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d‑Glutamate production 
by stressed Escherichia coli 
gives a clue for the hypothetical 
induction mechanism of the ALS 
disease
Edna Ben‑Izhak Monselise 1*, Maria Vyazmensky 1, Tali Scherf 2, Albert Batushansky 3 & 
Itzhak Fishov 1*

In the search for the origin of Amyotrophic Lateral Sclerosis disease (ALS), we hypothesized earlier 
(Monselise, 2019) that d-amino acids produced by stressed microbiome may serve as inducers of the 
disease development. Many examples of d-amino acid accumulation under various stress conditions 
were demonstrated in prokaryotic and eukaryotic cells. In this work, wild-type Escherichia coli, 
members of the digestive system, were subjected to carbon and nitrogen starvation stress. Using 
NMR and LC–MS techniques, we found for the first time that d-glutamate accumulated in the stressed 
bacteria but not in control cells. These results together with the existing knowledge, allow us to 
suggest a new insight into the pathway of ALS development: d-glutamate, produced by the stressed 
microbiome, induces neurobiochemical miscommunication setting on C1q of the complement system. 
Proving this insight may have great importance in preventive medicine of such MND modern-age 
diseases as ALS, Alzheimer, and Parkinson.
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GM	� Gut microbiota
ALS	� Amyotrophic lateral sclerosis
C1q	� Complement component 1q
LC–MS	� Liquid chromatography mass spectrometry
UPLC	� Ultra performance liquid chromatography
HSQC	� Heteronuclear single quantum correlation
NMR	� Nuclear magnetic resonance

d-amino acids are indispensable for bacterial growth as components of cell wall peptidoglycans. They are incor-
porated into the peptidoglycan monomeric units by the MurD enzyme1,2. The interconversion between d- and 
l-glutamate is achieved by the Glutamate Racemase enzyme3, specific for bacteria. This enzyme appears to be 
the primary source of d-glutamate for cell-wall biosynthesis, making it a potentially attractive target for anti-
microbial drug design4,5.

Advanced analytical techniques that detect chiral amino acids, e.g.6 (and see7 for a review), have demonstrated 
the presence of several d-amino acids in mammals as well, including humans8,9, with identified physiological 
functions comprising regulatory roles (reviewed in10). Particularly, d-serine regulates nervous signaling in the 
cerebral cortex and participates in memorization and learning; d-aspartate is often present in the central nerv-
ous system (CNS), neuroendocrine, and endocrine systems and plays physiological roles in the regulation of 
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hormone secretion and steroidogenesis11–14. The exogenous d-amino acids are thought to be metabolized by 
dietary enzymes and bacterial flora15–17. In eukaryotic cells, d-glutamate is metabolized within the mitochondria 
and chloroplasts (ancient prokaryote)18,19. d-Amino acids are increasingly being recognized as important signal-
ing molecules in the central nervous system in mammals, including humans20,21.

Abnormal levels of d-amino acids have been associated with the pathogenesis of different diseases, includ-
ing schizophrenia and amyotrophic lateral sclerosis (ALS), indicating that d-amino acid levels hold potential as 
diagnostic markers22–26 Table 1 summarizes 19 examples of d-amino acids’ appearance under various stress or 
disease conditions, indicating that this phenomenon is common for prokaryotic and eukaryotic cells.

Previously, we hypothesized that the stressed microbiome may produce elevated levels of d-amino acids48. 
Emerging evidence has demonstrated that the gut microbiome (GM) plays an essential role in the pathogenesis 
of human diseases in distal organs49–54. An increasing number of studies suggested that GM can modulate nerv-
ous, endocrine, and immune communication through the gut-brain axis which takes part in the occurrence 
and development of central nervous system diseases. The relationship between GM and neurodegenerative 
disease has recently gained a lot of attention in the medical community, especially in Parkinson’s and Alzheimer’s 
diseases, and ALS48,55–60. A comparison between ALS and a healthy group revealed a variation in the intestinal 
microbial composition with a higher abundance of E. coli and enterobacteria and a low abundance of total yeast 
in patients61. Notably, elevated levels of d-glutamate were found in the gut microbiota of Alzheimer’s disease 
patients60.

