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Abstract
The NOD-like receptor protein 3 (NLRP3) inflammasome is a key regulator of the host’s immune response, and many immune and
metabolic disorders are linked to its activation. This review aimed to investigate and clarify the relationship between this
inflammasome and high-risk reproductive disorders. Papers cited here were retrieved from PubMed up to August 2020 using
the keywords “NLRP3” or “NALP3”, “caspase-1”, “endometriosis”, “gestational diabetes”, “interleukin (IL)-18”, “IL-1b”,
“pre-eclampsia (PE)”, “preterm birth”, “polycystic ovarian syndrome (PCOS)”, “recurrent spontaneous abortion (RSA)”, and
combinations of these terms. The results show that NLRP3 inflammasome is associated with various high-risk reproductive
disorders and many inflammatory factors are secreted during its activation, such as IL-1b induced during the development of
endometriosis. PCOS is also associated with activation of the NLRP3 inflammasome, especially in overweight patients. It also
participates in the pathogenesis of RSA and is activated in fetal membranes before preterm birth. The placentas of pregnant women
with PE show higher expression of the NLRP3 inflammasome, and gestational diabetes mellitus occurs simultaneously with its
activation. Current evidence suggest that the NLRP3 inflammasome plays an important role in female reproductive disorders. New
treatment and management methods targeting it might help reduce the incidence of such disorders and improve neonatal outcomes.
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Introduction

Inflammation is a defense response induced by potentially
harmful stimuli that usually requires the participation of
multi-protein complexes known as inflammasome. The
NOD-like receptor protein 3 (NLRP3) inflammasome can
recognize a variety of pathogenic microorganisms and
stress-related endogenous signaling molecules. It is mainly
expressed and activated in dendritic cells and macro-
phages, where it plays an important regulatory role as a
pro-inflammatory factor of the host’s innate immune
system. Many immune and metabolic disorders involve
activation of the NLRP3 inflammasome activation,[1,2]

such as atherosclerosis, gout, kidney disease, obesity, type
2 diabetes, and inflammatory bowel disease. Some studies
suggest that activation of the NLRP3 inflammasome is
linked to endometriosis, polycystic ovary syndrome
(PCOS), recurrent spontaneous abortion (RSA), preterm
birth, pre-eclampsia (PE) and gestational diabetes mellitus
(GDM). This article reviews the progress of research into
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the role of this inflammasome in such reproductive
disorders.
Mechanism of NLRP3 Activation

The NLRP3 inflammasome is a member of the nucleotide-
binding oligomerization domain, leucine-rich repeat
(LRR)-containing protein family. It contains a central
nucleotide-binding and oligomerization domain, a C-
terminal LRR domain, and an N-terminal pyrin domain.
Its activation requires two steps. The first or priming signal,
such as lipopolysaccharide (LPS), induces the expression of
NLRP3 and Pro-interleukin (IL)-1b and Pro-IL-18. The
second activating signal involves many activators, such as
cholesterol, uric acid and ATP, and exogenous stimuli such
as asbestos, ultraviolet light, pathogenic microorganisms
and their metabolites.[3] In this step, the C-terminal senses a
variety of endogenous stimuli, and binds to the pyrin
domain (PYD) of apoptosis-associated speck-like protein
containing a caspase recruitment domain (ASC) through
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its N-terminal PYD. Pro-caspase-1 is recruited to self-splice
and generate the activated caspase-1 (p10/p20 complex).
Activated caspase-1 cleaves pro-IL-1b and pro-IL-18 into
mature IL-1b and IL-18, then the latter two are secreted
from cells to activate the downstream inflammatory
response.[4]

The mechanisms involved in activating the NLRP3
inflammasome remain unclear. Possible processes include
changes in intracellular calcium concentration,[5] lysosom-
al damage,[6] mitochondrial damage,[7] potassium ion
efflux,[8] and reactive oxygen species (ROS) production.[9]

