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Changed synapse density has been suggested to be in-
volved in the altered brain connectivity underlying schiz-
ophrenia (SCZ) pathology. However, postmortem studies 
addressing this topic are heterogeneous and it is not known 
whether changes are restricted to specific brain regions. 
Using meta-analysis, we systematically and quantitatively 
reviewed literature on the density of postsynaptic elements 
in postmortem brain tissue of patients with SCZ compared 
to healthy controls. We included 3 outcome measurements 
for postsynaptic elements: dendritic spine density (DSD), 
postsynaptic density (PSD) number, and PSD protein ex-
pression levels. Random-effects meta-analysis (31 studies) 
revealed an overall decrease in density of postsynaptic 
elements in SCZ (Hedges’s g: −0.33; 95% CI: −0.60 to 
−0.05; P = .020). Subgroup analyses showed reduction of 
postsynaptic elements in cortical but not subcortical tissues 
(Hedges’s g: −0.44; 95% CI: −0.76 to −0.12; P  =  .008, 
Hedges’s g: −0.11; 95% CI: −0.54 to 0.35; P = .671) and 
specifically a decrease for the outcome measure DSD 
(Hedges’s g: −0.81; 95% CI: −1.37 to −0.26; P =  .004). 
Further exploratory analyses showed a significant decrease 
of postsynaptic elements in the prefrontal cortex and cor-
tical layer 3. In all analyses, substantial heterogeneity was 
present. Meta-regression analyses showed no influence of 
age, sex, postmortem interval, or brain bank on the effect 
size. This meta-analysis shows a region-specific decrease in 
the density of postsynaptic elements in SCZ. This pheno-
type provides an important cellular hallmark for future pre-
clinical and neuropathological research in order to increase 
our understanding of brain dysconnectivity in SCZ.
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Introduction

Schizophrenia (SCZ) is a severe psychiatric disorder af-
fecting approximately 0.5%–1% of the general popula-
tion, causing high morbidity and mortality rates.1–4 Core 
symptoms of SCZ are characterized by hallucinations, 
lack of motivation, and cognitive impairments and are 
thought to result from altered brain connectivity and 
network organization.5–9 Accumulating evidence from 
genetic and neuropathological studies implies that 
changes in synapse density underlie these alterations in 
macroscale connectome organization in SCZ.10–19 This 
is supported by studies reporting gray matter volume 
reductions in SCZ patient brains caused by a de-
crease in neuropil rather than a loss of cell number.20–23 
Furthermore, it was recently shown that levels of the 
presynaptic protein synaptophysin are decreased in SCZ 
hippocampus, frontal cortex, and cingulate cortex.19 
However, a combined systematic analysis of changes in 
the expression of postsynaptic proteins and the density of 
postsynaptic elements such as dendritic spines is lacking.

Dendritic spines are small bulges on dendrites, forming 
the primary site of input for most excitatory synapses 
in the brain.24–26 The number of dendritic spines is dy-
namic, particularly during development, showing a rapid 
increase during childhood followed by a prominent de-
crease during adolescence.27 Interestingly, changes in spine 
pruning rate during adolescence have been implicated 
in the development of SCZ.28–31 Dendritic spines con-
tain many different proteins involved in neurochemical 
signaling. In particular, neurotransmitter receptor 
proteins such as NMDARs and AMPARs are anchored in 
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the postsynaptic density (PSD) by numerous scaffolding 
proteins such as PSD9532. Thus, the PSD has an impor-
tant role in arranging and coordinating receptor function 
and is essential for efficient synaptic transmission.

The density of postsynaptic structures in postmortem 
brain tissue can be determined using several approaches 
(figure  1A–D). Dendritic spine density (DSD) can be 
quantified with Golgi staining and immunohistochemistry 
(IHC) (figure 1B).33 At the ultrastructural level, electron 
microscopy studies can identify the number of PSDs 
that are separated by a synaptic cleft from a presynaptic 
membrane, forming functional synapses (figure  1C).34 
Also, PSD protein expression levels, measured with 
western blot or IHC, although varying with the size of 
the PSD, are thought to reflect the number of synapses 
(figure 1D).35,36 Therefore, all these measures (DSD, PSD 
number, and PSD protein expression), which we collec-
tively refer to as “postsynaptic elements,” can be used as 
proxies for the number of excitatory synapses in post-
mortem brain tissue.

