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Abstract: Pseudomonas moorei KB4 is capable of degrading paracetamol, but high concentrations
of this drug may cause an accumulation of toxic metabolites. It is known that immobilisation can
have a protective effect on bacterial cells; therefore, the toxicity and degradation rate of paracetamol
by the immobilised strain KB4 were assessed. Strain KB4 was immobilised on a plant sponge. A
toxicity assessment was performed by measuring the concentration of ATP using the colony-forming
unit (CFU) method. The kinetic parameters of paracetamol degradation were estimated using the
Hill equation. Toxicity analysis showed a protective effect of the carrier at low concentrations of
paracetamol. Moreover, a pronounced phenomenon of hormesis was observed in the immobilised
systems. The obtained kinetic parameters and the course of the kinetic curves clearly indicate
a decrease in the degradation activity of cells after their immobilisation. There was a delay in
degradation in the systems with free cells without glucose and immobilised cells with glucose.
However, it was demonstrated that the immobilised systems can degrade at least ten succeeding
cycles of 20 mg/L paracetamol degradation. The obtained results indicate that the immobilised strain
may become a useful tool in the process of paracetamol degradation.

Keywords: biodegradation; non-steroidal anti-inflammatory drugs; immobilisation; Pseudomonas;
loofah sponge; paracetamol

1. Introduction

Among the pharmaceuticals consumed, non-steroidal anti-inflammatory drugs
(NSAIDs), such as ibuprofen, naproxen or diclofenac, belong to the most frequently used
drugs. The consumption of NSAIDs in developed countries has reached a rate of tonnes per
year [1,2]. However, the exact global consumption rates are difficult to calculate because
NSAIDs are mostly sold as over-the-counter drugs, including pharmaceutical preparations
with different trade names.

NSAIDs and their metabolites belong to a group of the most frequently detected con-
taminants. Since NSAIDs are bioactive compounds, they pose a threat to living organisms
and environmental processes. Among the reasons for their presence in the environment,
low removal rates in wastewater treatment plants and improper disposal of unused drugs
should be mentioned [3]. Another way for drugs to enter the environment is soil irrigation
with recycled water and the application of biosolids as fertilisers [4,5].

More and more effort is being put into developing water and soil remediation tech-
niques for xenobiotic removal. Remediation methods such as the utilisation of granular or
powdered activated carbon, nanofiltration, photocatalysis with titanium dioxide, reverse
osmosis or membrane bioreactors are constantly being developed, and the number of their
applications is growing. Pollutants such as NSAIDs (in parent form or as their metabolites,
often more active and/or stable) are, however, incessantly being released into the environ-
ment for reasons such as the lack of optimal treatment techniques [6]. Bioremediation of
contaminated groundwater or soil is considered to be a relatively environmentally friendly,
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simple and cheap tool for removing xenobiotics from the environment. The method mostly
utilises naturally occurring xenobiotic-degrading microbes. The number of reported mi-
croorganisms capable of NSAID degradation is constantly increasing. NSAID-degrading
bacteria are a non-homogeneous group, and reported examples belong to a broad spectrum
of different genera such as Klebsiella, Delftia, Patulibacter, Stenotrophomonas, Pseudomonas,
Labrys, Raoultella, Brevibacterium, Planococcus, Bacillus, Enterobacter, Sphingomonas, Pseu-
daminobacter, Ralstonia and Streptomyces [7–20].