This work aimed to examine d-glutamate accumulation in stressed gut microbiome as predicted in our 
hypothesis48. However, the gut microbiome is extremely complex, and its composition and corresponding func-
tionality are very diverse and dynamic even in healthy humans (see e.g.62). Various in vitro experimental micro-
biome models were explored, but none of them can provide unambiguous results (for a review see e.g.63). To this 
end, we searched for an answer to a simple question: is an accumulation of d-glutamate by a wil d-type bacterium 
possible in stress conditions? The bacterium chosen for this purpose was the well-studied E. coli B/r H266 under 
nutritional starvation. Using Nuclear Magnetic Resonance (NMR) spectroscopy and liqui d-chromatography 
mass-spectrometry (LC–MS) techniques, we found for the first time that d-glutamate accumulated in the stressed 
bacteria but not in control cells. In the Discussion section, we consider how this accumulation may lead to ALS 
development via the complementary immune system response in the frame of our hypothesis.

Results
Chiral recognition plays an important role in many fundamental interactions of living systems. Different spectro-
scopic methods such as fluorescence spectroscopy, mass spectrometry, and nuclear magnetic resonance (NMR) 
spectroscopy, have been applied to achieve the analysis of chiral enantiomeric compound6,64,65. In this study, 
we employed targeted analysis of amino acids by liqui d-chromatography mass-spectrometry (LC–MS) and 
NMR spectroscopy. Since both techniques are achiral methods, chiral enantiomeric discrimination requires the 
formation of diastereoisomeric entities, which can then be distinguished (see Materials and Methods section).

Accumulation of d‑Glutamate in starved E. coli revealed by LC–MS analysis
Derivatization of the l- and d-glutamic acid with a chiral reagent (S)-NIFE66,67 allows the separation of derivat-
ized isomers chromatographically. The identity of the targets was confirmed by the exact mass-to-charge ratio 
recorded by a high-resolution mass spectrometer that also allows monitoring of isotopic composition, further 
supporting the identification. The results of the analysis are presented in Fig. 1. The data reveals the presence 
of l- and d-glutamate in the samples under stress conditions, while the control samples had l-glutamate only 
(Fig. 1E–G). Remarkably, 10-h-long stress showed a visibly stronger accumulation of d-glutamate compared to 
24 h of stress. Considering the large difference in abundance between the two forms of glutamate in the bio-
logical samples, it was impossible to quantify them precisely using LC–MS. However, relative quantification of 
metabolites was performed by comparative analysis, calculating the peak’s areas. The results support the visual 
observation of higher d-glutamate content after 10 h compared to 24 h of stress. Thus, the ratio between d- and 
l-glutamate after 10 h was 1:6, while it was 1:12 only after 24 h. These results were consistent among the analysis 
of three sets of samples from three independent preparations, containing two duplicates of unstressed E. coli 
(control), 10-h stressed cells, and 24-h stressed cells each.