Although literature on the density of postsynaptic 
elements in SCZ is quite extensive, findings are often con-
flicting. Most postmortem brain studies included a limited 
number of subjects due to restricted availability of mate-
rial and the labor intensiveness of performing histological 
studies. Furthermore, a large variety of premortem and 
postmortem confounders contributes to the high heteroge-
neity observed between postmortem studies.37 In addition, it 
is difficult to draw conclusions on regional effects as studies 
are performed using different methodological approaches 
and assess different brain regions. Altogether, these factors 
limit the understanding of the contribution of changes in 
postsynaptic element in the pathophysiology of SCZ.

While literature on DSD, PSD number, and PSD pro-
tein expression in SCZ postmortem brain tissue has 
been reviewed individually,13–18,38 an integrated assess-
ment combining these different types of synapse den-
sity measurements in multiple brain areas in SCZ using 
meta-analysis has not been performed before. Although 
not often performed in the context of preclinical studies, 
meta-analysis provides a powerful tool to synthesize data 
on a specific topic.

The primary aim of this study was to review the evi-
dence for alterations in the density of postsynaptic 
elements in SCZ postmortem brain tissue. The second 
aim was to analyze whether changes in the density of 
postsynaptic elements are specific to certain brain regions. 
To this end, we performed a systematic search to qual-
itatively and quantitatively review available literature on 
DSD, PSD density, and PSD protein expression in SCZ.

Methods

Search Strategy

This quantitative review is performed according to the 
Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA),39 following Meta-analysis 
of Observational Studies in Epidemiology (MOOSE)40 
guidelines throughout. Two systematic searches were 
performed in PubMed: (1) (spine OR dendritic spine 
OR spine*) AND (density) AND ((Schizophrenia OR 
Psychosis OR Psychotic)); (2) (schizophreni* OR psy-
chosis OR schizophrenia) AND (post synapse OR PSD 
OR post-synapse OR post-synapt* OR post synapt* 
OR postsynap*). The search was updated until April 30, 
2018. Prespecified inclusion criteria were set as: human 
postmortem studies; comparing patients with healthy 
controls; measuring a structural outcome of postsynaptic 
elements (DSD, PSD number, or PSD protein expression); 
original research, published in a peer-reviewed journal; 
written in English. Exclusion criteria were: presence of 
other neurological disorders; animal studies; review arti-
cles; reanalysis of previously published data; proteomic/
transcriptomic approaches; studies that reported data 
incompletely and did not provide the information upon 
request. Furthermore, as messenger ribonucleic acid 
measurements provide no direct structural readout of the 
number of postsynaptic elements and posttranslational 
modifications can result in a poor relation between tran-
script and protein expression, we excluded studies fo-
cusing on RNA only.

Data Extraction

A.B.vB. and L.D.W. independently performed title and ab-
stract screening for both systematic searches and reviewed 
full text for eligibility. Data extraction was performed by 
A.B.vB.  and checked independently by C.H.M. In ad-
dition to main outcome variables (DSD, PSD number, 
and PSD protein expression), following variables were 
extracted for effect size (ES) calculation and potential 
moderator analyses: sample size, methods, brain bank, 
brain area, subregion, age, sex, post-mortem interval 
(PMI), and pH. When data records in the original article 
were not sufficient to generate ES, corresponding authors 
were asked to provide the raw data. Reference lists were 
checked for cross-references. In case of follow-up data 
or reanalysis of previously reported data,41–44 we only in-
cluded outcomes of the original research. Studies using 
partly overlapping samples, studying different brain areas 
or different proteins, were included separately. Where 
data were not reported numerically, data were extracted 
using https://automeris.io/WebPlotDigitizer/.

