivity of the samples at room temperature in the cross-plane
direction [41–44]. Details are reported in the section Appendix A.

3. Results and Discussion
3.1. Morphological, Compositional and Structural Properties of Porous and Dense Samples

The surface of bulk annealed samples appears highly porous, as depicted in Figure 1a,b,
where microphotographs taken on both samples by secondary electrons (SE) are shown.
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Figure 1. SE-SEM microphotographs of the polished surface of bulk samples (a) Fe63 and (b) Fe70.

Backscattered (BS) images and EDS analyses suggest that the main phase is the desired
skutterudite, with composition Sm0.17(Fe0.60Ni0.40)3.75Sb12 and Sm0.38(Fe0.69Ni0.21)3.75Sb12
for samples Fe63 and Fe70, respectively. Nevertheless, the presence of the additional phase
SmSb2, which is commonly found in non-perfectly monophasic samples belonging to this
system [45], can be observed too, as can be inferred from Figure 2.
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The presence of the aforementioned additional phase, as well as of a tiny amount of
Sb, is confirmed by the results of X-ray acquisitions, as observable in Figure 3.
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Microhardness was measured at several points of both phases on the Fe70 surface;
results clearly show a clustering of data around two values, namely 462(23) and 373(14)
HV, the former being associated to skutterudite and the latter to the SmSb2 extra phase.
Such a value for skutterudite is in good agreement with the values of samples belonging to
the (Sm,Gd)y(FexNi1−x)4Sb12 system [27].

After the densification process, both compositions show a significant density en-
hancement, as clearly depicted in Figure 4, presenting the surface of targets as revealed
by SE-SEM.
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3.2. Morphological, Structural and Transport Properties of Thin Films

The morphology of thin films is shown in Figures 5 and 6, which present LED-SEM
photos of the films’ surfaces.

Films deposited at room and at high temperature present a large difference: while the for-
mer (Figure 5a,b and Figure 6a,b) show a very smooth texture, the latter (Figures 5c and 6c)
present uniformly distributed nanosized grains appearing on the films’ surfaces. Under
a brief analysis with the EDS, they appear richer in Sb compared to the film. As can be
inferred from the high magnification image taken on the sample Fe70_ann (se Figure 7), the
typical grain size of these films is around 20 nm. Analogous morphology can be observed
on other samples of both series. On the surface of all films, the presence of drops with sizes
ranging from 1 to 2 µm is noticeable, typical of films deposited via PLD [46]. In order to
reduce this inconvenience as much as possible, a study regarding the dependence of the
morphology from the laser energy density is required in the future.
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The X-ray diffraction (XRD) patterns collected on the three films belonging to the Fe70
series are presented in Figure 8; analogous behaviors are shown by the Fe63 series. Both
samples as-deposited at room temperature (Fe63_RT and Fe70_RT) are shown to be mostly
amorphous. After undergoing the annealing process, both films (Fe63_ann and Fe70_ann)
exhibit the peaks corresponding to the skutterudite structure, indicating the formation of
a crystalline structure. It has to be noticed that, at variance with bulk samples, annealed
films present only the desired skutterudite phase, and not additional ones. On the contrary,
samples deposited at 423 K (Fe63_423 and Fe70_423) show both skutterudite and undesired
additional phases, such as Fe-Ni antimonides or residual-free Sb, similarly to bulk samples.
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The importance of the annealing process is illustrated by the electrical conductivity
measurements cycling. As depicted in Figure 9, representing the σ measurement of sample
Fe70_ann, it is clearly visible that during the first heating cycle up to 523 K, the σ drops
suddenly around 325-425 K to a lower σ range, attesting to a remaining instability of
the annealed films during the measurement. However, after the first heating cycle, the σ
became perfectly reproducible; all samples follow this trend. It is highly likely that the first
temperature cycle acts as a further annealing process, which promotes the obtainment of a
higher crystallinity degree, even if the appearance of new phases was not observed. As a
consequence, only results deriving from annealed films will be considered hereinafter.