The main function of this inflammasome is to initiate
assembly of the inflammatory complex, and ASC serves as
an adaptor protein of the inflammasome to connect
upstream NLRP3 and downstream caspase-1. When the
NLRP3 inflammasome becomes over-activated, it induces
pyroptosis by generating excessive inflammatory factors
and participates in the development of certain diseases.
NLRP3 and Reproductive Disorders

NLRP3 and endometriosis

Endometriosis (EMs) is a common gynecological disease.
About 10% to 15% of women of childbearing age exhibit
EMs, and about 30%of infertile women are affected by this
disease.[10,11] Many recent studies have suggested that
immune factors play important roles in its pathogenesis.
Hypothyroidism, susceptibility to vaginal candidiasis, auto-
immune diseases, fibromyalgia, chronic fatigue syndrome,
headaches, arthralgias and myalgias, asthma and allergies
are more common comorbidities in women with EMs than
in women without it. Therefore, a possible link between
endometriosis and autoimmunity has been suggested.[12]

Peritoneal fluid samples from women with EMs show
defectively activated macrophages and natural killer (NK)
cells, which alter the recognition and clearance of
endometrial cells. Macrophages secrete different products
such as growth factors, enzymes, prostaglandins, and
cytokines that stimulate the adhesion of endometrial tissue
to mesothelial cells, promoting the invasion of extracellular
matrix creating islands of endometrial cells where they can
proliferate.[13] Previous studies have shown that inflamma-
tion is an important pathophysiological basis for EMs.[14]

The intra-abdominal inflammatory environment and im-
mune abnormalities are closely related to ectopic endome-
trial hyperplasia. Inflammation is a response from living
tissues to infection or damage. Bullon et al[12] proposed that
abnormal activation of inflammasome is closely related to
the occurrence of endometriosis. As an important inflam-
matory mediator in inflammatory responses, the NLRP3
inflammasome is an important component of inflamma-
somes.[15] The same study also explored whether the
NLRP3 inflammasome acts in the pathogenesis of EMs by
establishing an EMs model: when the NLRP3 level was
reduced, the production of inflammatory cytokines was
inhibited.[13]Ahn et al[16] analyzed the genes associatedwith
inflammation and immunity in patients with endometriosis,
including 579 genes involved in human immunity and
inflammation and 15 housekeeping genes. They found that
396 genes were upregulated in ectopic endometrial tissues,
including those encoding caspase-1, IL-18, and NLRP3.
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NLRP3 inflammasomes secrete many inflammatory
factors, such as IL-1b, which are associated with the
occurrence and development of EMs.[17,18] Bullon et al[12]

and Sikora et al[19] reported that the concentrations of
IL-1b in the extrauterine tissues and peritoneal fluid from
patients with EMs were significantly higher than those
from healthy women. Another study suggested that IL-1b
upregulates the expression of cyclooxygenase-2 and
increased the release of vascular endothelial growth factor
(VEGF) in endometrial stromal cells and that this might
promote the formation of EMs.[20] Zhao et al[21] found
that a large amount of inflammatory cell infiltration
occurred in an animal model of EMs compared with a
sham-treated group and that the levels of inflammatory
cytokines (IL-1b, IL-6, and tumor necrosis factor [TNF]-a)
in the EMs group were significantly higher than in
controls.

There are few studies about the treatment of EMs targeting
the NLRP3 inflammasome. Thus, the oncogene Astrocyte
elevated gene-1 (AEG-1) promoted inflammation in cases
of EMs by reducing the cytokine signaling-1 (SOCS1) level
and stimulating formation of the NLRP3 inflammasome.
While silencing AEG-1 alone increased SOCS1 levels, the
levels of inflammatory cytokines decreased, thereby
inhibiting the formation of the NLRP3 inflammasome.[21]

However, the effects of NLRP3 inhibitors on the
occurrence and development of EMs need further study.
NLRP3 and PCOS