Quality Control

Methodology, study design, and reporting were assessed 
to evaluate quality of included studies. Methodology was 
checked for complete description of technical methods 
and analyses. Study design was rated by researches blinded 
to diagnosis, whether they checked for neuropathology, 
the degree of matching of control and patient population, 

https://automeris.io/WebPlotDigitizer/
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Fig. 1. Schematic representation of postsynaptic element measurements and brain regions included in the meta-analysis. Panel (A)–(D) 
show measurements that are used to quantify postsynaptic elements in postmortem brain tissue. (A) shows a neuron with its dendritic 
tree. The enlargement in (B) shows that each dendrite contains numerous dendritic spines (arrows), which can be quantified using Golgi 
staining (B’ from Glantz and Lewis, 200070) or immunohistochemistry (B’’ from Shelton et al, 201516). In (C), presynaptic terminals 
innervate postsynaptic densities (PSD) on a dendritic spine (white arrow), forming an axospinous synapse, or directly on the dendrite 
(black arrow), forming an axodendritic synapse. The number of these PSD can be measured with electron microscopy (C’ from Roberts 
et al, 2015). The PSD in (D) is an accumulation of many postsynaptic proteins at the postsynaptic membrane, which can be quantified 
by western blot (D’ from Clinton et al, 2006) or immunohistochemistry (D’’ from Chung et al, 2016). (E)–(G) provide a simplified 
representation of brain regions and proteins in the PSD that are assessed in studies included in our meta-analysis: PFC, prefrontal 
cortex; DLPFC, dorsolateral prefrontal cortex; OFC, orbitofrontal cortex; OC, olfactory cortex; AC, auditory cortex; TC, temporal 
cortex; OCP, occipital cortex; ACC, anterior cingulate cortex; Nacc, nucleus accumbens; Tha, thalamus; Hip, hippocampus.



377

Postsynaptic Elements in Schizophrenia: A Meta-analysis

and the assessment/correction of general (age/PMI) and 
other confounding factors (such as: medication use, su-
icide, or smoking). For reporting, we assessed whether 
studies fully described the method of psychopathological 
examination, population demographics, and main out-
come variables.

Statistical Analysis

Meta-analyses were performed using the Comprehensive 
Meta-Analysis software (Biostat). Change in DSD, PSD 
number, or PSD protein expression per brain (sub)region 
was used to quantify ES between SCZ and the control 
group. Sample size, mean, and standard deviation (SD) 
were used to generate ES. When mean and/or SD were 
unavailable, sample size and exact P value were used to 
generate ES. Hedges’s g and the upper/lower limit of the 
95% CI were used to express ES. A random-effects model 
was used as heterogeneity between studies was to be ex-
pected. Heterogeneity between studies was measured with 
Cochran’s Q-test and I2 statistic to provide an estimation 
of the variation attributed to differences in true effects. Q 
(weighted sum of squares) is equal to df if  studies share 
a common effect. I2 reflects the proportion of observed 
variance reflecting real differences in ES by dividing the 
excess dispersion (Q − df) by the total dispersion (Q). I2 
was considered low at 25%, moderate at 50%, and high at 
75%. Publication bias was assessed by visual inspection 
of the funnel plot and calculated with Egger’s test (sig-
nificance level: P < .1). Random-effects meta-regression 
analyses were performed to analyze the role of potential 
confounding factors (brain bank, age, sex, and PMI). As 
we expected that different measurements within the same 
study are not independent of each other, we nested data 
from these studies in a conservative approach, computing 
combined scores from all measurement within one study.