P. moorei KB4 is one of the few described bacterial strains capable of degrading ei-
ther paracetamol (4-hydroxyacetanilide, N-acetyl-p-aminophenol, acetaminophen), an
analgesic and antipyretic drug often described as an NSAID, or diclofenac, an NSAID
generally accepted as being dangerous for the environment [21]. The main products of
paracetamol degradation by KB4 were identified as p-aminophenol and hydroquinone.
P. moorei KB4 is able to degrade paracetamol in the presence of harmful co-pollutants
such as heavy metals, phenol and its chlorinated derivatives [22]. One way to improve
the efficiency of the degradation process is to immobilise the microorganisms involved.
Immobilisation has been reported to promote bioremediation processes and to allow for
the use of multiple biocatalysts. It is also known to decrease the toxic effect of xenobiotics
against the immobilised bacteria and improve their resistance to harmful environmen-
tal factors. Cell adsorption on the surface of the carrier is the most popular method of
immobilisation due to its simplicity and non-toxicity [23]. At the early stages of the im-
mobilisation process, the cells’ attachment is reversible, and they may be easily washed
from the carrier. Afterwards, their binding to the surface of the carrier becomes stronger
due to the synthesis of extracellular polymeric substances. It is desirable that the formed
biofilm should be strongly bound to the carrier. This feature depends on the properties of a
given microorganism and the type of the surface, but the quality of the formed biofilm may
also be improved by selecting optimal conditions of immobilisation [24,25]. P. moorei KB4
exhibits qualities that facilitate whole-cell immobilisation: a high self-aggregation index
and a strong biofilm formation ability under certain conditions. It has been demonstrated
to be capable of being adsorbed by carriers and utilised in paracetamol degradation [21].
The loofah sponge (Luffa aegyptiaca) has been chosen as the carrier in the present study. It is
used in microorganism immobilisation for its high porosity (85–95%) with simultaneously
low density (0.018–0.05 g/cm3). The sponges are composed of fibre networks that form
good conditions for cell adsorption and biofilm development [26,27].

Strain KB4, with its ability to utilise a wide range of carbon and nitrogen sources and
its high tolerance towards various xenobiotics, has been selected for the immobilisation and
degradation studies presented in this paper. It is also documented that strain KB4 retains
its activity at lower temperatures and may, therefore, be applied in freshwater, marine
and other environments [22]. The process of immobilisation has been optimised, and
toxicological tests based on colony-forming units (CFU) calculation and ATP determination
were performed to compare the toxicity of paracetamol against free and immobilised cells.
Degradation tests were performed to calculate the kinetic parameters of biodegradation,
if applicable. An additional carbon source may accelerate the degradation of xenobiotics;
therefore, the ability of either free or immobilised P. moorei KB4 cells to degrade paracetamol
in co-metabolic systems with glucose as a carbon source was also evaluated. Additionally,
the cyclic supplementation of paracetamol doses was applied to examine the stability and
durability of the system consisting of the loofah sponge as a carrier and attached cells.

2. Results and Discussion
2.1. Optimisation of the Immobilisation Process

The procedure of P. moorei KB4 immobilisation on the loofah sponge through its
adsorption on the surface was developed by optimising each parameter separately to
obtain the optimal value of the separate parameters in the following order: time, pH, initial
OD600 and temperature. Commercially available sponges (Luffa aegyptiaca-derived) are
composed of cellulose, hemicellulose and lignin. This carrier is eco-friendly for bacterial



Molecules 2021, 26, 820 3 of 15

cell immobilisations due to their high mechanical resistance and high porosity [28]. After
the optimisation of the selected parameter, its value was used when examining the next
one. This intuitional optimisation approach is simple and relatively efficient. A similar
method was applied for optimising the immobilisation of Bacillus thuringiensis B1(2015b)
and Planococcus sp. S5, both on loofah sponges as the carrier [25,28]. The optimal values for
P. moorei KB4 immobilisation presented in Figure 1 (incubation time 24 h, pH 8, initial OD600
1.2 and temperature 35 ◦C) partially correspond to those found for the two mentioned
strains. Identical optimal pH values for Bacillus thuringiensis B1(2015b) and initial OD600
values for Planococcus sp. S5 were obtained in earlier studies [25,28].
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favourable conditions. Error bars were obtained based on the standard deviation. Statistically significant differences are
marked with letters (post-hoc Tukey HSD (Honestly Significant Difference), p ≤ 0.05).