PCOS is a common endocrine and metabolic disorder of
women of childbearing age, and is associated with
cardiovascular diseases, hyperandrogenism, insulin resis-
tance, obesity, metabolic syndrome, and reproductive
abnormalities. At present, the etiology of PCOS remains
controversial and many studies have suggested that
chronic inflammation is involved. Clinical studies have
found that factors involved in chronic inflammation, such
as ILs, TNF-a, plasminogen activator inhibitor type (PAI)-
1, and monocyte chemoattractant protein (MCF)-1, are
increased in the peripheral blood of patients with PCOS to
varying degrees.[22] Inflammatory factors can lead to the
reconstruction of ovarian tissue and alter normal follicular
development.[23-25] There is also compelling evidence that
the rates of apoptosis of ovarian granulosa cells (GCs) in
antral follicles in women with PCOS are significantly
increased compared with healthy controls.[26] Wang
et al[27] suggested that hyperandrogenism is the main
cause of infertility as a result of PCOS, hyperandrogenism
can drive the generation of the NLRP3 inflammasome,
which results in the secretion of inflammatory mediators,
and induced low-grade inflammation in mice with PCOS.
Some womenwith PCOS appear to have increased levels of
androgen, oxidative stress, free fatty acid (FFA) and high-
mobility group box 1 (HMGB1), molecules that serve as
danger signals to activate the inflammasome pathway,
especially the NLRP3 inflammasome pathway.[28]

During the development of PCOS, follicular dysfunction
and anovulation are closely linked to ovarian fibrosis.
Thus, affected patients manifest with increased cystic
follicles, a thickened thecal cell layer, loose arrangements
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of GCs, and reduced corpus luteum formation, which has
also been replicated in animal models of PCOS.[29,30]

Activation of the NLRP3 inflammasome accelerates
ovarian fibrosis in mice with PCOS. Thus, the NLRP3
inflammasome is implicated as a potential target in the
prevention of ovarian fibrosis. When GCs were treated
with INF39, a specific inhibitor of NLRP3, the ovarian
fibrosis indexes such as the levels of alpha smooth muscle
actin (a-SMA), connective tissue growth factor (CTGF),
TGF-b were suppressed and ovarian interstitial fibrosis
was remarkably reduced.[27]

Activation of the NLRP3 inflammasome results in
activation of caspase-1, which in turn promotes the
production of mature IL-1b and IL-18 from pro-IL-1b and
pro-IL-18, respectively. Such cytokines play important
roles in regulating ovarian steroidogenesis, maturation of
ovarian follicles, and other reproductive processes, and the
expression of IL-18 was significantly increased in patients
with PCOS.[31] In addition, IL-1b is involved in the
development of obesity-related insulin resistance and
macrophage adipocyte crosstalk. IL-1b impairs the insulin
sensitivity of adipose tissue by inhibiting insulin signaling,
so blocking its activity or production might enhance
insulin signaling.[32] In addition, IL-1b stimulates lipolysis
and increases body weight by inhibiting the expression of
fatty acid translocases and fatty acid transporters.[33]

These studies have suggested that IL-1b might be
protectively involved in the onset and progression of
weight gain. In addition, Guo et al[34] found that the
pioglitazone metformin complex preparation could reduce
inflammation, inhibit activation of the NLRP3 inflamma-
some, and reduce the release of IL-1b in the treatment of
PCOS.

However, further experiments are still needed to clarify the
exact role of NLRP3 inflammasomes in PCOS, and such
studies may lead to new treatments and managements for
this disease.
NLRP3 and RSA

The causes of RSA are very complex. Many factors
including anatomy, endocrine, genes, immunity and
infection are considered to be involved.[35,36] Only about
30% of cases of RSA have a clear cause, and many
unrecognized cases are believed to be related to abnormal
immune and inflammatory responses.[37,38]