The primary meta-analysis was performed pooling all 
included studies to assess a brain-wide effect on the den-
sity of postsynaptic elements in SCZ. We further stratified 
the analysis with subgroup analysis of a priori selected 
variables, analyzing biological (subcortical/cortical) and 
technical variation (outcome measures), to assess sources 
of heterogeneity. Data of the same study were included in 
multiple subcategories when data were reported separately 
for these categories (indicated with *). As we assume a 
common among-study variance across different subgroups, 
we pooled within group estimates of tau-squared. Between-
group differences were tested using the Q-test based anal-
ysis of variance to determine whether the variance within 
subgroups was significantly smaller than the variance 
of all the combined data (Qbetween  =  Qtotal – (QSubgroupA + 
QSubgroupB). Exploratory subgroup meta-analysis, separating 
data based on subbrain area, were performed when at least 
5 independent studies (recommended for random-effects 
meta-analysis) could be included.45 Throughout the study, 
forest plot figures show random-effects meta-analysis, 

representing ES in Hedges’s g with 95% CI for each study. 
Square size is proportional to study weight and the gray 
diamond indicates pooled effect size. Schematic images 
were produced using Motifolio.

Results

Database Search

Database searches in PubMed and cross-referencing 
yielded a total of 1527 records (figure 2). After title and 
abstract screening, 116 studies remained for full text as-
sessment. Of these, we excluded 81 studies (supplemen-
tary table 1). Authors of 4 studies46–49 were contacted for 
additional information; a reply was received from one.49

We identified 34 individual studies assessing struc-
tural measurements of postsynaptic elements: DSD (8), 
PSD number (6), and PSD protein expression (21) for 
qualitative analysis. One study measured both DSD and 
PSD protein expression.50 These studies considered 12 
different brain regions (figure 1E) and a variety of PSD 
proteins (figure  1F). Replication studies, analyzing the 
exact same measurement in the same region in at least 3 
separate cohorts, were scarce. Only PSD95 measurements 
were replicated in the hippocampus,50–53 anterior cingu-
late cortex (ACC),54–56 and dorsolateral prefrontal cor
tex.51,54,55,57,58 This limits the opportunity to perform sep-
arate analyses of specific brain regions. Therefore, we 
assessed all data together to then further explore where 
possible sources of heterogeneity in subanalyses. An 
overview of included studies and extracted data can be 
found in supplementary table 2 12,49,50,52–54,56–78.

Qualitative Analysis

We performed a quality assessment for all 34 studies 
assessing methodology, study design, and reporting (sup-
plementary table  3). Although postmortem studies are 
labor intensive and involve many premortem and post-
mortem confounders, our assessment showed that in 
general the included studies were of good quality. Most 
studies reported the demographics in full, described 
their applied methods extensively, performed matching, 
and controlled for important confounders (age/PMI/
sex). However, 16 studies did not report on neuropath-
ological examinations. As changes in synapse number 
have been described in a number of neurodegenerative 
diseases,79 neurologic comorbidity could be an important 
confounder. Moreover, we found that 16 studies did not 
report on blinding the experiment and 6 studies did not 
report on the method of SCZ diagnosis.

Primary Analysis: Association of Postsynaptic Element 
Density in SCZ Postmortem Brain

We performed a random-effects meta-analysis on 31 
separate studies, including all brain regions and all 3 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz060#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz060#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz060#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz060#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz060#supplementary-data
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study categories (comprising 98 individual datapoints). 
To prevent overrepresentation of studies including mul-
tiple measurements, estimated ES within each study were 
nested. Meta-analysis of the nested data showed that the 
density of postsynaptic elements is lower in SCZ patients 
than in control subjects (figure  3; ES: −0.33; 95% CI: 
−0.60 to −0.05; P = .020). A similar result was obtained 
performing the analysis with unnested data (supple-
mentary figure  1; ES: −0.22; 95% CI: −0.37 to −0.07; 
P = .004).

We detected high between-study heterogeneity  
(I2: 78.39%; Q: 138.90; P < .001). Sensitivity analysis, ex-
cluding studies with a residual z-score ±1.9616, showed 
no significant but trend level decrease in postsynaptic 
elements (supplementary figure  2; ES: −0.24; 95% CI: 
−0.48 to −0.003; P  =  .053). Although decreased, het-
erogeneity remained moderate (I2: 70.59%; Q: 98.61;  
P < .001).