Additionally, the final value of the total enzymatic activity of strain KB4 is of the same
range of magnitude as for Bacillus thuringiensis B1(2015b) [28]; however, it is slightly higher.
In contrast to the two other mentioned strains, KB4 forms the most active biofilms at higher
temperatures. There seems to be differentiation among bacteria, even belonging to the
same genera. For instance, certain Salmonella enterica strains tend to produce a biofilm at
temperatures <20 ◦C (with optimal pH depending on the surface material) [29]. In contrast,
a different study demonstrated that most Salmonella strains prefer high temperatures
(37 ◦C) to form biofilms [30]. P. moorei KB4 has been previously immobilised on bacterial
cellulose disks produced by the Komagataeibacter xylinus E-89370 strain, and the mineral
salts medium (MSM) was chosen for the immobilisation assay. In the same study, the effect
of different media on the biofilm formation was tested, and the best results were obtained
for MSM with the pre-cultivation in Sutherland–Wilkinson medium [21]. The MSM was
chosen for all experiments (the step of pre-cultivation in Sutherland–Wilkinson medium
was omitted to simplify the procedure and reduce the potential application costs), either
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concerning immobilisation, degradation or toxicity. The limitation of a carbon source in
some cases inhibits the biofilm formation, while sometimes resulting in a stimulatory effect.
For instance, Staphylococcus aureus and Staphylococcus epidermidis form biofilms only when
glucose, a substrate for adhesin synthesis, is present in the medium [31]. On the other
hand, the lack of an additional carbon source was reported to stimulate biofilm formation
by Bacillus subtilis, which is produced to provide conditions sufficient for survival and
proliferation during nutrient deficiency [32]. Another example of a strain preferring a rich
immobilisation medium is the Bacillus thuringiensis B1(2015b) mentioned above, which was
found to immobilise on loofah sponges most efficiently in the sporulation-specific medium
(HCT). The use of a rich immobilisation medium is probably the reason for the enzymatic
activity along with the B1(2015b) immobilisation time [28]. In the present study, where
KB4 cells were lacking any carbon sources during immobilisation, the total enzymatic
activity decreased with time, even though the biofilm mass increased, which indicates
efficient adsorption of cells to the support. However, non-growth conditions (no easily
degradable carbon source) resulted in decreased total enzymatic activity due to cell viability
loss. The total enzymatic activity measurement resulted in recording 24 h as the optimal
immobilisation time to produce a highly active biofilm (Figure 1). This result is not in
contradiction to Żur et al. [21], classifying strain KB4 as a weak biofilm producer after
24 h of incubation, since the classification was made following the method developed by
Stepanović et al. [33] that measures the biofilm quantity, not its activity.

Fragments of the carrier with attached bacterial cells (immobilisation was conducted
in optimal conditions) were observed in the SEM. SEM analysis confirmed the successful
cell attachment to the carrier (Figure 2). The structures observed may be described as flat,
monolayer biofilms forming irregular bands of different sizes. The porous structure of the
carrier was also displayed. The observations are similar to those resulting from the SEM
analysis of immobilised Bacillus thuringiensis B1(2015b) and Planococcus sp. S5 [25,28].
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2.2. Degradation Studies

Previous research has shown that P. moorei KB4 is strain that can degrade up to
50 mg/L of paracetamol within a few hours and transform diclofenac [22]. In contrast,
earlier studies with a free strain did not show its ability to degrade ibuprofen and naproxen
(data not published). Because immobilisation may affect the metabolism of bacterial
cells [34], in the present studies, it was checked whether the immobilised strain KB4
would break down ibuprofen. Unfortunately, the immobilised strain KB4 was only capable
of degrading paracetamol, while ibuprofen remained unaffected. For this reason, in
further steps, only the effect of immobilisation on the kinetic degradation and toxicity of
paracetamol was investigated.

Ribeiro et al. [35] tested the ability to adsorb paracetamol on the Luffa cylindrica
plant sponge. However, in their research, the sponge was fragmented (particles 4.7 mm
in size) and packed in the column together with sand and gravel, which increased the
adsorption capacity. Despite such conditions, the authors obtained a maximum of 40%
paracetamol adsorption at its low concentration (5 µM). Moreover, in their research, they
did not determine the actual percentages of paracetamol that were adsorbed on the sponge
and the sand and gravel. In our study, we did not find adsorption of paracetamol on the
sponge. There was no loss of paracetamol in the abiotic control, which clearly indicates its
biological degradation.

The Monod model is often used to compare the degradation kinetics of free and
immobilised cells. This model describes the relationship between the degradation rate of
a substrate and its initial concentration when the linear increase in the degradation rate
starts at a value of zero [36–38]. However, the collected data indicated that in the systems
with free cells without glucose and immobilised cells with glucose, there was a delay in
degradation (Figure 3). Many sigmoidal models can be found in the literature, such as
the Gompertz, Richards and Stannard models and the logistics model. However, most
of the equations that describe sigmoid curves only contain mathematical parameters, not
parameters of biological importance, making it difficult to determine the kinetic constant of
biological processes [39]. We decided to use the Hill model used in enzymology to estimate
the kinetic parameters in these systems (Table 1).

