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Summary

The diagnostic evaluation of Diamond Blackfan Anaemia (DBA), an inher-

ited bone marrow failure syndrome characterised by erythroid hypoplasia,

is challenging because of a broad phenotypic variability and the lack of

functional screening tests. In this study, we explored the potential of untar-

geted metabolomics to diagnose DBA. In dried blood spot samples from 18

DBA patients and 40 healthy controls, a total of 1752 unique metabolite

features were identified. This metabolic fingerprint was incorporated into a

machine-learning algorithm, and a binary classification model was con-

structed using a training set. The model showed high performance charac-

teristics (average accuracy 91�9%), and correct prediction of class was

observed for all controls (n = 12) and all but one patient (n = 4/5) from

the validation or ‘test’ set (accuracy 94%). Importantly, in patients with

congenital dyserythropoietic anaemia (CDA) – an erythroid disorder with

overlapping features – we observed a distinct metabolic profile, indicating

the disease specificity of the DBA fingerprint and underlining its diagnostic

potential. Furthermore, when exploring phenotypic heterogeneity, DBA

treatment subgroups yielded discrete differences in metabolic profiles,

which could hold future potential in understanding therapy responses. Our

data demonstrate that untargeted metabolomics in dried blood spots is a

promising new diagnostic tool for DBA.

Keywords: untargeted metabolomics, Diamond Blackfan Anaemia, disease

fingerprint, dried blood spots, machine-learning algorithm.

Introduction

Diamond Blackfan Anaemia (DBA, OMIM# 105650) is a rare

inherited bone marrow failure syndrome (IBMFS) charac-

terised by erythroid hypoplasia, congenital malformations

(~50%), growth defects and an increased risk of developing

malignancies.1–3 From a clinical and genetic perspective the

disorder is highly heterogeneous, and clear genotype-pheno-

type correlations are absent. Since the majority of molecular

defects have been found in ribosomal protein (RP) genes,

resulting in impaired ribosome biogenesis, DBA is regarded a

‘ribosomopathy’.4,5

While its genetic basis has been studied intensively, the

pathophysiology of DBA is still not fully understood. One of

the major unresolved issues is how RP gene mutations result

in the specific erythroid defect that characterises DBA.6

Establishing the diagnosis of DBA can be particularly diffi-

cult since, in contrast to other IBMFS, no validated func-

tional screening tests exist. Furthermore, the clinical

presentation is highly heterogeneous, even within families

who share a molecular defect.7,8

Currently, the diagnosis relies on consensus criteria and

exclusion of other IBMFs and causes of anaemia. The con-

sensus criteria include age (i.e. presentation in the first year

of life), macrocytic anaemia, reticulocytopenia and normal

marrow cellularity with a paucity of erythroid precursors.

Alternative criteria that confirm or support the diagnosis

include the identification of a known molecular defect, ele-

vated erythrocyte adenosine deaminase activity and elevated

levels of foetal haemoglobin.9 In order to improve the diag-

nostic evaluation of DBA as well as our understanding of

phenotypic heterogeneity and clinical severity, novel
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functional approaches are needed. One such tool might be

metabolomics – the large scale, unbiased study of metabolites

which directly reflects the biochemical activity and state of a

sample – and thereby represents the cellular phenotype.10

Here we identify and report for the first time on a metabolic

fingerprint for DBA using untargeted metabolomics in dried

blood spots, and demonstrate the potential of this approach

in the diagnostic evaluation of DBA.

Methods (and/or materials)

Patients and samples

Eighteen patients diagnosed with DBA were included. Diag-

nosis in all patients was based on a combination of the

widely used consensus and supporting criteria and/or con-

firmed defects in DBA-associated genes.5,9 In addition, six

patients diagnosed with the related disorder of congenital

dyserythropoietic anaemia (CDA) were included for sub-

group analysis. Healthy volunteers (from an institutional

blood donor service) served as healthy controls (HC). All

patients or their legal guardians approved the use of their

remnant samples for method development and validation, in

agreement with institutional and national regulations. All

procedures followed were in accordance with the ethical

standards of the University Medical Center Utrecht and with

the Helsinki Declaration of 1976, as revised in 2000. Sam-

pling was performed at least three weeks after the last trans-

fusion in transfused patients. For dried blood spots (DBS),

50 µl aliquots were spotted onto Guthrie card filter paper

(Whatman 903 Protein Saver TM cards). All papers were left

to dry for at least four hours at room temperature, and were

subsequently stored at −80°C in a foil bag with a desiccant

package, pending further analysis.