RSA is considered to reflect an allogeneic transplantation
process. The balance of anti- and pro-inflammatory factors
at the maternal-fetal interface plays an important role in
maintaining pregnancy, and most inflammation requires
the participation of inflammasomes. A significantly
increased expression of the endometrial NLRP3 inflam-
masome, and of caspase-1-dependent secretion of IL-1b
and IL-18 were demonstrated in endometrial tissues
obtained from women with RSA compared with a control
group (fertile women).[39,40] Thus, the NLRP3 inflamma-
some might represent a novel family of marker proteins of
endometrial receptivity. Abnormal inflammasome activa-
tion, might be one of the molecular mechanisms involved
in establishing an unreceptive endometrium, which
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potentially leads to early fetal loss. Tersigni et al[41] also
found that the intestinal permeability of patients with RSA
was increased abnormally, and that the expression levels of
caspase-1, IL-1b, and NLRP3 in endometrial tissue were
increased significantly. They speculated that women with
RSA might have a leaky gut, which could induce an
endometrial immune response, and lead to recurrent
miscarriage. In vitro cell experiments showed that
administration of palmitic acid or antiphospholipid anti-
bodies activated NLRP3 inflammasomes in normal early
gestational trophoblast cells, and increased the expression
of IL-1b,[42,43] indicating that the abnormal inflammatory
reaction caused byNLRP3 inflammasomes might be linked
to RSA. As is well known, regulatory T (Treg) and Th17
cells play important roles in the pathogenesis of RSA,[44-46]

and Lu et al[47] reported that activated NLRP3 inflam-
masomes participate in the pathogenesis of RSA by
regulating the balance of Th17 and Treg cells.

Because NLRP3 is involved in several inflammatory
diseases, there is significant interest in the discovery of
beneficial therapeutics that could selectively inhibit its
activation. MCC950 is a selective, potent, small-molecule
inhibitor of the NLRP3 inflammasome. It inhibits NLRP3-
induced ASC oligomerization in mouse and human
macrophages.[48] Beta-hydroxybutyrate is another inflam-
masome inhibitor, that can reduce caspase-1 activation
and IL-1b secretion in mouse models of NLRP3-mediated
diseases.[49] Micro RNAs (miRs) such as miR 223[50] and
miR 9[51] are both reported to inhibit activation of the
NLRP3 inflammasome. Furthermore, several herbal
extracts and their bioactive constituents are effective in
mediating the inflammatory response caused by activation
of the NLRP3 inflammasome, such as resveratrol,[52]

arglabin,[53] and extracts from Morus bombycis.[54]

However, efficacious inflammasome inhibitors for use in
clinical studies are still at an early stage of development
and high-quality studies are needed to evaluate the
effectiveness and safety of these drugs for unexplained
RSA.
NLRP3 and preterm birth

Human childbirth is a complex process and its initiation
remains unclear. Preterm birth is one of the most common,
yet detrimental, obstetric syndromes. Approximately 70%
of all preterm births are preceded by spontaneous preterm
labor.[55] Of all the putative causes associated with
spontaneous preterm labor, only intraamniotic inflamma-
tion/infection has been linked causally to preterm
birth.[56-58] Pregnancy-related tissues such as uterine
muscle, fetal membranes, and placenta all express NLRP3
inflammasomes.[59] Gomez-Lopez et al[60] found that
women with spontaneous preterm labor and acute
chorioamnionitis had activated NLRP3 inflammasomes
in chorionic tissues and significantly increased levels of the
active form of caspase-1 and mature forms of IL-1b and
IL-18, indicating that abnormal activation of NLRP3 in
spontaneous preterm labor was caused by acute cho-
rioamnionitis. The expressions of inflammasome-related
genes (eg, those encoding NLRP3, caspase-1, and IL-1b)
were upregulated in the chorioamnionitis membranes of
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women who underwent spontaneous preterm labor
compared with women who delivered preterm without
this placental lesion.[60] In an animal model of lipopoly-
saccharide-induced intra-amniotic inflammation, NLRP3
was activated in the fetal membrane before premature
delivery, and higher IL-1b protein levels were released in
the base of the fetal membrane, the decidual membranes
and amniotic fluid.[61]

Many recent studies found that pro-inflammatory cyto-
kines, such as IL-1b, the main products of NLRP3
activation, promote the production of prostaglandin
synthetase-2 (PGHS-2), as well as the secretion of more
prostaglandins via the effect of PGHS-2. Prostaglandins
are important regulators of cervical ripening and increase
significantly during delivery. One study found that the
expression levels of IL-b, IL-6, IL-8, and TNF-a were all
significantly increased in the chorionic and amniotic
membranes of women undergoing preterm labor.[62] IL-
1b, IL-6 and TNF-a mRNA and protein levels were
significantly elevated in uterine muscle during labor,[63]

and these cytokines stimulate the synthesis of interstitial
metalloproteinases in the endometrium and amniotic sac.