The obtained kinetic parameters and the course of the kinetic curves (Figure 3) clearly
indicate a decrease in the degradation activity of cells after their immobilisation. The reason
for this may be because access to the substrate is difficult. The higher degradative activity of
free cells in the presence of glucose is a frequently observed effect in co-metabolic systems.
The presence of an easily digestible growth substrate contributes to faster growth of
biomass, the synthesis of cofactors necessary for substrate decomposition and the induction
of degradation enzymes. A similar effect was observed in the presence of sucrose during
caffeine degradation by Fusarium solani [40]. On the other hand, there are known examples
where glucose improves the xenobiotic degradation rate only in low concentrations, when
higher co-substrate concentrations decrease the xenobiotic degradation rate. This has been
demonstrated, for instance, for different phenol-degrading bacteria [41]. This may happen
if the easily degradable co-substrate occurs in abundance [42]. It is possible that the glucose
decreased the Vmax of paracetamol degradation of the immobilised strain KB4 in that
manner, while free cells were in a different metabolic state and Vmax was increased by
glucose. The presence of a growth substrate significantly increases the Ks constant, which
clearly indicates a decrease in the affinity of cells for the substrate. However, the presence of
a growth substrate significantly increases the Ks constant, which clearly shows a reduction
in the affinity of cells for the substrate (Table 1). The change in the shape of the curve in the
presence of glucose from sigmoid to hyperbolic (Figure 3) may indicate faster synthesis
and binding of regulatory molecules at the allosteric sites of degradation enzymes. As a
result, it leads to full enzyme activity being obtained in a shorter time and, consequently,
to the abolition of the cooperation effect. The opposite effect was observed for immobilised
cells. This indicates the molecular and biochemical changes in the biodegradation process
forced by binding the cells to the carrier.
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Table 1. Parameters Vmax (mg/L*h), KS (mg/L) and h of the Hill equation, representing the depen-
dence of the paracetamol degradation rate on its initial concentration for specific degradation settings.

Reaction Setting Vmax (mg/L*h) KS (mg/L) h

Free cells without co-substrate 21.08 ± 3.69 93.81 ± 22.61 1.61 ± 0.22
Free cells with 1 g/L glucose 30.70 ± 6.80 289.59 ± 88.37 1

Immobilised cells without co-substrate 15.15 ± 2.45 145.39 ± 37.10 1
Immobilised cells with 1 g/L glucose 6.86 ± 0.43 37.84 ± 3.38 1.95 ± 0.27

Previous studies [21] demonstrated that P. moorei KB4 immobilised on the bacterial
cellulose network was able, in the presence of glucose, to degrade 150 mg/L of paracetamol
in three cycles of 50 mg/L each with very similar degradation rates of 14.35± 0.096 mg/L*h.
This study demonstrated that the immobilised systems can degrade at least ten succeeding
cycles of 20 mg/L. Little is known about the kinetic parameters of paracetamol degradation
by any other bacterial strains. In some cases, cell immobilisation clearly improved the
efficiency of the xenobiotic degradation process [36,43]. Still, many reports show that
immobilised cells degrade a given substance slower, but other aspects of the process, such
as inhibitor tolerance, are improved [44].

2.3. Toxicity of Paracetamol Towards P. moorei KB4

The toxicity of paracetamol against planktonic and immobilised cells was assessed
with the use of two different methods, either directly (CFU) or indirectly (ATP concentration
measurement). The results are demonstrated in Tables 2 and 3.
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Table 2. Toxicity of paracetamol to planktonic and immobilised P. moorei KB4 cells determined by the
ATP method.

Time 2 h 4 h 24 h

Immobilised
Cells

Free
Cells

Immobilised
Cells

Free
Cells

Immobilised
Cells

Free
Cells

IC05 15.246 3.599 13.002 6.000 9.565 5.462
IC50 15.719 8.598 14.557 8.928 11.660 6.316
IC95 16.208 25.033 16.139 19.426 19.179 9.250

Table 3. Toxicity of paracetamol to planktonic and immobilised P. moorei KB4 cells determined by the
colony-forming units (CFU) method.