d‑Glutamate detection in E. coli cells by NMR spectroscopy
NMR spectroscopy is also an achiral technique that requires the creation of diastereoisomeric entities, whereby 
spectral differences between an antipodal pair can be recognized. For enantiomeric discrimination, an optically 
pure chiral reagent (chiral auxiliary) is required to convert the mixture of enantiomers into a diastereomeric 
mixture through in-situ formation of nonequivalent diastereomeric complexes with substrate enantiomers. NMR 
resonances of diastereomers are anisochronous and, therefore, can often be distinguished in the NMR spectrum. 
Over many years, a variety of chiral NMR auxiliaries have been introduced, e.g. tartaric acid, which is a bidentate 
ligand with two chiral centers forming a seven-membered chelate ring, as well as different shift reagents. In this 
study, d-tartrate was added to the chiral sample, and the complex was formed in situ. In an attempt to differenti-
ate and increase chemical shift differences between d- and l-glutamate, several chiral auxiliary reagents were 
tested, under different experimental conditions. Aizawa et al.68 had used Somarium Lantanide shift reagent in 
the presence of chiral Tartrate, pH 8. Unfortunately, under these conditions, our biological samples had precipi-
tated, and no NMR signal was detected. Therefore, it was decided to use d-tartaric acid solely, testing different 
pH conditions. Best results were obtained using a threefold excess of d-tartaric acid and pH 7, conditions that 
were eventually used in this study.
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One-dimensional (1D) 1H NMR spectra, as well as 2D 1H-13C Heteronuclear Single Quantum Correlation 
(HSQC) NMR spectra, were used to characterize and identify the presence of glutamate in stressed cell extract. 

Table 1.    d-amino acid accumulation, as signaling agents, under various stress or disease conditions-a 
universal phenomenon.

Entry No Type of stress/disease Organism The  d-amino acid accumulated References

Prokaryotic

1 Density
Bacteria
Bacillus anthracis (germination of fresh spore is inhibited 
in a density-dependent manner by d-alanine)

d-Alanine 27

2 Hyperthermal stress
Archaea
Pyrobaculum islandicum
Methanosarcina barkeri Halobacterium salinarium

d-Alanine 28

3 Vibrio cholerae mrcA mutant
Bacteria
a mutant in Vibrio cholerae mrcA, and Bacillus subtilis-
generated

d-Methionine  d-Leucine
d-Tryptophan  d-Phenyl alanine

29

Eukaryotic

4 Osmotic stress Parasitic protozoan
Leishmania amazonensis d-Alanine 30

5 Hypersalinity acclimation

Crustaceans Aquatic invertebrates
Penaeus japonicus
Procambarus clarkia
Juasus lalandi
Chionoecetes opili
Eriocheir japonicus

d-Alanine 31

6 Changes in external salinity A brackish-water mollusc,
Corbicula japonica d-Alanine 32

7 Hypersalinity acclimation

Mollusks Aquatic invertebrates
Scapharca broughtonii
Crassostrea gigas
Patinopecten yessoensis
Meretrix lusoria
Ruditapes philippinarum
Pseudocardium sachalinensis
Tresus keenae

d-Alanine 31

8 Hypertonic or Hypotonic stress Mollusks aquatic invertebrates
Lucinoma aequizonata d-Alanine 33

9 Herbicides Plant
Nicotiana tabacum d-Alanine 34

10 Ultraviolet
radiation

Duckweed plants
Landoltia punctata d-Alanine 6

11 Amino acid deprivation Plant
Arabidopsis thaliana d-Alanine 35

12 Tidal freshwater marshes Plant
Phragmites australis d-Alanine 36

13 Most exposed to chronic mild stress (CMS), also some of 
them with Alzheimer’s disease (AD)

Male Wistar Rats
mammalian tissues
frontal cortex

d-Glutamate 37

14 Mutant ddY/DAO− mice lacking  d-amino-acid oxidase
Mouse
mammalian tissues
in the pituitary and pineal glands

d-Serine
d-Alanine
d-Proline
d-Asparagine
d-Serine
d-Leucine

38–41

15 Treated with drugs employed for therapy of mood/anxi-
ety and subjected to food shock stress

Rat
mammalian tissues d-Glutamate 42

16 Adult male-aging

Rat
mammalian tissues
salivary glands
CNS anterior pituitary gland
and in the pancreas
Islets of Langerhans of rat pancreas