Metabolic phenotyping

Sample preparation, direct infusion high resolution mass spec-

trometry (DI-HRMS) and data processing were performed as

previously reported.11–13 Mass peak intensities for metabolite

annotations were averaged over technical triplicates. In addi-

tion, as DI-HRMS is unable to separate isomers, mass peak

intensities consisted of the summed intensities of these iso-

mers. Metabolite annotation was performed using a peak-call-

ing bioinformatics pipeline developed in R-programming

software, based on the human metabolome database (version

3.6) (https://github.com/UMCUGenetics/DIMS).

DBS samples were distributed over several DI-HRMS runs.

In each run, an extra set of control samples was included. To

compare the metabolic profiles between DBA, CDA and HC,

mass peak intensities for each identified feature were con-

verted to Z-scores. These scores, based on the extra control

samples, were calculated by the following formula:

Data analysis

Z-scores calculated from multiple DI-HRMS runs were com-

bined in a final dataset. Data analyses were conducted in

MetaboAnalyst without further data filtering or normalisa-

tion.14 Outlying metabolite features were identified using the

PCA loadings plot. In total, 15 outlying features were

removed, culminating in a final dataset of 1765 unique fea-

tures corresponding to 3541 metabolite annotations.

Classification of data was performed in R-software (Ver-

sion 3.6.1) using the ‘caret’ package. This package contains

a set of data-processing functions that facilitate the genera-

tion of classification and regression models. In this study, a

support vector machine (SVM) with a linear kernel – the

simplest kernel function without further data transformation

– was used for classifying DBA and HC samples¥. SVM is a

supervised machine-learning model that classifies samples

based on the mapping of all data into a high dimensional

space, allowing for the separation of two groups of samples

into distinct regions by the identification of ‘support

vectors’. Classification is then achieved by identifying a

separating hyperplane – or decision boundary – between

support vectors, and projecting new/unclassified samples

into this space. For this analysis, additional features with

missing values were removed, resulting in 1737 unique

features for modelling. Data and R-code are available upon

request.

Results

Explorative untargeted metabolomics identifies metabolic
fingerprint

In total, 1752 unique metabolite features were analysed from

DBS samples of 18 patients and 40 controls. Baseline charac-

teristics of patients are summarised in Table I. The DBA

patient cohort was characterised by a female predominance

(72%) and a lower median age than the controls (9�19 vs.

33�8 years). To determine the variation and distinction

Z� score¼ Mass peak intensity of Pt or HC sample�Meanmass peak intensities of metabolic control samplesð Þ
Standard deviation mass peak intensities of metabolic control samples{

‡Metabolic controls exist of a batch of banked DBS samples from

individuals in whom an inborn error of metabolism (IEM) was

excluded after an extensive diagnostic workup.
¥The function of a kernel is to take data as input and transform it

into the required form, for example a linear or polynomial kernel.
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between samples and groups (DBA and HC), initial data

exploration was performed by principal component analysis

(PCA), an unsupervised technique which does not take the

group label into account. This demonstrated equally dis-

tributed variance in metabolic profiles, with a certain degree

of overlap between DBA and HC (Fig 1A).

Furthermore, using univariate t-test analysis, we observed

significant differences between groups, including decreased

metabolites corresponding in mass to methylmalonylcarnitine

(an acyl carnitine), homo-L-arginine, hippuric acid (an acyl

glycine) and lipoic acid (an essential cofactor for

mitochondrial enzyme complexes). In addition, we found

significantly increased glutamic acid, threonic acid [possibly

a metabolite of ascorbic acid (vitamin C)], dodecanedioic

acid (a medium-chain fatty acid) and inosine (one of the

purine nucleosides) (Fig 1B).