Data reported in Figure 10, showing the trend of σ vs. temperature for both com-
positions of annealed films, confirm the semiconducting nature of the samples and the
substantial closeness of their electrical conductivity values. A comparison with data of the
(Sm,Gd)y(FexNi1−x)4Sb12 skutterudite [27] indicates that the present σ values are not far
from the ones of dense samples with x = 0.8, while they are significantly higher than those
of Sm-filled bulk samples [47].
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samples Fe63_ann and Fe70_ann.

The Seebeck coefficient S is presented in Figure 11 as a function of temperature for
both annealed films. The two compositions present very similar data and result to be p-
conducting, with values remarkably lower than the ones of (Sm,Gd)-filled compositions [27]
and of Sm-filled bulk samples [47]. In comparison with thin films, the Sm-filled skutterudite
bulks present larger sizes of grains (72–307 nm) and lower density (82–97%), depending
on composition and on the applied sintering pressure, according with the calculations
reported in [39]. The larger size of the grains and relatively lower density of the bulks with
respect to films could be responsible for a higher electron scattering, which conversely
yields higher values of S. As a general remark, it can be observed that both samples exhibit
a weak dependence on temperature. As already observed in the two aforementioned
cases, even in the present one the trend of S vs. T shows a maximum at ~500 K, as the
measurement extends over a sufficiently broad temperature range.
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Fe70_ann.

Making use of the measured σ and S values, the power factor (PF = σS2) has been
estimated for both compositions, as shown in Figure 12. As a consequence of the afore-
mentioned maximum in S, even in the trend of PF a maximum occurs roughly at the same
temperature as in S. Regarding the absolute values of the two observed maxima, they are
323 µW/m·K2 and 466 µW/m·K2 for samples Fe63_ann and Fe70_ann, respectively, which
are significantly lower than the corresponding data of the (Sm,Gd)-filled skutterudite [27].
The reason behind this behavior can be found in the cited lower value of the Seebeck
coefficient with respect to the dense doubly doped system [27].
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For sake of comparison, the power factor of our films is compared with other skut-
terudite thin films reported in literature. It can be observed that our data are comparable
with the ones of Co15.82Sb62.04Te22.14 [37] and significantly higher than those of Ag-doped
CoSb3 [48].

A comparison with thermal conductivity data of (Sm,Gd)-doubly doped [27], even
if limited to room temperature data, shows interesting implications. Values of k of films,
reported in Table 2, are very close to the ones of the doubly doped sample with x = 0.50
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(k = 2.16 W/m·K) and only slightly higher than the one of the sample with x = 0.80
(k = 1.59 W/m·K), where the amount of filling ions, and hence of scattering centers, is
noticeably higher. This result is very encouraging, as it suggests that the presence of
interfaces acts similarly to the introduction of two different filling ions in terms of the
creation of scattering centers. It can therefore be hypothesized that a better tailoring of the
film composition, for instance by introducing more than one filler, or by partly substituting
Sb for a proper atom, can lead toward a further reduction of thermal conductivity and an
enhancement of ZT.

Table 2. Thickness, RT and high-T Seebeck coefficient and thermal conductivity of samples Fe63_RT,
Fe63_ann, Fe70_RT and Fe70_ann.

Sample Thickness
[nm]

S @ RT
[µV/K]

S @ 523K
[µV/K]

k
[W/m·K]

Fe63_RT 490 71.6 72.7 -
Fe63_ann 300 65.6 74.1 1.91
Fe70_RT 520 1.30 3.68 -
Fe70_ann 200 68.0 78.2 2.21

4. Conclusions

In the framework of the optimization of the thermoelectric properties of Sb-based
filled skutterudites, thin films of two compositions belonging to the Smy(FexNi1−x)4Sb12
system were deposited by PLD. The system was chosen because of the promising thermo-
electric performance exhibited by the corresponding bulk samples. The cited properties are
expected to be improved by the introduction of further scattering centers represented by
the low dimensionality and the presence of interfaces, which are typical features of films.