d-Alanine
d-Asparagine
d-Alanine

43–45

17 Renal–kidney disease-
Human
Homo sapiens
mammalian tissues

d-Serine
d-Alanine
d-Proline

46

18 Alzheimer’s disease (AD) Human
d- Serine
d-Alanine
d-Proline
d-Glutamate

25

19 Motor Neuron Disease (MND)/Amyotrophic Lateral 
Sclerosis (ALS) Human d-Asparagine

d-Glutamate
47
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A comparison of the 1H and 13C chemical shifts between standard samples of d- and l-glutamate reveals slight 
differences between the NMR signals of the two glutamate enantiomers. The superposition of the 1D 1H NMR 
spectra of d-glutamate (red), l-glutamate (blue), and a mixture of d- and l-glutamate, 1:15 (green), is displayed 
in Fig. 2. (This 1:15 ratio was chosen as the desired lowest detection level based on results obtained by LC–MS for 
the biological samples. Spectra of 1:1, and 1:2 mixtures are shown in the Fig. S1 of Supplementary Information.). 
The largest chemical shift difference is observed for the Hβ signals (~ 2.36 ppm; see Fig. 2 insert/enlargement). 
Chemical shifts of the 1:15 d:l-glutamate mixture (Fig. 2) further support the chemical exchange between the 
two forms, revealing weighted average chemical shifts of d- and l-glutamate.

13C chemical shifts differences between d- and l-glutamate followed the trend observed for the 1H shift 
differences. To simultaneously track 1H and 13C shift differences, a 2D 1H–13C Heteronuclear Single Quantum 
Correlation (HSQC) NMR spectrum was recorded. Figure 3 presents the aliphatic region of the 2D 1H–13C cor-
relation spectrum of stressed cell extract (red), superimposed on the corresponding spectrum of a 1:15 mixture 
of d- and l-glutamate (blue). For clarity, the 1D 1H NMR spectrum of the latter mixture sample is shown as well 
(green). The chemical shifts of the 1:15 mixture signals nicely fit the signals of the stressed cell extract, clearly 
supporting and identifying the presence of glutamate in the cell extract sample.

Discussion
Our efforts to optimize the conditions allowing an effective resolution of NMR signals of the glutamate enantiom-
ers led to the desired results: the presence of d-glutamate in the 24-h starved E. coli was unambiguously detected 
(Figs. 2 and 3). The similarly optimized LC–MS spectroscopy not only successfully detected d-glutamate presence 
in the biological samples, but also provided valuable quantitative data. We note here that some of the samples 
subjected to the stress conditions did not demonstrate a remarkable accumulation of d-glutamate in the range 
of 1:6 or 1:12 (after 10 and 24-h starvation, respectively) compared to l-glutamate as shown in Fig. 1. As well, E. 
coli as other bacterial species are known to adapt gradually to nutritional stress69,70. In light of this, we assume 
that the decrease in the d:l glutamate enantiomers ratio may reflect the adaptation process during long starva-
tion. Nevertheless, the reliability of the results was confirmed by the consistent detection of d-glutamate in the 
samples in each of the three independent sets of bacterial samples. We therefore may use the highest detected 
d:l ratio of 1:6 to estimate the d-glutamate concentration in starved cells. The reported l-glutamate content 
in E. coli cells normally growing at the same conditions71,72 is 64 µmol/g of dry weight. Taking the average cell 
volume of 3 fl, and dry weight of a single cell of 470 fg, the d-glutamate concentration within an average E. coli 

Figure 1.   The results of LC–MS analysis of glutamic acids enantiomers. (A–D) Separation method 
development and verification; (E–G) representative samples of the control and the stress conditions. 
Chromatographic peaks framed in green (retention time 10.25 min) are l-glutamic acid (regular and d5-labeled 
stable isotope as internal standard), and peaks framed in blue (retention time 10.55 min) are d-glutamic acid. 
The mass-spectrum values of the corresponding peaks are presented in the plot.
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Figure 2.   Superposition of 1D 1H NMR spectra of d-Glu (red), l-Glu (blue) and a mixture of d- & l-Glu, 1:15 
(green), all dissolved in 10/90% D2O/H2O, pH 7. The inserts present the enlarged signals of Hβ (~ 2.10 ppm), Hγ 
(~ 2.36 ppm), and Hα (~ 3.70 ppm).

