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Heart rate variability (HRV) offers insights into humoral, neural and neurovisceral
processes in health and disorders of brain, body and behavior but has yet to be fully
potentiated in the digital age. Remote measurement technologies (RMTs), such as,
smartphones, wearable sensors or home-based devices, can passively capture HRV
as a nested parameter of neurovisceral integration and health during everyday life,
providing insights across different contexts, such as activities of daily living, therapeutic
interventions and behavioral tasks, to compliment ongoing clinical care. Many RMTs
measure HRV, even consumer wearables and smartphones, which can be deployed as
wearable sensors or digital cameras using photoplethysmography. RMTs that measure
HRV provide the opportunity to identify digital biomarkers indicative of changes in health
or disease status in disorders where neurovisceral processes are compromised. RMT-
based HRV therefore has potential as an adjunct digital biomarker in neurovisceral digital
phenotyping that can add continuously updated, objective and relevant data to existing
clinical methodologies, aiding the evolution of current “diagnose and treat” care models
to a more proactive and holistic approach that pairs established markers with advances
in remote digital technology.

Keywords: autonomic nervous system, digital biomarkers, heart rate variability, homeostasis, neurovisceral
integration, remote measurement technologies

INTRODUCTION

Remote Measurement Technologies (RMTs) refers to, “any mobile technology that enables
monitoring of a person’s health status through a remote interface, with the data then either
transmitted to a healthcare provider for review or to be used as a means of education for the user
themselves” (Davis et al., 2014). Advances in healthcare devices, wearable sensors and smartphones
have a potential role in how health assessment, monitoring and treatment will be conducted in
the near future (Owens et al., 2020a). RMTs can remotely and passively index changes in health
parameters, as well as providing contextual information to other health data, such as environment
or what activity of daily living the wearer was engaged in during the epoch of data collection
(Vegesna et al., 2017), offering a financially viable and easily deployable opportunity to accurately,
objectively and continuously monitor changes in relevant domains (Owens et al., 2020b).

Frontiers in Neuroscience | www.frontiersin.org 1 November 2020 | Volume 14 | Article 582145

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.582145
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.582145
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.582145&domain=pdf&date_stamp=2020-11-13
https://www.frontiersin.org/articles/10.3389/fnins.2020.582145/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-582145 November 9, 2020 Time: 14:46 # 2

Owens HRV as a Digital Biomarker

A “digital phenotype” describes the moment-to-moment
quantification of the individual-level human phenotype in situ
using data from personal digital devices (Onnela and Rauch,
2016). A “digital biomarker” refers to physiologic, pathologic
or anatomic characteristics objectively measured and evaluated
as an indicator of biologic processes, pathologic processes or
biological response to therapeutic interventions collected by
RMTs across various platforms of software and/or hardware
(Coravos et al., 2019). RMTs can collect multiple datapoints
during passive everyday wearing or active engagement in device-
based tasks as the wearer goes about their normal routine.
These datapoints can provide real-time status of health and
disease, including symptom-severity and progression, stability
and regression and treatment-responses (Figure 1). Deploying
RMTs to remotely capture signals related to health and disease
also offers the possibility of engaging those who would not
ordinarily participate in research and empower users by giving
them an engaged role in their own healthcare. RMTs can enhance
care and assessment by providing highly powered data on
relevant variables and equip the user with bespoke protocols
that incorporate their lifestyle and clinical profiles. This can
complement typical clinical scales and assessments that are often
carried out months apart and can rely on subjective patient or
carer recall on the day of testing. Ultimately, such technologies
may provide a sea change from a “diagnose and treat” to a
“predict and pre-empt” care model (Narayan and Manji, 2016).

Heart Rate Variability
Homeostasis and allostasis are enabled and controlled by
autonomic nervous system (ANS) efferent neurons that mediate
the function of effector organs. ANS function is generally
beyond conscious control and functionally, morphologically and
chemically organized into two branches:

i. the parasympathetic nervous system (PNS) promotes
vegetative activity, such as heart rate (HR) deceleration via
the vagus nerve or increasing gut motility predominantly
via acetylcholine (Ach) at the neuroeffector junction.
The vagus nerve also maintains tonic inhibitory control
of proinflammatory cytokines via Ach release into
the reticuloendothelial system (spleen, gastrointestinal
tract, heart, liver), mediating the inflammatory reflex
through the cholinergic anti-inflammatory pathway
(Dantzer and Kelley, 2007).

ii. the sympathetic nervous system (SNS) serves to upregulate
effector organ function, such as raising blood pressure (BP)
or increasing sudomotor activity, via the catecholamines,
noradrenaline (NA), and adrenaline (Owens et al., 2017).