Time 24 h 24 h

Immobilised
Cells Free Cells Immobilised

Cells Free Cells

Carbon Source Paracetamol Paracetamol with Glucose 1 g/L

IC05 5.314 2.426 0.861 0.636
IC50 8.989 5.32 2.859 1.178
IC95 21.711 15.362 5.765 2.323

The toxicity analysis by the ATP method showed a protective effect of the carrier
at low concentrations of paracetamol. Simultaneously, a pronounced phenomenon of
hormesis was observed in the immobilised systems (Figure 4) [45]. Hormesis is defined as
a process in a cell or organism that exhibits a biphasic dose response to an environmental
factor, characterised by stimulation in low concentration ranges and inhibition at high
doses. The hormetic dose response of bacteria has been observed many times, especially in
the response of bacterial cells to the presence of metals [46–48].

The hormesis effect observed in this study probably results from the earlier contact of
P. moorei KB4 cells with this drug, which induced not only degradation enzymes but also the
enzymes of antioxidant systems, which prevent oxidative damage to cells observed in the
presence of NSAIDs [12]. Toxicity testing after exposing bacterial cells to paracetamol for
24 h indicated an increase in the sensitivity of free cells to paracetamol, while immobilised
cells did not show a significant change in sensitivity to paracetamol after this exposure
time (Figure 4). This confirms previous studies’ conclusions that the hormetic response
is time-dependent and transient [47]. A significant increase in cell sensitivity may be
related to the response of cells to toxic metabolites appearing during the degradation of
paracetamol. It seems that the immobilisation of cells protects them against the formation
of aminophenol or hydroquinone, both reported to be toxic towards living organisms,
including bacteria [21,49–51].
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The analysis of the effect of paracetamol on free and immobilised cells after 24 h
of exposure with the CFU method confirmed the results obtained with the ATP method.
Additionally, in paracetamol toxicity studies using the CFU method, the paracetamol and
glucose system was introduced for comparison. The presence of glucose clearly increases
the toxicity of paracetamol to both free and immobilised cells (Figure 5a–d), and the
phenomenon of hormesis is also not observed (Figure 5c–d).
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This enhancement of toxicity is very surprising. Moreover, the effect is significantly
higher in the case of immobilised cells. Glucose is rather known for being a protective
factor for bacteria [52] but has been rarely demonstrated to intensify the negative effect
of other substances—for instance, it increases the level of oxidative stress caused by other
NSAIDs and diclofenac [53].

The presence of detectable concentrations of paracetamol and, more importantly, its
toxic metabolites in sewage treatment effluences makes it, potentially, an environmental
risk. The Environment Agency (EA) of England and Wales proposed a system ranking the
top 10 compounds in terms of the environmental risk they possess. Paracetamol has been
classified in fifth place [54,55]. Therefore, more effort needs to be put in to research the
toxicity of paracetamol and its derivatives.

3. Materials and Methods
3.1. Optimisation of P. moorei KB4 Immobilisation
3.1.1. Cell Immobilisation

Cell immobilisation and cell activity measurements were performed in accordance
with Dzionek et al. [56], with modifications. Loofah sponges (York, Bolechowo, Poland)
were dried in a desiccator to establish a constant weight. The sponges were subsequently
cut into fragments weighing 0.15 ± 0.01 g. The obtained cubes were sterilised (121 ◦C,
1.2 atm). Cells of strain KB4 were immobilised through their adsorption on the surface
of a loofah sponge using the natural ability of this strain to form a persistent biofilm.
Before immobilisation, the strain was cultivated in a lysogeny broth medium (LB, BTL,
Poland; medium composition: peptone k 10 g/L, NaCl 10 g/L, yeast extract 5 g/L) for 24 h
under shaking conditions (130 rpm) at 30 ◦C. Next, the bacterial cultures were centrifuged
(5000× g, 20 min, 4 ◦C) and resuspended in a fresh mineral salts medium (MSM) composed
of 3.78 g/L Na2HPO4 × 12H2O, 0.5 g/L KH2PO4, 5.0 g/L NH4Cl, 0.2 g/L MgSO4 ×
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7H2O and 0.01 g/L yeast extract. Immobilisation was conducted in 250-mL Erlenmeyer
flasks, which contained ~0.75 g (5 cubes) of the carrier and 100 mL of the MSM (different
pH settings of the medium were tested to find the optimal conditions; tested pH values
were 3, 4, 5, 6, 7, 7.2, 7.6, 8 and 9) with P. moorei KB4 cells (different initial optical density
settings were tested, and measurement was conducted at 600 nm with a Genesys 20
spectrophotometer, Thermo Scientific, Waltham, Massachusetts USA. The following initial
optical density settings were tested: 0.2, 0.4, 0.6, 0.8, 1, 1.2 and 1.4). Flasks were incubated
under shaking conditions (130 rpm) at different temperature settings (20, 25, 30, 35 and
40 ◦C) and for different time intervals (24, 48 and 72 h) to find the optimal conditions.
Parameters were optimised in the following order: time, pH, initial OD600 and temperature.
After optimising each parameter, its optimal value was kept for the rest of the experiment.
After the incubation, the loofah sponges with immobilised bacteria were rinsed three times
with phosphate-buffered saline (PBS) (pH 7.2).