Importantly, the NLRP3 inflammasome might be a
therapeutic target for preventing preterm birth. The study
found that the intra-amniotic administration of the
alarmin S100B could activate the NLRP3 inflammasome
in fetal membranes, increase the levels of the NLRP3
sensor molecule, active caspase-1, and mature IL-1b, then
induce preterm labor/birth with adverse neonatal out-
comes.[64] Inhibition of the NLRP3 inflammasome via the
specific inhibitor MCC950 prevented preterm labor/birth
and reduced neonatal mortality.[61,64] Faro et al[61]

reported that the use of MCC950 could extend gestational
length and not only reduce the rate of intra-amniotic
inflammation-induced preterm birth by 30%, but can
significantly improve neonatal survival as well in mouse.
Moreover, a preliminary study provided evidence that
MCC950 could be safe for clinical use in humans.[65]

However, the inhibition of the NLRP3 inflammasome at
term does not obstruct the physiological process of
parturition.

Therefore, we suggest that targeting NLRP3 activation
might provide one avenue to reduce the incidence of
preterm birth and improve neonatal outcomes.
NLRP3 and PE

PE is a pregnancy-specific syndrome characterized by
elevated blood pressure, proteinuria and fetal intrauterine
growth restriction. Pathophysiological changes in PE
include inflammation and immune cell activation.[66-68]

The placenta clearly plays a central role in the pathogenesis
of PE as demonstrated by the rapid disappearance of
disease symptoms after delivery. Thus, placenta-derived
circulating factors might induce excessive inflammation
and endothelial defects, which leads to PE.[69] Mulla
et al[70] and Xie et al[71] were the first to demonstrate that
activation of the NLRP3 inflammasome in trophoblasts
and peripheral blood was implicated in the pathogenesis of
PE. Since then, there has been a rapid increase in reports
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that the NLRP3 inflammasome is involved in the
pathogenesis of PE.[72-76] Thus, there was significantly
higher expression of NLRP3 and related mediators such as
caspase-1, IL-1b, and IL-18 in samples from women with
PE compared with controls.[73] Moreover, Xu et al[77] and
Pontillo et al[78] reported that specific NLRP3 gene
polymorphisms are associated with a significantly higher
risk of PE. Omi et al[79] examined 1911 patients (987 with
hypertension and 924 controls) and found that homo-
zygotes carriers of high activity NLRP3 alleles that
produce more chemokines after stimulation, had a greater
risk of developing hypertension compared with both
heterozygote and homozygote carrier of low activity
NLRP3 alleles. These results suggest that the placentas of
pregnant women with PE show higher expression of
NLRP3 inflammasomes, which may be related to the
significantly upregulated inflammation state in PE. Thus,
NLRP3 inflammasome activity has an important role in the
development of PE.

Are there some specific triggers during activation of
NLRP3 in PE? In affected patients, many endogenous
danger/damage-associated molecular patterns (DAMPs),
such as, cholesterol, uric acid crystals, extracellular DNA,
HMGB1 proteins, extracellular cell debris, free fatty acids,
and advanced glycation end-products, have been detected
at higher levels in the peripheral blood and placenta and
act as NLRP3 inflammasome activators.[80-99] These
DAMPs induced the cytosolic leakage of cathepsin B via
lysosomal rupture.[100] Leakage of cathepsin B also leads
to potassium efflux and mitochondrial damage. Potassium
efflux and reduced intracellular potassium concentrations
result in activation of the NLRP3 inflammasome.[101]