Figure 3.   The aliphatic spectral region of 2D 1H–13C correlation NMR Spectrum of stressed cell extracts (red), 
superimposed on the corresponding spectrum of a mixture of d- and l-Glu, 1:15 (blue). For clarity, the 1D 1H 
NMR spectrum of the latter is shown in the bottom (green). H/C correlation signals arising from the α, β and γ 
positions of glutamic acid are marked.



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:18247  | https://doi.org/10.1038/s41598-024-68645-8

www.nature.com/scientificreports/

cell can be calculated as about 50 µM. This value looks reasonable and essential if d-glutamate is released from 
the starved cells that eventually lyse.

Since d-glutamate is an essential component in pathway of the peptidoglycan synthesis in bacteria, its accu-
mulation is expected in any case of l-glutamate availability and arrested growth (e. g. about a tenfold increase 
in glutamate levels in E. coli cells with the transiently paused growth71,73. The constitutive glutamate racemase 
may readily convert l-glutamate to Denantiomer at these physiological conditions. This kind of stress-induced 
accumulation of d-glutamate may occur in all peptidoglycan-synthesizing bacteria populating the microbiome 
of the digestive system. The excretion of amino acids from bacterial cells under stress, or even at normal growth 
conditions74, was demonstrated although we are not aware of the chiral specificity of the carrier.

What may be a consequence of such d-glutamate accumulation in the stressed microbiome? A hectic mod-
ern lifestyle may affect human health by causing stress to the gut microbiota. As a result, the gut microbiota 
releases their signaling agents, d-amino acids, as their distress beacons (see for a review10. Another source of 
d-glutamate in the digestive system arises from consumed industrial food that contains a high percentage of 
d-glutamate60,75–78. Further, d-amino acids may travel via the bloodstream throughout the entire circulatory 
system setting on a neurobiochemical chain reaction by exciting the Complement immune system C1q and 
disrupting the signaling in CNS (Fig. 4).

The complement component 1q, or briefly C1q, is a pattern recognition protein as it can identify various struc-
tures and ligands on microbial surfaces, apoptotic cells, or indirectly via antibodies and C-reactive protein85,88–91. 
The immune system can react to elevated levels of d-glutamate by initiating the classical pathway of comple-
ment activation, which can help to eliminate the bacterial d-amino acid92 (Fig. 4). When C1q is introduced to 
components of a potential pathogen, it may trigger the production and activation of more C1q as part of the 
immune response93. Clinical studies94 reveal that antibodies specific to human C1q cause a slowdown in ALS 
progression by reducing C1q activity/levels. Besides its role in innate immunity, C1q has a function in neurode-
velopment, where it marks synapses for pruning by glia95. Aberrant activation of C1q in Alzheimer’s disease and 
related conditions leads to the removal of healthy synapses and contributes to dementia and loss of function96. 
Neutralizing C1q with ANX005 aims to limit complement-mediated neurodegeneration and preserve synapses94.

We are trying to locate and understand the source of neurobiochemical miscommunication occurring in 
neurodegenerative diseases such as ALS. ALS, commonly known as Lou Gehrig’s disease, is characterized by 
progressive degeneration of both upper and lower motor neurons, resulting in muscle atrophy, gradual paraly-
sis, and death, usually resulting from respiratory failure. Sporadic ALS has a worldwide prevalence of 6–8 in 
100,000. The average age of onset is between 55 and 65 years of age. The average survival period is 2–5 years 
from diagnosis97–99. Structurally altered and aggregated mitochondria, with a swollen and vacuolated appearance, 
are one of the first changes observed in ALS patient motor neurons100, suggesting direct involvement in disease 
pathogenesis80. Unfortunately, there are very few, if any, effective treatments for this disease, and of its origins. 
One of the mechanisms leading to nerve cell damage is the elevated Glutamate in the bloodstream. Accordingly, 
the main component of medicine Rilutek (riluzole) affects presynaptic sodium channels causing a reduction in 
the release of Glutamate101,102.