Publication bias was assessed based on visual inspec-
tion of the funnel plot and Egger’s regression test. No 
asymmetry was observed by visual inspection, which was 
confirmed by Egger’s regression test (P  =  .42) (supple-
mentary figure 3).

We performed meta-regression analyses to check po-
tential continuous (age, sex distribution, and PMI) and 
categorical (brain bank) confounder variables. Age, sex, 

PMI, and brain bank showed no moderating effects 
on outcome measurements (supplementary figure  4;  
P > .05).

Subgroup Analysis: Stratified by Brain Region and 
Study Category

To assess possible sources of variation, we performed sub-
group analyses. Data from the same study were included 
in both analyses when data were reported separately for 
each group.50–52,80 First, we separated cortical and sub-
cortical studies. Subgroup analyses revealed a significant 
decrease in density of postsynaptic elements in cortical 
tissues (figure  4A; ES: −0.44; 95% CI: −0.76 to −0.12; 
P = .008) but no change in subcortical tissues (figure 4A; 
ES: −0.11; 95% CI: −0.54 to 0.35; P =  .671). However, 
the Q-test-based ANOVA for subgroup differences in-
dicated no significant difference between the 2 groups 
(Qbetween = 1.50; P =  .221). No publication bias (supple-
mentary figure 5) or confounding effects of age, sex, PMI, 
and brain bank (supplementary figure  6) were found. 
High between-study heterogeneity remained in both 
cortical (I2: 77.98%; Q: 90.82; P < .001) and subcortical  
(I2: 76.18%; Q: 46.17; P < .001) studies.

A subgroup analysis was also performed separating 
the 3 study categories (DSD, PSD number, and PSD 
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Records screened for eligibility 
N = 1527

PubMed search updated until 
30/04/2018 for “(spine OR 
dendritic spine OR spine*) AND 
(density) AND (schizophrenia OR
psychosis OR psychotic)”
N = 222

Additional records 
through cross referencing 
N = 7

PubMed search updated until 
30/04/2018 for “(schizophreni* 
OR psychosis OR schizophrenia) 
AND (post synapse OR PSD OR 
post-synapse OR post-synapt* 
OR post synapt* OR 
postsynap*)” N = 1298

Full text assessment
N = 116

Studies included for analysis 
(N = 34)*
Dendritic spine density (N = 8)*
PSD number (N = 6)
PSD protein expression
(N = 21)*

Records excluded after initial 
screening of title and abstract
N = 1411

Full-text articles excluded 
N = 81
(Supplemental table 1)

Studies excluded for 
quantitative analysis 
Data not available (N = 3)

Exclusion

Fig. 2. PRISMA flowchart. Diagram of the systematic search strategy. *One paper reported data on both dendritic spine density and 
postsynaptic density protein expression.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz060#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz060#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz060#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz060#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz060#supplementary-data
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protein expression). We found a significant decrease in 
DSD (figure  4B; ES: −0.81; 95% CI: −1.37 to −0.26; 
P = .004) and no difference for PSD protein expression 
(figure 4B; ES: −0.17; 95% CI: −0.51 to 0.16; P = .320) 
or PSD number (figure 4B; ES: −0.01; 95% CI: −0.72 to 
0.70; P  =  .98). However, no difference between groups 
was detected as shown by the Q-test-based ANOVA 
(Qbetween = 4.45; P =  .108). No publication bias (supple-
mentary figure 7) or confounding effects of age, sex, PMI, 
and brain bank (supplementary figure  8) were found. 
Moderate to high heterogeneity was observed in all study 
categories; DSD (I2: 88.72%; Q: 62.07; P < .001), synapse 
density (I2: 80.31%; Q: 25.39; P < .001) and PSD protein 
expression (I2: 61.44%; Q: 44.09; P < .001).

Surprisingly, we identified a study reporting signifi-
cant opposite effect directions in the expression of PSD 
proteins: showing an upregulation for Homer1a and Preso 
and downregulation for PSD95 and Homer1b/c in the 
hippocampus.53 This was also the case at a nonsignificant 

level in other studies.49–51,54,61–63 To visualize the variation 
in expression of different PSD proteins in SCZ post-
mortem tissue, we generated a forest plot with unnested 
data of all PSD protein expression studies (supplemen-
tary figure 9).

