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The South African national combination antiretroviral therapy (cART) roll-out program
started in 2006, with over 4.4 million people accessing treatment since it was first
introduced. HIV-1 drug resistance can hamper the success of cART. This study
determined the patterns of HIV-1 drug-resistance associated mutations (RAMs) in
People Living with HIV-1 (PLHIV-1). Receiving first (for children below 3 years of age)
and second-line (for adults) cART regimens in South Africa. During 2017 and 2018,
110 patients plasma samples were selected, 96 samples including those of 17 children
and infants were successfully analyzed. All patients were receiving a boosted protease
inhibitor (bPI) as part of their cART regimen. The viral sequences were analyzed for
RAMs through genotypic resistance testing. We performed genotypic resistance testing
(GRT) for Protease inhibitors (PIs), Reverse transcriptase inhibitors (RTIs) and Integrase
strand transfer inhibitors (InSTIs). Viral sequences were subtyped using REGAv3 and
COMET. Based on the PR/RT sequences, HIV-1 subtypes were classified as 95 (99%)
HIV-1 subtype C (HIV-1C) while one sample as 02_AG. Integrase sequencing was
successful for 89 sequences, and all the sequences were classified as HIV-1C (99%,
88/89) except one sequence classified CRF02_AG, as observed in PR/RT. Of the
96 PR/RT sequences analyzed, M184V/I (52/96; 54%) had the most frequent RAM
nucleoside reverse transcriptase inhibitor (NRTI). The most frequent non-nucleoside
reverse transcriptase inhibitor (NNRTI) RAM was K103N/S (40/96, 42%). Protease
inhibitor (PI) RAMs M46I and V82A were present in 12 (13%) of the sequences analyzed.
Among the InSTI major RAM two (2.2%) sequences have Y143R and T97A mutations
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while one sample had T66I. The accessory RAM E157Q was identified in two (2.2%).
The data indicates that the majority of the patients failed on bPIs didn’t have any
mutation; therefore adherence could be major issue in these groups of individuals. We
propose continued viral load monitoring for better management of infected PLHIV.

Keywords: HIV-1, reverse transcriptase inhibitor (RTI), protease inhibitor (PI), integrase strand-transfer inhibitor
(InSTI), resistance, South Africa, resistance-associated mutations (RAMs), combination antiretroviral therapy
(cART)

INTRODUCTION

Exceptional improvements in combination antiretroviral therapy
(cART) regimens have changed HIV/AIDS from a deadly
pandemic to a chronic and manageable disease (Trickey et al.,
2017). cART has made significant contributions to reducing the
rates of morbidity and mortality in people living with HIV
(PLHIV) and has led to better management of infection at an
individual level, not only in high-income countries but also
in low- and middle-income countries (Hightower et al., 2011;
UNAIDS, 2017). South Africa’s national HIV cART program was
introduced in 2006, with a public health approach (UNAIDS,
2018). Besides problems related to adherence, the development
and spread of drug resistance have constantly challenged the
long-term management of PLHIV in public health settings, where
patients are often monitored using clinical or immunological
parameters (Rousseau et al., 2006).

In accordance with the World Health Organization’s (WHO)
guidelines, the recommended first-line cART in South Africa
consists of a non-nucleoside reverse transcriptase inhibitor
(NNRTI) backboned regimen of efavirenz (EFV), combined
with two nucleoside reverse transcriptase inhibitors (NRTIs),
namely lamivudine (3TC) and either tenofovir disoproxil
fumarate (TDF), for adults, or abacavir (ABC), for children.
The recommended second-line cART consists of the NRTIs
zidovudine (AZT) and 3TC and a ritonavir-boosted (/r) protease
inhibitor (PI), usually lopinavir (LPV/r) which was revised to
atazanavir (ATV/r) in 2017 (Meintjes et al., 2017). The WHO
guidelines also recommend the PI lopinavir co-formulated with
ritonavir (lopinavir/ritonavir [LPV/r]) in a four-to-one ratio in
first-line cART for children younger than 3 years, based on its
superiority when compared with nevirapine (NVP), regardless
of previous NVP exposure to prevent mother-to-child HIV
transmission (Meintjes et al., 2017).