Depositions were performed both at room and at high (423 K) temperature; moreover,
the former samples were annealed at 423 K. X-ray diffraction suggests the highest phase
purity in annealed samples; accordingly, transport property values become stable only
after three cycles up to 523 K, thus highlighting the importance of the annealing process.
Regarding the transport properties of annealed films, electrical conductivity assumes
values comparable to the ones of bulk samples, while the Seebeck coefficient is shown
to be far lower, which determines lower values of the power factor. Room temperature
thermal conductivity is similar in Sm-doped films and in (Gd,Sm)-doped bulk samples,
thus suggesting that the presence of interfaces in films acts similarly to the introduction
of different filler ions in bulk samples. The annealing process also causes the reduction of
both carriers’ concentration and their mobility.
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Appendix A

The picosecond time-domain thermoreflectance (TD-TR) technique using a customized
focused thermal analysis system based on PicoTR (PicoTherm) was utilized to measure
thermal conductivity of the samples in the cross-plane direction. For the measurements, a
100 nm layer of Pt was sputtered on the surfaces of the thin films. front-heat front-detect
(FF) configuration was used (Figure A1).
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The picosecond time-domain thermoreflectance (TD-TR) technique using a custom-

ized focused thermal analysis system based on PicoTR (PicoTherm) was utilized to meas-
ure thermal conductivity of the samples in the cross-plane direction. For the measure-
ments, a 100 nm layer of Pt was sputtered on the surfaces of the thin films. front-heat front-
detect (FF) configuration was used (Figure A1). 

 
Figure A1. Diagram of thermo-reflectance measurement with FF configuration. 

To perform measurements, a 100 nm layer of Pt was sputtered on the surfaces of thin 
films. The front-heat front-detect (FF) configuration was employed, making use of the 
mirror-image method [49]. In the framework of this technique, the temperature history of 
the FF configuration can be explained as follows: 

Tf t  = 
1

bf√πt
1+2 γnexp -n2 τf

t

∞

n=1

 (A1) 

Figure A1. Diagram of thermo-reflectance measurement with FF configuration.

To perform measurements, a 100 nm layer of Pt was sputtered on the surfaces of thin
films. The front-heat front-detect (FF) configuration was employed, making use of the
mirror-image method [49]. In the framework of this technique, the temperature history of
the FF configuration can be explained as follows:

Tf(t) =
1

bf
√
πt

(
1 + 2

∞

∑
n=1

γn exp
(
−n2 τf

t

))
(A1)

τf =
df

2

αf
=

(
Cf
bf

)2
(A2)

γ =
bf−bs

bf+bs
(A3)

where τf is a parameter called heat diffusion time (in Pt layer), γ is a dimensionless
parameter, bf is the thermal effusivity of Pt layer, bs is the thermal effusivity of the sample,
df is the thickness of the Pt layer and αf is the thermal diffusivity of the Pt layer.

We already know the value of Cf, thus we can determine the thermal effusivity of
the sample bs. We can also determine thermal conductivity of the samples κs by using
following equation

κs =
bs

2

csρs
(A4)

where cs and ρs are the specific heat capacity and density of the sample, respectively.
Table A1 shows the thermal properties at room temperature of annealed films; Figure A2

shows the thermo-reflectance signals obtained from the same samples and from reference
substrates. For our samples we considered cs = 220 J/kg·K and ρs = 7360 kg/m3.

Table A1. Thermal properties of samples Fe63_ann and Fe70_ann.

Sample
Heat Diffusion

Time
τf [s]

γ

Thermal
Effusivity

bs [J/(s0.5m2K)]

Thermal
Conductivity
κs [W/(m·K)]

Fe63_ann 55.5 × 10−10 0.747 1757 1.91
Fe70_ann 6.21 × 10−10 0.717 1890 2.21
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