Exploratory Subanalyses: Specific Brain Areas

Lastly, we performed exploratory subgroup analyses 
when 5 or more studies were performed on the same brain 
area. These analyses showed a significant decrease of 
postsynaptic elements in the prefrontal cortex (figure 5A; 
ES: −0.27; 95% CI: −0.53 to −0.01; P = .043) and cortical 
layer 3 (figure  5B; ES: −1.39; 95% CI: −2.24 to −0.54; 
P = .001). No change was found in the ACC (figure 5C; 
ES: −0.25; 95% CI: −0.97 to 0.47; P = .50) and the hip-
pocampus (figure 5D; ES: −0.57; 95% CI: −1.17 to 0.02; 
P = .059). A graphical representation of these results is 
depicted in figure 6. Heterogeneity in these analyses was 

Fig. 3. Forest plot of primary meta-analysis on density of postsynaptic elements in schizophrenia (SCZ). The pooled effect size of all 
studies on postsynaptic elements indicates that the density of postsynaptic elements is decreased in SCZ (P < .05). PSD, postsynaptic 
density number; Protein, PSD protein expression level; DSD, dendritic spine density.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz060#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz060#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz060#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz060#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz060#supplementary-data
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Fig. 4. Forest plots of subgroup meta-analyses on density of postsynaptic elements in schizophrenia (SCZ). Subgroup meta-analyses for 
postsynaptic density (PSD) in SCZ stratified per (A) brain region (cortical/subcortical) and (B) study category. The pooled effect size of 
studies on the density of postsynaptic elements in cortical tissues is decreased in SCZ (P < .05) but not significantly changed in studies on 
subcortical tissues (P > .05). PSD, PSD number; Protein, PSD protein expression level; DSD, dendritic spine density.
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Fig. 5. Forest plots of brain area specific exploratory subanalyses. Exploratory subgroup meta-analyses for postsynaptic elements in 
schizophrenia (SCZ) in the (A) prefrontal cortex (PFC), (B) cortical layer 3, (C) anterior cingulate cortex (ACC), and (D) hippocampus. 
The pooled effect sizes of studies on the density of postsynaptic elements in the PFC and layer 3 are significantly decreased (P < .05) 
but not changed in studies on the ACC and hippocampus (P > .05). PSD, postsynaptic density number; Protein, PSD protein expression 
level; DSD, dendritic spine density.



382

A. Berdenis van Berlekom et al 

moderate in the PFC (I2: 58.42%; Q: 28.86; P = .004) and 
high in cortical layer 3 (I2: 81.79%; Q: 27.46; P < .001), 
the ACC (I2: 71.14%; Q: 13.86; P  =  .008), and hippo-
campus (I2: 75.21%; Q: 24.20; P < .001).

Discussion

In this study, we quantitatively investigated 3 outcome 
measures reflecting the number of postsynaptic elements 
in SCZ postmortem brain tissue: DSD, PSD number, 
and PSD protein expression. Our meta-analysis showed 
a significant decrease in density of postsynaptic elements 
in SCZ patients compared to healthy controls. However, 
sensitivity analyses showed high heterogeneity, suggesting 
the presence of subgroups. No evidence was found for 
publication bias or confounding factors (age, PMI, sex, 
and brain bank). With our meta-analysis, we quantita-
tively assessed, to our knowledge, the largest sample 
size to date on structural abnormalities of postsynaptic 
elements in postmortem brain tissue of SCZ patients, 
providing an extensive overview of the current literature 
on this topic.