In an in vitro human placental explant experiment,
treatment with cholesterol crystals significantly increased
the release of IL-1b, and was suppressed by treatment with
MCC950, a specific inhibitor of the NLRP3 inflamma-
some.[102] Allopurinol is a xanthine oxidase inhibitor that
inhibits uric acid and reactive oxygen species (ROS)
production. Negi et al[103] reported that allopurinol could
significantly inhibit trophoblast secretion of inflammatory
IL-1b and caspase-1 activity. Thus, allopurinol could be a
candidate medication to prevent placental dysfunction and
adverse pregnancy outcomes, such as PE. Moreover, Park
et al[104] found that antioxidants such as resveratrol andN-
acetylcysteine could inhibit the expression of NLRP3
protein and caspase-1 activation in trophoblast cells. They
might represent suitable therapeutic options for the
treatment of inflammation-associated pregnancy compli-
cations.

The above findings suggest that the NLRP3 inflammasome
plays a crucial role in the development of PE, so inhibitors
could be very effective treatments. However, more detailed
research is still needed to confirm this possibility in the
prevention and treatment of PE by targeting NLRP3.
NLRP3 and GDM

GDM is a metabolic disorder in pregnant women
characterized by glucose intolerance during the second
or third trimester of pregnancy.[105] GDM can harm
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pregnancy outcomes and the long-term health and
wellbeing of offspring.[106] Under all hyperglycemic
conditions, maternal plasma and placental levels of
inflammatory factors (IL-1b, IL-6, and monocyte chemo-
attractant protein-1) increased, and ASC, caspase-1,
NLRP1, and NLRP3 were upregulated in all hyperglyce-
mic groups.[107] Chronic proinflammatory cytokines are
considered to be pathologic mediators of diabetogenic
metabolic disorders, associated with insulin resistance and
pancreatic islet cell death.[108-111] In patients with GDM,
studies have proved a connection between activation of the
NLRP3 inflammasome and insulin resistance.[112] High
glucose levels increase NLRP3 activation compared with
those induced by normal and low glucose levels.[113] It is
known that hyperglycemia or diabetes during pregnancy
can induce activation of the NLRP3 inflammasome and the
secretion of many inflammatory cytokines, which results in
severely adverse pregnancy complications.

Therefore, how to inhibit activated inflammasomes could
be an important consideration when managing hypergly-
cemia and preventing adverse pregnancy outcomes.
Glombik et al[114] observed that maternal diabetes causes
the activation of NLRP3 inflammasome signaling by
increasing the level of the NLRP3 protein subunit, and
glyburide, as a NLRP3 inflammasome inhibitor, dimin-
ishes the level of NLRP3 protein and caspase-1 subunits,
and has particular therapeutic value in anti- metabolic-
related inflammation. Zhang et al[115] found that astra-
galoside IV (AS-IV) treatment was an effective therapy for
GDM in a mouse model through the inhibition of NLRP3
inflammasome in the pancreas. Negi et al[116] reported
allopurinol significantly inhibited NLRP3 activation,
inhibited trophoblast secretion of inflammatory IL-1b;
caspase-1 activity, reduced additional pro-inflammatory
and anti-angiogenic responses to excess glucose, prevent
placental dysfunction and adverse pregnancy outcomes in
patients with GDM. Therefore, this inflammasome repre-
sent a useful therapeutic target in the treatment of GDM.
Conclusions

In summary, the NLRP3 inflammasome plays an impor-
tant role in high-risk reproductive disorders, and can cause
infertility, miscarriage andmany pregnancy complications.
Understanding how the NLRP3 inflammasome regulates
pregnancy complications and how to control excessive
NLRP3 inflammasome activation is essential for the
identification of new targets for the treatment of
reproductive dysfunction. Thus, NLRP3 inflammatory
complex inhibitors have certain therapeutic options for
treating related diseases.[117] However, we still need more
research to understand the pathogenesis and to develop the
mechanism-specific and safe treatments for reproductive
disorders.
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