Cardiac tissue has inherent pacemaker properties and the
ANS regulates the myocardium’s contractile and electrical
output via the vagus nerve and SNS (Spyer, 1994). The rate
of pacemaker depolarization is increased by SNS activation
and parasympathetic vagal flow promotes cardiac pacemaker
cells to hyperpolarize and slow depolarization speed (Spyer,
1994). Respiratory sinus arrhythmia (RSA) refers to the
increase in HR during inspiration and HR deceleration during

expiration, which is the functional endpoint of cardioinhibitory
vagal fibers stemming from the nucleus ambiguus (Neff
et al., 2003). Heart rate variability (HRV) records these beat-
to-beat variations of HR and the intervals between QRS
complexes (RR intervals) of sinus depolarizations (Stein et al.,
1994). HRV therefore describes vagal influences on the sinus
node using non-invasive electrocardiographic (ECG) markers
(Van Ravenswaaij-Arts et al., 1993).

The application of spectral analytical techniques to short or
long-term neurocardiovascular changes is now widely utilized as
a measure of cardiovagal activity. Power spectral analysis can be
performed using parametric or non-parametric methodologies.
The Fast Fourier transformation (FFT) non-parametric method
is typified by discrete peaks of the frequency bands. FFT is
a simple and quickly performed equation. The Autoregressive
model results in a continuous spectrum of events. It is more
complex than the FFT model and must be suitable to the
experimental model (Ori et al., 1992). High frequency HRV (HF-
HRV) is a measure of vagal efferent activity and is comparable
to RSA. Low frequency HRV (LF-HRV) was originally believed
to depict sympathetic cardiac influences (Malliani et al., 1991).
However, LF-HRV as a purely sympathetic measure has been
questioned (Goldstein et al., 2011), as more recent studies show
LF-HRV may essentially provide information about sympathetic
regulation of neurovascular mechanisms, such as vasomotor tone
and baroreceptor activity (Moak et al., 2007; Goldstein et al.,
2011; Rahman et al., 2011). LF-HRV may therefore provide
information about sympathetic mechanisms but of baroreflex
function and dysfunction rather than cardiac sympathetic nerve
activity specifically. Therefore, how finely HRV represents ANS
activity remains a matter of debate, and HRV metrics deficiency
in capturing changes in sympathetic activity is a limitation of
the approach, particularly considering the non-linear and non-
reciprocal relationship between sympathetic and vagal activity
(Boyett et al., 2019). Very low frequency (VLF) reflects long-
term regulation mechanisms, such hormonal function (Theorell
et al., 2007), the renin-angiotensin system (RAS) (Taylor
et al., 1998) and thermoregulation (Fleisher et al., 1996; Taylor
et al., 1998), although VLF’s role is less clearly defied than
LF-HRV and HF-HRV.

Neural Correlates of Heart Rate Variability
Exercise-induced increases in LF-HRV are linked with metabolic
activity in insula, cingulate and somatomotor regions (Critchley
et al., 2003), and HF-HRV with basal ganglia and anterior
temporal lobe function (Matthews et al., 2004; Lane et al.,
2009). Limbic structures supply descending efferent drive to
the hypothalamus and brainstem to modulate homeostatic and
allostatic autonomic responses (Saper, 2002). Emotion-induced
changes in HRV are associated with function in the insula,
periaqueductal gray (PAG) and caudate nucleus (Lane et al.,
2009). Bidirectional functional connectivity between the central
autonomic network (CAN) structures of the medial prefrontal
cortex (mPFC), insula, central nucleus of the amygdala, PAG
and parabrachial region inform efferent autonomic outflow via
structures, such as the stellate ganglia and vagus nerve to the
sinoatrial node. Therefore, examining interbeat intervals via HRV
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FIGURE 1 | Utilizing remote measurement technologies (RMTs) to remotely record heart rate variability (HRV) provides granular data that can index health and
disease status, including symptom-severity and progression, stability and regression and treatment-responses.

provides functional endpoint insights into these areas of the
brain, as supported by HRV data correlating with activity of
brainstem and prefrontal areas (Lane et al., 2009).