At the same time, we recognize that several of the in-
cluded studies were performed on sample populations 
from the same brain bank or cohort.12,69,70,73,74,76,81 It was 
not feasible to determine which parts of the samples were 
overlapping to compute separate ES. This could result in 
an overrepresentation of specific populations in our meta-
analysis. Furthermore, our research design provided evi-
dence that alterations in postsynaptic elements were not 
due to age, sex, or PMI of the studied subjects. However, 
given the limited availability of data, several poten-
tial confounding factors such as suicide rate, severity of 
symptoms, and antipsychotic use could not be considered. 
Confounding by these factors is unavoidable in SCZ post-
mortem research and should, therefore, be addressed in 
future analyses. In particular, the use of antipsychotics has 
been suggested to influence synapse density.82,83 Although 
some studies (10) did not/could not correct for medication 
use,49,51,54,58,69,71,73,74,76,78 most studies included in our meta-
analyses (18) found no association between medication 
use and the outcome measurement.12,48,50,52,57,61–68,70,72,75,77 

Thus, while our study shows a decrease in density of 
postsynaptic elements in SCZ, future research will need 
to address the contribution of these confounding factors.

High heterogeneity was observed among included 
studies in the primary analysis. Although this is common 
in meta-analyses on preclinical data,40 it should be 
considered and explored. A priori, we defined brain region 
and study category as potential sources of heterogeneity. 
Our subgroup and exploratory subanalyses showed a sig-
nificant decrease of postsynaptic elements in cortical re-
gions, specifically in the PFC and cortical layer 3. We did 
not observe this effect in subgroup analysis for subcor-
tical regions or in analyses of the ACC and hippocampus. 
Although this suggests that the effect is most pronounced 
in cortical tissues, subgroup differences between cortical 
and subcortical studies were not statistically significant. 
Regional heterogeneity of postsynaptic element deficits 
in SCZ has been hypothesized before.13,16 An earlier study 
showed that spine density was decreased in cortical layer 
3 but not in layer 5/6 of the same cohort.69 Studies of the 
basal ganglia show an opposite effect, with an increase of 
PSD number.74,77 These changes also seem to be specific to 
subregions as increases are exclusively found in the core 
compartment of the nucleus accumbens74 and in the cau-
date but not the putamen of the striatum.77 It should be 
considered that we were unable to perform meta-analysis 
for each brain region separately as most are underrep-
resented in our data set. Strikingly, electron microscopy 
studies are almost exclusively performed on subcortical 
tissues, while most dendritic spine studies are performed 
selectively in cortical layer 3. Other cortical layers were 
researched in 2 separate studies.69,73 Systematic analysis 
of different brain regions and replication studies with 
large cohorts, recently shown feasible for transcriptomic 
studies,84,85 are necessary to compare specific brain areas 
to fully identify sources of heterogeneity.

Understanding local heterogeneity could also help 
determine the neuronal populations most vulnerable to 
pathology in SCZ. Our study has focused primarily on 
excitatory synapses. Dendritic spines form the primary 
source of excitatory input,24–26 and the structural proteins 
of the PSD in our analysis are almost exclusively found 

Fig. 6. Schematic representation of changes in postsynaptic elements. The schematic represents changes in postsynaptic elements in SCZ 
for brain regions tested with meta-analyses (unchanged or decreased) and shows which brain regions could not be tested (undetermined).
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in excitatory synapses.32,86 Furthermore, with exception 
of one study,87 most electron microscopy studies show 
that effects are specific for excitatory (asymmetric and 
axospinous) synapses.43,73,74,77 Although impaired inhi-
bition also has been hypothesized to affect cognition 
in SCZ, few structural postmortem studies have been 
performed to assess this.88

Our subgroup analysis identified no significant differ-
ence between the 3 study categories, DSD, synapse den-
sity, or PSD protein expression. However, we identified 
a significant decrease in DSD, suggesting that the effect 
is most pronounced in dendritic spines. Some electron 
microscopy studies, indeed, show a specific decrease of 
axospinous synapses in SCZ.73,75 An alternative expla-
nation for these findings could be the brain regions 
represented in each category. Subcortical studies are 
overrepresented in the category of PSD number and are 
less prevalent in DSD studies.