3.1.2. Total Enzymatic Activity Measurement

Total enzymatic activity was measured by methods with fluorescein diacetate (3′,6′-
diacetyl-fluorescein; FDA). This compound is a prefluorophore and is hydrolysed by a
broad spectrum of non-specific extracellular enzymes and membrane-bound enzymes such
as proteases, lipases and esterases. The hydrolysis product fluorescein has a yellow-green
colour and is characterised by strong light absorption at 490 nm. For this reason, the
concentration of fluorescein after enzymatic reactions can be measured spectrophotomet-
rically [56]. The dry mass of the immobilised bacterial cells was obtained by comparing
the dried weight of the immobilised carrier (105 ◦C, 2 h and stored in a desiccator) with
unimmobilised carrier cubes incubated and dried under the same conditions. The total
enzymatic activity of the immobilised cells was measured by adding the rinsed carrier
with immobilised bacteria (1 cube) to 8 mL of phosphate-buffered saline (pH 7.2) and
incubated for 15 min under shaking conditions (130 rpm, 30 ◦C). After the pre-incubation,
0.1 mL of FDA (Sigma-Aldrich, St. Louis, MO, USA) (4.8 mmol/L) was slowly injected
directly into the middle of the carrier, and the mix was incubated in the dark under shaking
conditions (130 rpm, 30 ◦C) for 1 h. The colouration intensity of the liquid was measured
spectrophotometrically at 490 nm. The concentration of fluorescein was calculated based
on a standard curve. Total enzymatic activity was expressed as µg fluorescein/g dry mass
* h. It was assumed that the highest rate of total enzymatic activity reflects the most optimal
immobilisation conditions.

3.2. NSAID Degradation Experiments
3.2.1. Degradation Tests

After immobilisation in the optimal conditions established in the previous step, the
immobilised cells were washed three times with phosphate-buffered saline. Decomposition
tests of selected NSAIDs were conducted in 250-mL Erlenmeyer flasks containing 100 mL
of the MSM (pH 7.2) and 5 cubes of the loofah sponge (0.75 g) colonised by bacteria.
Each flask was supplemented with either paracetamol or ibuprofen (Sigma-Aldrich, St.
Louis, MO, USA). A pilot ibuprofen degradation experiment was performed with an initial
concentration of 15 mg/L. Additionally, the same degradation tests were performed with
1 g/L glucose as a co-substrate. Paracetamol degradation experiments were performed
either as mono-substrate degradation tests or with 1 g/L glucose as a co-substrate. Initial
concentrations of the paracetamol line-up were as follows: 1, 5, 10, 20, 30, 40, 50, 75,
100 and 150 mg/L. Flasks were incubated under shaking conditions (130 rpm at 30 ◦C).
Medium samples were taken in different time intervals (depending on the NSAID being
tested, see the Results section), centrifuged (10,000 rpm, 15 min) and analysed using high-
performance liquid chromatography (HPLC). The same series of degradation experiments
were conducted to compare the kinetic parameters of the immobilised and free cells,
but immobilised bacteria were replaced with planktonic cells. The post-immobilisation
MSM containing free cells was centrifuged (5000× g, 20 min, 4 ◦C), the supernatant was
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discarded and cells were resuspended in a small amount of MSM (pH 7.2). Afterwards, the
cell suspension was mixed with fresh MSM (pH 7.2) in 250-mL Erlenmeyer flasks to reach
a final volume of 100 mL and initial OD600 = 0.11. The initial OD600 value was established
based on the standard curve, demonstrating the dependency between OD600 and the dry
mass of cells. It was assumed that the initial mass of free cells should be equal to the mass of
cells immobilised on 0.75 g of the carrier (0.033 g) in optimal conditions. The standard curve
was prepared using 0.2-µm Nuclepore filters, and 10 mL of cell suspension of given OD600
values was filtered on a previously dried (105 ◦C, 2 h) and weighed filter. Afterwards, filters
were dried and weighed again. Additionally, immobilised cells were tested in multiple
paracetamol application tests. The experiment was conducted as described above (only
with 1 g/L glucose as a co-substrate), but each flask was supplemented with a paracetamol
dose every 24 h to reach the concentration of 20 mg/L. Medium samples for further
analyses were taken at a time interval of 2 h after applying each paracetamol dose.