We next performed partial least squares discriminant anal-

ysis (PLS-DA), a supervised analysis that takes into account

the group label. This resulted in clear separation between

DBA and HC, thereby confirming distinct metabolic signa-

tures. (Fig 1C). Metabolites contributing most to the separa-

tion are shown in Fig 1D.

Fig 1. Metabolic fingerprint in DBS of DBA patients. (A) Principal component analysis (PCA) of Diamond Blackfan Anaemia (DBA) and healthy

controls (HC) displayed with 95% confidence regions. (B) Heatmap of the 25 most significant features identified by t-test (raw P < 0�0001). The
heatmap was created using Euclidian ward-clustering with autoscaling of features. A comprehensive overview of P-values and isomers is displayed

in Table SI. (C) Partial least squares discriminant analysis (PLS-DA) of DBA and HC displayed with 95% confidence regions. (D) Variable

importance in projection (VIP)-scores demonstrating the 25 features contributing the most to separation of patients and controls in the PLS-DA.

[Colour figure can be viewed at wileyonlinelibrary.com]

B. van Dooijeweert et al.

1188 ª 2021 The Authors. British Journal of Haematology published by British Society for Haematology
and John Wiley & Sons Ltd. British Journal of Haematology, 2021, 193, 1185–1193

www.wileyonlinelibrary.com


A machine-learning algorithm enables prediction of DBA
with high accuracy

To generate a model that can predict the diagnosis of DBA

based on the metabolic profile, the dataset was incorporated

into a machine-learning algorithm. Using a support vector

machine with a linear kernel, a binary classification model

was constructed by randomly dividing patients and controls

into a ‘training’ set (28 HC, 13 DBA) or ‘test’ set (12 HC, 5

DBA), followed by repeated (internal) cross validation

(three-fold, three repeats) to identify the optimal hyperplane

separating patients from controls. The final model had high

performance characteristics with an average accuracy of

91�9%. In addition, receiver operator characteristic curves

with the area under the curve were used as performance

indicator (Fig 2A, AUCtrain: 0�903 (0�827–0�980)). External
model validation was performed by predicting the ‘new’ con-

trol and patient samples from the ‘test’ set (12 HC, five

DBA) (Fig 2A, AUC test: 0�933 (0�791–1�000)). For the

selected final model, this resulted in the accurate prediction

of class for 4/5 patients and all controls (accuracy 94�1%, CI

95%: 71�3–0�99�9)) (Fig 2B). To assess the uncertainty of the

final model and its predictive ability, bootstrap resampling

(100 repeats) was applied to the entire dataset, resulting in a

similarly high prediction performance (AUC test: 0�930
(0�914–0�946), and supporting the validity of the presented

model (Fig 2C). Important features for classification in this

model again included methylmalonylcarnitine, dodecanedioic

acid, hippuric acid and glutamic acid (Fig 2D).

DBA and CDA patients show a distinct metabolic profile

To assess disease specificity of the metabolic fingerprint, the

DBS metabolome of six patients with congenital dyserythro-

poietic anaemia (CDA) – a clinically overlapping disorder of

erythropoiesis in which proliferation and differentiation of

erythroid precursors is affected – was studied (patient char-

acteristics are shown in Table SII). Although the CDA group

was relatively small, a distinct metabolic profile was observed

for CDA patients compared to both DBA patients and

healthy controls, by natural clustering in the PCA plot (Fig

3A) and evident separation of both patient groups in PLS-

DA (Fig 3B). The most significant differences between DBA

Fig 2. Machine-learning algorithm predicts DBA based on metabolic profile. (A) Classification performance of samples in training (CV SVM

model, n = 84 control, 39 DBA) and test set (n = 12 control, 5 DBA). Note that AUC is a measure of the ability to rank samples according to

the probability of class membership, meaning that even falsely classified samples can have a higher rank towards the correct class compared to

other samples. (B) Confusion matrix for the prediction of samples from the test set by the SVM model. (C) Classification performance of samples

in 100 bootstrapped SVM models (training: n = 11 901 control, 5499 DBA; test: n = 1381 control, 519 DBA). (D) Top 20 important features

with importance score identified by support vector machine. [Colour figure can be viewed at wileyonlinelibrary.com]
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and CDA, identified by t-test, are shown in a heatmap in Fig

3C, including an increase in acyl carnitines (stearoylcarnitine,

oleoylcarnitine and L-palmitoylcarnitine), riboflavin (a vita-

min B2 precursor) and polyamines (spermine, spermic acid

2, spermidine and N1-acetylspermidine) in the CDA patients.