In this study, revealing the increased levels of d-glutamate under stress conditions we have proved the first 
step in the hypothesis suggested earlier103. Further studies are required to examine the next steps in the proposed 
scheme of ALS disease development (Fig. 4), inspiring possible treatment or prevention. We believe it may be 
important in preventive medicine for many other modern-age MND diseases e.g., Alzheimer and Parkinson.

Material and methods
Strains and media
A wild strain Escherichia coli B/r H266104 was grown in minimal salt M9 medium (Formedium LTD, Hunstan-
ton, UK) supplemented with 0.2% glucose, 1 mM MgSO4, 0.1 mM CaCl2, and 0.1 µg/ml Thiamine (B1) (Sigma 
Germany), in Erlenmeyer flasks with shaking at 37 °C, for 20 h. Cells were collected by filtration using sterile 
Polycarbonate filters (0.4 µ pore size, 47 mm diameter) and resuspended to an OD600 of 1.8 in "Stress medium": 
growth medium without NH4Cl and glucose, for incubation periods of either 10 h or 24 h in a shaker at 37 °C. 
The cells were harvested by centrifugation (1500×G for 15 min at 24 °C) and the pellet was stored at − 80 °C until 
extraction for NMR and UPLC studies.

LC–MS analysis
Targeted LC–MS analysis is a widely used technique in biological studies. It is based on separating components 
in a complex mixture by liquid chromatography and detecting their mass-to-charge ratio by mass-spectrometry. 
However, direct chromatography of enantiomers having identical molecular weight will also have the same reten-
tion time, making simple LC–MS ineffective. This challenge can be overcome using LC column with a chiral 
stationary phase105. This method requires a precise selection of specific columns, and multiple optimizations for 
specific compounds and still is not widely accessible for biological samples where the difference between con-
centrations of L- and d-amino acids can be orders of magnitude. In this study, a chemical derivatization followed 
by a relatively simple reverse-phase LC–MS technique demonstrated a better alternative.

Sample preparation for the LC–MS
Extraction was started by adding 2 ml of pre-chilled LC–MS grade methanol to the frozen pellet. The mixture was 
vortexed, thawed on ice, vortexed again, and sonicated for 5 min in the ultrasound bath. Next, 1 ml of LC–MS 
grade chloroform and 1 ml of LC–MS grade water were consequently added. The mixture was vigorously shaken 
for 10 min and centrifuged for 10 min at 14,000 rpm. The supernatant was transferred to the new Eppendorf 
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tubes and completely evaporated in the SpeedVac for 8 h106. The dry pellet was reconstituted in 50 µl of LC–MS 
grade water and subjected to derivatization.

Chiral derivatization with (S)-N-(4-nitrophenoxycarbonyl) phenylalanine methoxyethyl ester, (S)-NIFE, was 
performed based on the previously published works with modifications66,67. The derivatization process conjugate 
(S)-NIFE and amino acid (glutamate) radical, changing the targeted molecular weight (Fig. 5). Briefly, 10 µl of 
the sample were mixed with 10 µl of the internal standard (d5-l-glutamate 10 µg/ml) and 20 µl of 0.15 M sodium 
tetraborate, briefly vortexed, and then 30 µl of 2.5 mg/ml (S)-NIFE in acetonitrile were added. The mixture was 
incubated for 40 min at 22 °C on the slowly rotating thermos-shaker, and then neutralized by adding 6 µl of 
4 N HCl and diluted with 24 µl of water to the total volume of 100 µl. The samples were centrifuged for 5 min at 
14,000 rpm, and 60 µl from the top were transferred to the LC–MS vials.