HEART RATE VARIABILITY AS A
MEASURE OF NEUROVISCERAL
INTEGRATION

Neurovisceral Processes
“Interoception” is the term given to the transmission of afferent
peripheral sensory information, which informs autonomic
mediation of homeostasis, allostasis and contributes to
psychological and behavioral processes (Owens et al., 2017,
2018a). Central autonomic networks within the spinal cord,
brainstem and hypothalamus mediate autonomic efferent output
to meet homeostatic and allostatic demands (Benarroch, 1993).
Hemodynamic autonomic adjustments are informed by input
from cortical, limbic forebrain and midbrain structures (Saper,
2002). Activity within the dorsal anterior cingulate cortex
(ACC) (Critchley et al., 2003) and insula (Critchley et al., 2000)
reflects engagement of sympathetic activity coupled to allostatic
load. Therefore, the ANS can both influence and be influenced
by brain processes via bottom-up interoceptive signaling
ascending the neuraxis, or top-down brain signaling influencing
efferent autonomic outflow, respectively (Owens et al., 2017,
2018a). These findings are enlightened by neuroimaging studies
underlining how psychological and HRV are coupled. For

example, empirical models of neurovisceral integration have
evidenced vagal involvement, as indexed by HRV, in cognitive-
affective regulatory processes (Thayer and Lane, 2000; Smith
et al., 2017; Owens et al., 2018b).

The Vagus and the Cholinergic
Anti-inflammatory Pathway
Vagal nerve interoceptive function also has a central role in
inflammatory processes via the cholinergic anti-inflammatory
pathway. Peripheral proinflammatory mechanisms can be
initiated through sympathetic innervation of lymphoid tissue,
and anti-inflammatory processes can be promoted through
vagal release of Ach or hypothalamic release of corticotrophin-
releasing hormone (Epstein and Reichlin, 1993). The vagus nerve
is comprised of 20% efferent parasympathetic fibers originating
from the dorsal motor nucleus of the vagus, and 80% afferent
sensory fibers that receive humoral and interoceptive feedback
from the periphery before relaying these ascending signals to the
neuraxis. Vagal tone and Ach inhibit proinflammatory cytokine
release, such as interleukin-6 (IL-6) or tumor necrosis factor,
but not anti-inflammatory cytokines, such as interleukin-10
(IL-10). The SNS is also involved in the inflammatory reflex,
such as regulating cytokines via the hypothalamic pituitary-
adrenal axis (Goehler et al., 2000). Inflammatory responses
can be inducted by the nucleus ambiguous and dorsal motor
nucleus of the vagus, which both receive input from the nucleus
tractus solitarius (NTS). Medullary afferents to limbic structures,
higher cortical areas and insula are implicated in “sickness
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behavior” (Goehler et al., 2000), which is defined by anhedonia,
anorexia, circadian disruption, fatigue, psychomotor retardation,
and hyperalgesia (Kelley et al., 2003). Sickness behavior (Dantzer
and Kelley, 2007) is an example of a neurovisceral feedback loop,
in which ascending interoceptive information is received by the
CAN, which then drives efferent physiological and behavioral
changes to meet homeostatic and allostatic requirements.

As understanding has improved about the role of
inflammation in not only neurodegeneration and related
neuropsychiatric symptoms (Holmgren et al., 2014), but also
psychiatric disorders in the young and middle-aged (Ramirez
et al., 2017), the role of central and peripheral inflammation
and how the peripheral immune state is communicated to
the central nervous system (CNS) has become an increasingly
attractive target for treatment and research. As with effector
organ interoceptive processes, humoral interoceptive processing
between the periphery and CNS are bidirectional and brain
responses to immune-related interoceptive signals can influence
behavioral, psychological and autonomically mediated processes
(Wan et al., 1994; Kelley et al., 2003). Parallel humoral, neural and
cellular interoceptive pathways communicate the homeostatic
and allostatic state to the brain to elicit adaptations and recent
studies have examined the relationship between HRV, physical
and mental health and inflammatory markers (Halaris, 2017).
HRV therefore offers a window into neurovisceral integrity in
health and disorders of brain, body and behavior but has yet to
be fully potentiated in the digital age.