DBS metabolome are instrumental to study differences in
therapeutic subgroups

To investigate the heterogeneity of DBA metabolic profiles in

relation to treatment modalities, PCA (data not shown) and

Fig 3. Metabolic profile of DBA compared to CDA. (A) PCA plot, and (B) PLS-DA plot for DBA patients compared to CDA patients and healthy

controls, displayed with 95% confidence regions. (C) Heatmap of 25 most significant features identified by t-test (raw P < 0�002) for DBA vs.

CDA. The heatmap was created using Euclidian ward-clustering with autoscaling of features. A comprehensive overview of P-values and isomers

is displayed in Table SI. [Colour figure can be viewed at wileyonlinelibrary.com]

B. van Dooijeweert et al.
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PLS-DA were performed for the entire group of patients and

controls. Based on treatment (Table I), patients were divided

in non-treated (DBA-N), glucocorticoid-treated- (DBA-G)

and transfused groups (DBA-T). In terms of metabolic pro-

file, untreated DBA patients and patients treated with gluco-

corticoids overlapped and profiles differed the least from

controls. Transfused DBA patients were metabolically most

distinct from controls (Fig 4A). When controls were removed

from the respective analyses, the most significant differences

between DBA treatment subgroups, included increased

alpha-tocopherol (active vitamin E) in non-treated patients,

increased pantothenic acid (vitamin B5) in transfused

patients and decreased 3-hydroxy-cis-5-tetradecenoylcarnitine

in glucocorticoid-treated patients (Fig 4B).

Discussion

In this study, we performed untargeted metabolomics in

dried blood spots in a relatively large cohort of DBA patients

with diverse genotypes and clinical phenotypes. We report

here for the first time a specific metabolic fingerprint for

DBA.

By incorporating the metabolic fingerprint of DBA in a

machine learning algorithm, we demonstrate promising per-

formance characteristics for predicting DBA. This highlights

the diagnostic potential of our approach. This is further

strengthened by the distinct metabolic profile of DBA and

CDA patients, the latter being a disorder with clinical and

diagnostic features similar to DBA. Due to the rare nature of

CDA and, consequently, the relatively small sample size in

this study, it is currently not possible to design a machine

learning algorithm that integrates both CDA and DBA

patients. The distinct profile in our cohort of CDA patients,

however, supports the hypothesis that the metabolic finger-

print of DBA is disease specific. Further study of a larger

number of CDA-samples could enable the construction of a

multi-diagnosis model.

Generally, the validity of machine learning-based algo-

rithms is strongly dependent on the input that is used in its

construction. Considering that DBA is a rare disease, the cur-

rent cohort of patients on which our model is based is sub-

stantial, yet relatively small and too heterogeneous to

generate a powerful prediction model. This is demonstrated

by the incorrect classification of one DBA patient with a

pathogenic RPS19 mutation yet only mild clinical features.

While distinct profiles were identified, and the algorithm

performed robustly despite group heterogeneity, increasing

sample size (including better age-matched controls) will

allow for better stratification of patients. For example, the

specific profiles seen for different treatment modalities, illus-

trate that this approach of DBS metabolomics can be instru-

mental in investigating subgroups and heterogeneity in DBA.

In line with this, the current approach could offer a platform

for investigating treatment responses. This is supported by

the finding that non-treated patients (those in haematological

remission) and glucocorticoid-treated patients cluster most

closely to controls, while transfused patients show the most

deviant profile. Studying the DBS metabolome in glucocorti-

coid-treated patients in particular could identify determi-

nants of steroid response, and help predict steroid response

in patients. To this end, future investigations should include

sampling patients before the start of – and during treatment

with – glucocorticoids.