In vitro studies on PI-naïve PLHIV-1 infected with HIV-
1 subtype C (HIV-1C) viruses, have indicated wide variations
in their respective susceptibility to the PIs LPV/r and ATV/r
(Sutherland et al., 2016). Observational studies from sub-Saharan
Africa have shown a 14–32% prevalence of virological failure to
second-line boosted PI- (bPI) based cART (Ajose et al., 2012;
Sigaloff et al., 2012). In South Africa, reports of drug resistance
patterns in patients receiving bPIs are scarce (Collier et al.,
2017). With this study, we aimed to identify the pattern of
acquired drug resistance mutations (DRMs) among PLHIV in
South Africa receiving bPI second-line cART. Furthermore, we
characterized the presence of primary integrase strand-transfer
inhibitor (InSTI) DRMs in this specific population.

MATERIALS AND METHODS

Ethics Statement
The study was approved by the Health Research Ethics
Committee of Stellenbosch University, South Africa
(N15/08/071). The study was conducted according to the ethical
guidelines and principles of the Declaration of Helsinki 2013,
the South African Guidelines for Good Clinical Practice and
the Medical Research Council Ethical Guidelines for Research.
A waiver of written informed consent was awarded to conduct
sequence analyses on these samples by the Health Research
Ethics Committee of Stellenbosch University, South Africa.

Viral Load
HIV-1 Viral load was performed using the Abbott m2000sp
and the Abbott m2000rt analyzers (Abbott laboratories, Abbott
Park, IL, United States). RNA was isolated from patient samples
according to the manufacturer’s instructions using the Abbott
RealTime HIV-1 amplification reagent Kit.

Study Design
HIV-1-positive patient samples were obtained randomly, without
any knowledge of drug-resistance patterns, from the diagnostic
section at the Division of Medical Virology, Stellenbosch
University, and the South African National Health Laboratory
Services (NHLS). Samples were collected between March
2017 and February 2018. We excluded patient samples with
no previous cART regimen history and patients receiving
first-line cART treatment regimen. Demographic and clinical
information such as age, cART regimen, and viral load
measurement (Table 1). Patients had their samples submitted
for HIV-1 genotypic resistance testing to the NHLS. The
NHLS provides routine genotypic antiretroviral drug resistance
testing for clinics from the Western Cape, Gauteng and
Eastern Cape provinces.

We included samples from children (aged below 16 years)
suspected of failing on bPI – which is used as first-line
therapy in children – and adults suspected of experiencing
virological failure on a bPI second-line cART regimen, for
which treatment information, as provided by the physicians, was
available. The treatment history was collected retrospectively.
The selection consisted of plasma samples (n = 96) obtained from
patients receiving bPIs cART, according to the South African
national cART guidelines (Meintjes et al., 2017). These
patients are eligible for InSTI treatment consideration when PI
mutations are present.
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TABLE 1 | Characteristics and patterns of mutations in 96 patients at the time of
treatment failure.

Variable Value

Gender

Female 58 (60%)

Male 34 (35%)

Unknown 4 (4%)

Viral Load (Log10 copies/mL), mean (SD) Log 8.4, 4.64 (3.02 – 6.74)

Second-line treatment regimen

AZT, 3TC, LPV/r 47 (49%)

ABC, 3TC, LPV/r 17 (18%)

TDF, 3TC, LPV/r 8 (8%)

AZT, 3TC, ATV/r 6 (6%)

TDF, FTC, LPV/r 7 (7%)

Others 13 (13%)

Major PI Mutations

Any PI Major Mutations 18 (19%)

>1 PI Major Mutations 17 (18%)

I47A/V 3 (3%)

I50L/V 2 (2%)