Additional abiotic controls (medium with paracetamol and sponge without bacteria)
were also prepared to determine adsorption or/and abiotic degradation of the drug.

3.2.2. Analysis of NSAID Concentrations

Decomposition rates of NSAIDs used in degradation tests were determined with the
HPLC technique using Merck-Hitachi HPLC reversed-phase chromatograph equipped
with Ascentis Express ® C18 HPLC Columns (150 × 4.6 mm2 for the evaluation of parac-
etamol concentrations and 100 × 4.6 mm2 for ibuprofen), pre-columns Opti-Solw® EXP
and a UV/VIS diode array detector. The mobile phase for the ibuprofen assay consisted
of acetonitrile and 1% acetic acid (5:95 v/v) with a flow rate of 1 mL/min. For the parac-
etamol assay, the mobile phase consisted of methanol and 1% acetic acid (2:98 v/v) with a
0.7-mL/min flow rate. The detection wavelength for both assays was set at 240 nm [15,22].
NSAID concentrations were identified by comparing the HPLC retention times and UV–
visible spectra with those of the external standards. Initial reaction speed values were
calculated and used to fit the parameters of the Hill equation for non-hyperbolic regression.
The Hill equation is expressed as:

V = Vmax Sh/(KS + Sh), (1)

where v is the specific degradation rate, Vmax is the maximum specific degradation rate
of the substrate, KS is the half-saturation rate constant (mg/L), S is the concentration
of the substrate (mg/L) and h is the cooperation coefficient (h > 1-positive cooperation,
h < 1-negative cooperation, h = 1 non-cooperation).

3.3. Acute Toxicity Assessments
3.3.1. Colony-Forming Units (CFU) Calculation

After determining the optimal conditions for cell immobilisation, either free or im-
mobilised cells were placed in 250-mL Erlenmeyer flasks containing 100 mL of the MSM
(pH 7.2) as described in Section 3.1.1. The media were supplemented with different con-
centrations of paracetamol. Since strain KB4 is able to grow in the mono-substrate culture
with paracetamol being the only carbon source [21], the toxicity of paracetamol was tested
either in the presence of 1 g/L glucose as a co-substrate or without glucose. After 24 h,
serial dilutions of free cell suspension were spread on LB agar plates to estimate the CFU
number after overnight incubation. Carrier fragments were previously washed three times
in fresh MSM. The pieces of the carrier were then added to 10 mL of fresh MSM and treated
in the ultrasonic cleaner for 0.5 min before the serial dilutions step. The inhibitory effects
were demonstrated in a manner described in Section 3.2.1.

3.3.2. ATP Determination

Immobilised and free cells were examined in terms of ATP concentrations after expo-
sure to different concentrations of paracetamol. ATP determination is an indirect method



Molecules 2021, 26, 820 12 of 15

that may be used to estimate the viability of biofilm-forming cells [57]. The method was
used to complement CFU data.