Targeting cellular metabolism is increasingly and success-

fully being explored as a therapeutic option for various forms

of hereditary anaemias, and metabolic insights have proven

Fig 4. Metabolic profile in relation to treatment modality. (A) Partial least squares discriminant analysis (PLS-DA) of non-treated (DBA-N), ster-

oid (DBA-G) and transfused DBA patients (DBA-T) displayed with 95% confidence regions. (B) Heatmap of 25 most significant features identi-

fied by t-test (raw P-value <0.02). The heatmap was created using Euclidian ward clustering with autoscaling of features. A comprehensive

overview of P-values and isomers is displayed in Table SI. [Colour figure can be viewed at wileyonlinelibrary.com]
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vital in these developments.15–18 In particular, the amino acid

leucine is currently being explored as a potential modulator

of protein synthesis in DBA patients.19 Recently, results of

the first clinical trial have been published, showing a partial

or complete haematological response in 7/43 patients

(16�3%), and more strikingly, positive effects on growth in 9/

25 (height) and 11/25 (weight) patients, respectively.20 How

leucine exerts its effect on both erythropoiesis and growth

remains to be defined, but it has been assumed that it

involves upregulating of ribosome biosynthesis via the mTOR

pathway, as well as improved translational efficiency through

activation of translation-initiation factors.21 While leucine

levels in our analyses did not differ significantly between

DBA patients and healthy controls (data not shown), increas-

ing insights into the metabolic disturbances that occur in

DBA could lead to the identification of new therapeutic tar-

gets.

Interestingly, inosine – a purine nucleoside – emerged in

the DBA fingerprint among the top metabolites significantly

differing between patients and controls. Although the long-

recognised increased activity of erythrocyte adenosine deami-

nase – an enzyme of the purine salvage pathway – has

remained elusive to date in the majority of DBA patients,

our findings suggest that purine metabolism might be more

broadly involved in DBA disease biology. In addition, the

finding of increased alpha-tocopherol in the non-treated

patients (i.e. patients who are recognised as being in ‘haema-

tological remission’) is interesting, as vitamin E facilitates

intracellular scavenging of ROS, and its levels in blood are

known to reflect redox status.22,23 Hence, a better anti-oxi-

dant status may be associated with the haematological remis-

sion phenotype in these patients.

Future studies are required to determine and validate

these metabolic disturbances at a (red) cellular level as

opposed to the whole blood metabolome that we study here.

In conclusion, we report on a new application of untar-

geted metabolomics in dried blood spots, a minimally inva-

sive approach with diagnostic potential in Diamond Blackfan

Anaemia, which could be instrumental in investigating clini-

cal phenotypes and treatment response.
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et al. Safety and efficacy of mitapivat in pyruvate kinase deficiency. New

Engl J Med. 2019;381(10):933–44.
19. Pospisilova D, Cmejlova J, Hak J, Adam T, Cmejla R. Successful treatment

of a Diamond-Blackfan anemia patient with amino acid leucine. Haemato-

logica. 2007;92(5):e66–e67.
20. Vlachos A, Atsidaftos E, Lababidi ML, Muir E, Rogers ZR, Alhushki W,

et al. L-leucine improves anemia and growth in patients with transfusion-

dependent Diamond-Blackfan anemia: results from a multicenter pilot

phase I/II study from the Diamond-Blackfan Anemia Registry. Pediatr

Blood Cancer. 2020;67(12):e28748.

21. Xu B, Gogol M, Gaudenz K, Gerton JL. Improved transcription and trans-

lation with L-leucine stimulation of mTORC1 in Roberts syndrome. BMC

Genom. 2016;17:25.

22. Margaritelis NV, Veskoukis AS, Paschalis V, Vrabas IS, Dipla K, Zafeiridis

A, et al. Blood reflects tissue oxidative stress: a systematic review. Biomark-

ers. 2015;20(2):97–108.
23. Niki E. Role of vitamin E as a lipid-soluble peroxyl radical

scavenger: in vitro and in vivo evidence. Free Radic Biol Med. 2014;

66:3–12.

Metabolic Fingerprint of Diamond Blackfan Anaemia

ª 2021 The Authors. British Journal of Haematology published by British Society for Haematology
and John Wiley & Sons Ltd. British Journal of Haematology, 2021, 193, 1185–1193

1193