LC–MS setup
The Waters Ultra Performance Liquid Chromatography (UPLC) system coupled with Thermo Exploris 240 
mass-spectrometer was used for the analysis. A separation of the derivatized compounds was achieved on Waters 
BEH C18 column (1.7 µm, 2.1 × 50 mm) using the following gradient of the mobile phase A (0.1% formic acid) 
and mobile phase B (acetonitrile): 0 min 95% A, 15 min 70% A, 15.5–17.5 min 0% A, 18–21 min 95% A. The 

Figure 4.   Scheme illustrating the connection between a stressed gut microbiota releasing d-glutamate as 
a communication signal, and C1q immune reaction (A) and the resulting impact on motor neurons (B). 
Mitochondria are of particular importance in neurons, which have high metabolic requirements. ALS-associated 
mitochondrial dysfunction comes in many guises, including defective oxidative phosphorylation, reactive 
oxygen species (ROS) production, impaired calcium buffering capacity, and defective mitochondrial dynamics79. 
Mitochondrial dysfunction is one of the earliest pathophysiological events in ALS80 The mitochondrial 
ultrastructure is a useful tool for assessing mitochondrial quality81. Aggregated mitochondria, with a swollen 
and vacuolated appearance, are one of the first changes82–84. The activity of the complexes involved in the 
electron transport chain is decreased in ALS. This results in decreased ATP generation, and increased generation 
of ROS leading to oxidative damage to DNA, RNA and mRNA80. In synaptic pruning, microglia-derived C1q 
may play an essential source of excessive synapse removal leading to pathological conditions85–87.
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injection volume was 2 µl, the column temperature was kept at 40 °C, and the flow rate was 0.2 ml/min. The 
total run time was 21 min.

High-resolution mass spectra were acquired using electron spray ionization (ESI) in positive full scan mode 
(70–700 m/z) with a resolution of 24,000 full width at half-maximum (FWHM). The MS parameters (ion spray 
voltage, sheath gas, aux gas, sweep gas, ion transfer tube temperature, and vaporizer temperature) were set up 
according to the manufacturer’s recommendations. Data were acquired under the control of Thermo Xcalibur 
software version 4.5.455 (Thermo Fisher Scientific) (https://​www.​therm​ofish​er.​com) which was used for data 
analysis as well, extracting targeted ions (EIC) of the derivatized targets (l- and d-glutamate) and their internal 
standard (d5-l-glutamate), and relative targets quantification.

NMR analysis
NMR sample preparation
Standard samples of d-glutamate, l-glutamate (Sigma), and their 1:1, 1:2, and 1:15 mixtures of 136 mM (in 
total) were prepared in the presence of threefold d-Tartaric acid, in 90%/10% H2O/D2O, pH 7. Chemical shift 
calibration standard, 3-(trimethylsilyl) propionic acid-2,2,3,3-d4 (TMSP) was added.

Biological samples were prepared from about 5 × 1010 cells collected from a liquid culture as described above. 
The concentrated cells were thawed and sonicated by Sonics Vibra Cell, pulse amplitude 35% for 2 min. Both 
control and stressed-cell samples were prepared in the presence of a threefold excess of d-Tartaric acid, in 
90%/10% H2O/D2O, pH 7 using TMSP as a chemical shift calibration standard.

NMR spectroscopy
NMR experiments were conducted at 298 °K on a Bruker Avance NEO 600 MHz NMR spectrometer equipped 
with a 5-mm cryogenic triple-resonance HCN TCI probe. Data were processed and analyzed using TOPSPIN 4.0 
(Bruker BioSpin, Germany). Spectra were referenced against internal sodium salt of 3-(trimethylsilyl) propionic 
acid-2,2,3,3-d4 (TMSP). One-dimensional 1H NMR spectra were acquired using solvent presaturation to suppress 
the solvent signal. Two-dimensional 1H–13C Heteronuclear Single Quantum Coherence (2D HSQC) spectra were 
recorded using 8192 (t2) × 256 (t1) data points. Multiplicity editing HSQC enables differentiating between methyl 
and methine groups that give rise to positive correlation, versus methylene groups that appear as negative peaks.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 14 March 2024; Accepted: 25 July 2024
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