Our subgroup meta-analysis showed no significant dif-
ference in PSD protein expression in SCZ. Unexpectedly, 
some studies show opposite regulation of different in-
dividual PSD proteins, a phenomenon masked in our 
analysis because we nested the data. It suggests that 
the expression level of some PSD proteins is actively 
regulated in SCZ and is not only a consequence of the 
number of synapses.

Possible mechanisms explaining the decrease in density 
of postsynaptic elements found in our meta-analysis in-
clude deficits in synapse formation, maintenance, or elim-
ination. Defects in synapse formation are suggested by 
studies identifying SCZ risk genes encoding for PSD scaf-
folding proteins like DISC1, SHANK, and HOMER.11 
Altered synapse stabilization is implicated by a study 
showing that especially smaller, transient dendritic spines 
are decreased in SCZ.44 SCZ risk genes like CACNB2 
and CACNB489 could affect local calcium transients at 
dendritic spines, necessary for their stabilization.44,90,91 
Alternatively, noncell autonomous involvement of glia 
(microglia and astrocytes) might play a role. Studies have 
shown altered secretion of astrocytic gliotransmitters, 
necessary for synapse stability.92,93 Furthermore, increased 
glial pruning of synapses is suggested by a recent in vitro 
study94 and because of the high association between com-
plement 4 genes in the MHC locus and risk of developing 
SCZ.89,95

A recent elaborate transcriptomic study from the 
PsychENCODE consortium, using cortical brain tissue, 
could provide insight in postsynaptic element disfunction 
in SCZ.85 Most genes coding for proteins assessed in our 
meta-analyses were not differentially expressed (supple-
mentary table 4). However, many novel SCZ risk genes, 
related to synaptic or glial function, were suggested; for 
example, the kinase DCLK3, which enhances dendritic 
remodeling and synapse maturation and,85,96 also, the as-
trocytic glutamate transporters SLC1A3 and SLC1A2, 
which dysfunction could affect astrocyte-synapse 

interaction at excitatory synapses.85,97 More SCZ risk 
genes were identified within the modules of PSD/trans-
synaptic signaling, astrocytes, and microglia that need to 
be further explored in future studies assessing the relation 
to synapse dysfunction.

In general, the observed decrease of postsynaptic 
elements in the cortex, and layer 3 specifically, could be 
related to the clinical phenotype of SCZ. Cortical layer 3 
contains pyramidal neurons, important for corticocortical 
projections.98 These projections are required for higher 
cognitive functions, like working memory, which are af-
fected in SCZ.88,99 A  decrease in excitatory synapses is 
predicted to result in a reduced excitatory drive, possibly 
resulting in hypoactivity of layer 3 neurons. Previously, 
decreases in spine density were shown to be associated 
with alterations in connectome architecture as measured 
with diffusion tensor imaging.100 Therefore, microscale 
deficits in synapse structure and function could influ-
ence brain connectivity at macroscale, potentially un-
derlying the symptoms observed in SCZ. Altogether, the 
overall decrease in postsynaptic elements in the cortex 
also provides a specific cellular hallmark for transla-
tional research in SCZ that could be studied in human 
cell culture systems, brain organoid models, and animal 
studies. However, study approaches extending histolog-
ical analyses to integrate cellular phenotypes with prote-
omic, transcriptomic, genomic, and clinical data in large 
cohorts are imperative for translational research.

Furthermore, this phenotype also provides a possible 
target for diagnostics and novel therapeutics. Interestingly, 
several positron-emission tomography (PET) tracers 
visualizing presynaptic elements in vivo have been devel-
oped,101 providing means to analyze synapse density in the 
living human brain. Currently, PET tracers for postsynaptic 
elements are targeted toward receptor proteins, like the 
NMDA and dopamine receptor, which are suspected to 
be actively regulated in SCZ. The development of intra-
cellular PET tracers for postsynaptic scaffolding proteins 
would contribute to the analysis of postsynaptic element 
dynamics during disease states and could provide a bio-
logical outcome measurement for diagnostic purposes. 
Eventually, strategies that target postsynaptic elements, for 
instance stabilizing PSD integrity, could present a novel 
therapeutic approach in the treatment of SCZ.
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