WHAT ROLE CAN REMOTELY
CAPTURED HEART RATE VARIABILITY
PLAY IN TELEMEDICINE?

It could be argued that the current COVID-19 pandemic and
related social distancing guidelines have strengthened the case
for RMT use in clinical care. Future outbreaks are conceivable
and social isolation is likely to be recommended for high-risk
groups even after social distancing restrictions are eased, with
reduced clinic contact indefinitely suggested for such groups.
Social isolation can lead to depression, anxiety, loneliness and
hinder clinical care. Loneliness is a modern epidemic that pre-
dated COVID-19 and which older adults, who are most at-risk
of infection from COVID-19, are particularly susceptible to due
to retirement, being widowed, adult children moving away and
ill-health causing functional decline and making social activities
more difficult (Hacihasanoglu et al., 2012; Arslantaş et al., 2015).
Loneliness is associated with the disruption of homeostatic and
physiological processes, such as increased cardiovascular tone
and cardiovascular responsiveness to stress (Cacioppo et al.,
2014). Lonely individuals also evidence wide-ranging cognitive
biases, such as increased attention to social threat (Spithoven
et al., 2017) and are more likely to utilize dysfunctional emotion
regulation strategies (which can be indexed by HRV when paired
with contextual data) in social situations (Vanhalst et al., 2018),
indicating that emotion regulation may be a key aspect in how
social connections relate to mental health (Roberts and Burleson,
2013). This has increased the need for the employment of RMTs

to be able to continue monitoring patients’ health, symptom
severity and functional status because the outbreak of COVID-19
has not affected the need effective treatment and diagnosis.

Remote measurement technologies that measure HRV
provide the opportunity to identify digital biomarkers indicative
of changes in health or disease status in disorders where
neurovisceral processes are compromised, such as depression,
epilepsy, substance abuse, neurodegeneration, dissociative
disorders, and dysautonomia (Thaisetthawatkul et al., 2004;
Halaris, 2013; Marhe and Franken, 2014; Eccles et al., 2015;
Hyett et al., 2015; Owens et al., 2015). Current studies, such
as the “Remote Assessment of Disease and Relapse – Central
Nervous System” (RADAR-CNS)1 (Polhemus et al., 2019) and
“Remote Assessment of Disease and Relapse – Alzheimer’s
Disease” (RADAR-AD)2 (Owens et al., 2020b) are using RMTs
to actively and passively measure neurophysiological, motor,
functional, cognitive and affective digital biomarkers remotely
in disorders, such as Alzheimer’s disease (AD), major depressive
disorder, epilepsy, and multiple sclerosis. RMT-based HRV could
provide additional insight and context into such studies, as
it provides an easily deployable and scalable metric of health
domains, such as inflammation, stress, emotion regulation, and
sympathovagal function (Frazier et al., 2004). For example, in
remitted depression cases with a history of suicidal ideation,
reduced HRV (collected in a lab) and impulsivity significantly
correlate to lower brain levels of tryptophan, which occurs in
depression due to continuous low-level inflammation disrupting
tryptophan metabolism via stimulation of indoleamine 2,3-
dioxygenase (a key kynurenine pathway enzyme) (Myint, 2012).
As discussed, the vagus is central to immune reactivity by
tonic inhibition of proinflammatory cytokine release via the
cholinergic anti-inflammatory pathway and HF-HRV is reduced
during stress and recovery in depressed subjects (Schiweck et al.,
2019). Therefore, simple monitoring and thresholding of such an
individual’s HRV could provide an adjunct “red flag” marker for
risk of declining mental health to the patient’s clinical team. Both
frequency domain and time domain HRV data inversely relate
to IL-6, HF-HRV correlates with many inflammatory markers
and poorer HRV predicts C-reactive protein levels and white
blood cell counts in healthy adults (Thayer and Fischer, 2009),
providing a valuable surrogate measure of inflammation that can
potentially be collected remotely over large periods of time and
in correlation with other relevant clinical and digital signatures.