Carrier fragments with immobilised P. moorei KB4 cells were washed three times with
fresh MSM. The ATP measurement was performed as follows: the fragment of the carrier
was added to 10 mL of fresh MSM containing a specified concentration of paracetamol. The
ATP concentration was measured for samples collected after 2, 4 and 24 h of exposure. Sam-
ples were treated in the ultrasonic cleaner for 1 min and homogenised for 20 s at 11,000 rpm.
The cell viability was estimated using the bioluminescent method based on the oxidation
of D-luciferin by firefly luciferase, which occurs in the presence of ATP and is accompanied
by fluorescence, the intensity of which is proportional to the ATP content. The ATP concen-
tration was measured immediately after the homogenisation using ATP Determination Kit
reagents (Thermo Fisher Scientific, Waltham, MA, USA) according to the protocol provided
by the producer. The luminescence was measured with a Spark®Multimode Microplate
Reader (Tecan, Männedorf, Switzerland). For determination of the viability of the free
cells, instead of a carrier cube, an equivalent of post-immobilisation medium with free
cells containing an equal ATP concentration compared to a non-exposed control carrier
fragment was used. Concentrations were calculated with the use of a calibration curve. Cell
response curves were plotted, and adequate ICx values were calculated using the online
tool MyCurveFit (https://mycurvefit.com/; access: 2020-11-12) for regular, sigmoidal
curves. In the case of irregular response curves, where the hormesis effect was clearly
visible, the following function was used as a drug–response model [58]:

y = (a − b/( 1 + exp( c × x − d)))/(1 + exp( e × x − f)), (2)

where x is the logarithm of paracetamol concentration (g/L), and y is the bacterial
cell response.

The parameters were estimated using the quasi-Newton algorithm with a varying
number of iteration steps and different initial parameter values. Different set-ups were
tested manually to fit the equations’ parameters, and each time, the goodness of fit was
evaluated as the result of the R values and the linearity of the predicted and observed
values. In the case of irregular response curves, ICx values were calculated by solving the
adequate equations, where y was replaced with the desired response value.

3.4. Carrier Analysis by Scanning Electron Microscopy

To confirm the presence of the attached cells on the carrier surface, scanning electron
microscopy (SEM) was used. Fragments of the carrier were prepared for imaging with
SEM using 3% v/v glutaraldehyde incubation (fixative, 24 h) and subsequent ethanol
dehydration (30, 50, 70, 80, 90, 95 and 100% v/v, each for 15 min). The samples were
subsequently critical-point dried in the Pelco CPD2 apparatus (Ted Pella Inc., Redding,
CA, USA), mounted on aluminium stubs with double-sided adhesive carbon-tape and
sputter-coated in a Pelco SC-6 Sputter Coater (Ted Pella Inc., Redding, CA, USA) with
a thin film of gold to improve the electrical conductivity of the sample surface. After
processing, samples were imaged using the Hitachi SU8010 field emission scanning electron
microscope (FESEM) (Hitachi High-Technologies Corporation, Tegama, Japan) at 5, 10
and 15 kV accelerating voltage with a secondary electron detector (SED) and at a working
distance (WD) of 3–300 µm.

3.5. Statistical Analyses

All experiments were performed in at least three replicates. The values of the total
enzymatic activity were analysed using the STATISTICA 12 PL software package. Statis-
tically significant differences and similarities were demonstrated by the post-hoc Tukey
HSD test (p ≤ 0.05). The Hill equation parameters that were used as the degradation model
were estimated using online tool Biomodel (http://biomodel.uah.es/en/metab/enzimas/
inicio.htm) fitting kinetic models to experimental data, and Sigma Plot 12.0. ICx values
were calculated using the Excel add-in ED50V10 and STATISTICA 12 PL software package.

https://mycurvefit.com/
http://biomodel.uah.es/en/metab/enzimas/inicio.htm
http://biomodel.uah.es/en/metab/enzimas/inicio.htm
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4. Conclusions

P. moorei KB4 exhibits metabolic activity and the ability to grow in a wide range of
non-optimal conditions and in the presence of xenobiotics. It is capable of adaptation to
changing environmental conditions. These features make it very valuable for potential
application in wastewater treatment plants. The toxicity analysis showed a protective
effect of the carrier at low paracetamol concentrations, and a pronounced phenomenon of
hormesis was observed in the immobilised systems. The kinetic analysis of the paracetamol
degradation process shows a decrease in the degradation activity of the immobilised strain
KB4. Cells free without glucose and immobilised with glucose degraded the drug with a
significant delay. Although the results show that the strain KB4 is a weak biofilm producer,
the obtained biofilm is sufficiently stable on the medium, which allows the use of the
preparation obtained in this way for up to 10 degradation cycles of 20 mg/L paracetamol.

It may be concluded that the capacity of the formation of a biofilm with high metabolic
activity by the strain KB4, the short immobilisation time in non-demanding conditions, its
paracetamol degradation and its improved tolerance of immobilised cells make this strain
suitable for more complicated biodegradation goals.
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