As a nested parameter of neurovisceral health, RMT-based
HRV may provide insights into acute episodes that may
be difficult to capture in clinic. In epilepsy, artificial neural
networks have been combined with HRV frequency domain
analysis to build an algorithm that can predict seizures with
a sensitivity, specificity, and accuracy of 83.33%, 86.11%, and
84.72%, respectively, for complex partial episodes, and 88.66%,
90%, and 88.33%, respectively, for secondarily generalized
seizures (Behbahani et al., 2014). Postictal HRV data significantly
increases and can discriminate seizure laterality (Shimmura et al.,
2019). Abnormal HRV profiles have been reported in epilepsy for

1https://www.radar-cns.org/
2https://www.radar-ad.org/
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a quarter of a century (Frysinger et al., 1993) and remote HRV
data may have a role in helping predict sudden unexpected death
in epilepsy (SUDEP). Seizures can induce cardiac arrhythmias
and SUDEP is the primary cause of premature mortality in
epilepsy. In a Phase II study, Jeppesen et al. (2019) recently trialed
RMT-based HRV to detect seizures in a hospital setting using
the ePatch heart monitor, with positive results (93.1% sensitivity
for all seizures, 90.5% for non-convulsive seizures). With the
rapid progressive iterations of RMTs, such an approach could
be adopted in a real-world setting, whereby, smartphone-based,
home-based or wearable sensors could be deployed for people
with epilepsy as they go about their daily lives, to passively
collect HRV data that could be combined with other digital
biomarkers and clinical profiles to predict acute episodes. RMT-
based HRV can be paired with other biomarkers to create digital
phenotypes (see Figure 1), for example, genetic mutations in
voltage-gated ion channel genes (SCN5A and KCNH2) relate
to long QT syndrome (Bagnall et al., 2016) and ion channel
mutations may be expressed in both the heart and brain,
therefore, genetic screening paired with remote HRV could be
explored as a potential means of tracking disease status and
risk in epilepsy.

Alzheimer’s disease and dementia with Lewy bodies (DLB)
are the first and second most common forms of dementia
(Gascón-Bayarri et al., 2007; Aarsland et al., 2008), respectively,
but distinguishing DLB from AD is challenging in the early
mild cognitive impairment (MCI) stages and currently involves
clinical examination and neuroimaging, such as DaTscan
and 123I-metaiodobenzylguanidine (123I-MIBG). DLB has poor
prognosis and diagnosis can be complicated by its initial
similar presentation to AD, yet early differentiation of DLB
from AD is vital due to differing responses to medication
and disease courses. Therefore, identifying cheaper yet reliable
biomarkers that can differentiate AD and DLB are much-needed.
Dysautonomia (autonomic dysfunction) and autonomic failure
[particularly orthostatic hypotension (Freeman et al., 2011)] are
common in DLB and may precede motor and neuropsychiatric
symptoms (Iodice et al., 2011; Kaufmann et al., 2017) due to
specific pathways of peripheral ganglia (such as postganglionic
sympathetic lesions) or the CAN (such as brainstem, insula,
and hypothalamus) being progressively damaged (Wakabayashi
and Takahashi, 1997; Iwanaga et al., 1999; Benarroch et al.,
2005). The impact of autonomic symptoms in DLB, Parkinson’s
disease (PD) and Parkinson’s disease with dementia (PDD)
causes significant functional decline (as indexed by activities
of daily living) and quality of life (Allan et al., 2006) and
present across cardiovascular (Freeman, 2008), genitourinary
(Winge and Fowler, 2006), gastrointestinal (Pfeiffer, 2012),
and thermoregulatory domains (Schestatsky et al., 2006).
Dysautonomia and autonomic failure supports a diagnosis of
DLB and the pattern of autonomic symptoms is similar to that
of PD but generally more severe (Thaisetthawatkul et al., 2004;
Lipp et al., 2009), though not as severe as multiple system atrophy
(MSA) (Thaisetthawatkul et al., 2004; Lipp et al., 2009). 123I-
MIBG is used to detect sympathetic noradrenergic denervation
in DLB and distinguishes Lewy body disease [DLB (Odagiri et al.,
2016), PD (Amino et al., 2006)] from non-Lewy body disease

with autonomic failure (MSA). Recently, 123I-MIBG has been
combined with single photon emission computed tomography
(SPECT) (Niimi et al., 2017; Nuvoli et al., 2017) in Lewy
body disease to compare neurological and autonomic pathology.
However, SPECT is relatively time-consuming, expensive and
arduous for patients who are often frail and reluctant to make
hospital visits. Deploying RMT-based HRV in potential MCI-
AD and MCI-DLB cases may describe endpoint markers of
any noradrenergic denervation in MCI-DLB to aid differential
diagnosis from MCI-AD, particularly when combined with
energy expenditure, activities of daily living, motor/gait or
accelerometery data.

Moreover, research has typically not found autonomic
symptoms to occur in AD, yet very recent studies have found
orthostatic hypotension can present in 42% of AD patients if
head-up tilt table testing is used rather than standing tests or
subjective self-report measures (Isik et al., 2019). In addition,
compared to healthy controls, AD patients may have normal
baseline autonomic function but produce divergent autonomic
responses during tasks with higher cognitive load (Perpetuini
et al., 2019). Therefore, the more nuanced (compared to MCI-
DLB) autonomic perturbations that may occur in MCI-AD
during instrumental or advanced activities of daily living that
involve more cognitive load may be more detectable if RMT-
based HRV data, as an index of stress, is contextualized with
what activity of daily living the wearer is engaged in during any
thresholded reductions in HRV.

Furthermore, capturing acute disease-related episodes, such as
fluctuating cognition, seizures or falls, can be challenging in clinic
and RMTs, including those that can remotely measure HRV, offer
a “real-time” window into the mental and physical health and
functional status of the patient. This can also provide relevant
insights into treatment responses to therapeutic interventions,
whilst negating potential “white coat syndrome,” offering a more
realistic and contextualized environment for data-collection
and assessment. Moreover, remotely collected data offers the
opportunity for greater confidentiality than a physical trip to
a hospital, while removing the need for frail patients or carers
to commute. RMT-based HRV therefore may have value as an
adjunct digital biomarker in health and in neurovisceral digital
phenotypes (Eccles et al., 2015), adding continuously updated
and objective data on central and peripheral function to typical
clinical methodologies.

DEPLOYING REMOTE HEART RATE
VARIABILITY

Wearables exist that provide long-term telemonitoring of HRV
using low-power biosensors that employ methodologies to
acquire ECG signals from on-body sensors (Pant and Krishnan,
2018). Although artifacts may be more common in comparison
to Holter monitors in some RMTs that record HRV, this can be
offset by benefits, such as longer battery life, superior comfort,
higher user-acceptability/compliance (patients often do not want
medical devices to be visible if they are worn in public) and
the ability of RMTs to collect other relevant physiological
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covariates, such as body temperature, respiration, and motor
parameters (Akintola et al., 2016). Off-the-shelf consumer-grade
sports watches equipped with HR sensor chest straps have been
tested against 12-lead Holter monitors under extreme conditions
(mountain running), providing highly comparative measures in
time (effect size of <0.2) and frequency (no difference) domains
(Caminal et al., 2018). Arrays also exists that not only provide
ECG and electroencephalography (EEG) monitoring but also
transcranial electrical stimulation (Ha et al., 2015).

If non-contact sensors are preferable, then due to the
epidermis’ translucency, subcutaneous changes in blood flow are
measurable through remitted light that is detected using optical
sensors (Stamatas et al., 2004). Photoplethysmography (PPG)
uses reflected or transmitted light to non-invasively measure
blood volume pulse (BVP) (Allen, 2007) and HRV acquired
using PPG has high comparability to ECG-acquired signals in
time and frequency domains (Lu et al., 2009). PPG has been
used to measure HRV using Independent Component Analysis
from color channel signals of digital footage captured by a
standard digital single-lens reflex camera of participants’ faces
to find a significant (p = 0.005) increase in LF/HF ratio during
cognitive loading compared to resting baseline (McDuff et al.,
2016). Recently, invisible near-infrared illumination has been
used to capture PPG data for HRV analysis in darkness (Yu et al.,
2018), though this has not yet been compared with ECG-derived

HRV. Early PPG approaches to measure HRV using RMTs were
susceptible to light and movements artifacts but as machine
learning algorithms have improved, it is now possible for users to
self-record using off-the-shelf smartphones with digital cameras
to collect HRV data comparable to sensor data (Huang and Dung,
2016), though, again, this has not yet been field-tested against the
gold-standard Holter monitoring.

Therefore, depending on the primary aims of a study, wearable
or device-based RMT-based HRV collection can be routinely
deployed and the selection of which means of data collection
can be led by the primary outcomes of interest: If passive
collection (i.e., not requiring the subject have an active role
in data collection) are key requirements, then wearable sensors
are preferable. If HRV is a covariate or secondary measure,
then the convenience of camera-based PPG may be more
suitable. The RMT selection process is challenging and technical
experts should always be consulted, due to the speed with
which technology is updated and the wealth of available options
(Figure 2; Owens et al., 2020b). RMTs can assess a spectrum
of motor, physiological or psychological parameters and are
often suitable for up-scaling to larger cohorts after feasibility
and pilot studies have been run. Guidance is available, such as
the RADAR device-selection framework (Polhemus et al., 2019),
which uses a Human-Centered Design strategy to build a three-
stage iterative framework of preparation by exploring potential

FIGURE 2 | An example of a remote measurement technology device selection framework.
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approaches, RMT selection by exploration and choice refinement
before learning from and acting on feedback and outcomes.

POTENTIAL ISSUES AND BARRIERS

Data privacy and security remain substantial concerns for users,
developers, clinicians, researchers, and regulators (Kaplan, 2018).
Although patients with psychiatric and neurological disorders
express enthusiasm for using RMTs for clinical and research
purposes and RMTs are being increasingly used in dementia
research (Czaja et al., 2017), only 17% of those age >80 years use
smartphones (Anderson and Perrin, 2017). Moreover, after initial
user enthusiasm and adherence, significant reduction in usage
can occur if this is not monitored (Dorsey et al., 2017). Theories of
adoption, such as the “Technology Acceptance Model” (Holden
and Karsh, 2010) the “Unified Theory of Acceptance and Use of
Technology” (Venkatesh et al., 2003) emphasize that developers
must “know their customers.” It is key that potential participants
be part of the RMT selection process through workshops,
patient advisory boards or feasibility studies to fully understand
participants’ perspectives. Such initiatives highlight the relevance
of health-related factors, such as symptom intensity or severity,
user-related factors, such as perceived utility, and technology-
related factors, such as intrusiveness as important issues in RMT
use for patients (Simblett et al., 2019). Clinicians and researchers
have also raised ethical concerns about how to inform users of
potential detectable downturns in physical and mental health and
the effects such news may have on the user (Kaplan, 2018).

For widespread implementation, RMTs must be deployed
to measure relevant, and sensitive variables. The wide variety
of RMTs in the marketplace, makes selection challenging,
particularly as manufacturers continually update their products,
offering further challenges for planned deployment in existing
healthcare systems. A further potential complication with many
consumer devices is that they only provide aggregated rather than
high-resolution raw data, complicating cross-device analysis and
statistical analysis. Previous studies have indicated HRV could
can provide some additional clinically relevant insight into health
status (see What role can remotely captured heart rate variability
play in telemedicine?), the advent of RMTs that capture indices
of HRV offers the prospect of collecting relevant real-time data
for clinical purposes. could therefore provide. This will require

exploring the feasibility of deployment of RMT-based HRV as
a meaningful clinical tool that enhances traditional methods
and other digital biomarkers via robust piloting to standardize
and define the most relevant temporal and spectral indices of
HRV for the particular cohort and how artifacts or missing data
can be mitigated.

CONCLUSION

Many RMTs measure HRV, even consumer-grade wearables.
HRV offers insights into neurovisceral processes in health and
disorders of brain, body and behavior but has yet to be fully
potentiated in the digital age. The use of RMTs to capture HRV
and other CNS and ANS parameters can provide more detailed
data across different contexts, such as activities of daily living or
interventions and behavioral tasks. RMT-based HRV therefore
has potential value as an adjunct digital biomarker in that has
the potential to add continuously updated, objective and relevant
data to typical clinical methodologies.
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