I54V 10 (10%)

I84V 7 (7%)

L76V 7 (7%)

M46I 12 (13%)

V32I 2 (2%)

V82A 12 (13%)

Major NRTI resistance mutations

Any NRTI Mutations 65 (68%)

>1 NRTI Mutations 30 (31%)

M184V/I 52 (54%)

T69D 2 (2

L74V 5 (5%)

K65R/N 5 (5%)

Y115F 5 (5%)

TAM-1 pathway

M41L 4 (4%)

T215Y 2 (2%)

TAM-2 pathway

D67N 11 (11%)

K70R/E 17 (18%)

K219E/Q 11 (11%)

Major NNRTI resistance mutation

Any NNRTI Mutations 62 (65%)

>1 NNRTI Mutations 41 (43%)

Y181C 1 (1%)

K103N/S 40 (42%)

G190A/S 10 (10%)

K101EP 6 (6%)

E138AGKQ 11 (11%)

H221Y 2 (2%)

M230L 1 (1%)

P225H 14 (15%)

V106M 13 (14%)

V108I 3 (3%)

Y188L 8 (8%)

(Continued)

TABLE 1 | Continued

Variable Value

L100I 2 (2%)

TAMS 45 (47%)

D67N, M41L, T215Y/F, K219E/Q, K70R, and L210W

M184V and TAMS 15 (16%)

integrase mutations

Major IN mutation

T66I 1 (1%)

Y143R and T97A 2 (2%)

IN Accessory mutations

E157Q 2 (2%)

The IN mutation is based on the 89 sequences that passed the quality control.

Genotypic Resistance Testing
We performed genotypic resistance testing using viral RNA
extracted from plasma. The HIV-1 protease and reverse
transcriptase gene fragments were PCR-amplified using a slightly
modified protocol as previously described by us (Jacobs et al.,
2008). Briefly, HIV-1 protease and reverse transcriptase first-
round cDNA synthesis through reverse transcription was done
using amplification primers HIV-PR outer 50prot1 (5′-TAA TTT
TTT AGG GAA GAT CTG GCC TTC C-3′) and HIVRT outer
Mj4 (5′-CTG TTA GTG CTT TGG TTC CTC T–3′), position
2085-2109 and 3399-3420 of the HXB2 reference numbering,
with an expected fragment size of approximately 1314 base pairs
(bps) (Plantier et al., 2006). For second-round PCR amplification,
primers 50prot2 (5′-TCA GAG CAG ACC AGA GCC AAC
AGC CCC A–3′) and NE13 (5′-CCT ACT AAC TTC TGT ATG
TCA TTG ACA GTC CAG CT–3′), position 2136–2163 and
3334–3300 of the HXB2 reference numbering, with an expected
fragment size of approximately 1300 bps, were used (Plantier
et al., 2006). The integrase gene fragment amplification steps were
performed as previously described by us (Brado et al., 2018).
Sequencing reactions were performed as previously described by
us (Brado et al., 2018). As part of quality control, each of the
viral sequences was inferred on a phylogenetic tree in order to
eliminate possible contamination. DRMs were interpreted using
the Stanford University HIV Drug Resistance Database version
8.71. Subtyping was carried out using REGAv3 and COMET
(Pineda-Peña et al., 2013). Phylogenetic analysis was carried
out using MEGAv6.

RESULTS

We included patients receiving bPI as part of their cART
regimens. We confirmed the successful amplification and Sanger
sequencing of the protease, reverse transcriptase and integrase
gene fragments of the HIV-1 polymerase gene for 96 samples.
In the Integrase region seven sequences did not pass the quality
control. Those sequences were excluded from the final analyses.
Among the patients, 4% (4/96) of the samples did not indicate

1https://hivdb.stanford.edu/
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their patient file as being either male or female. Hence, they were
classified as unknown. The ages ranged from 2 to 66 years.

Seventeen (n = 17; 18%) of the patients were 16 years or
younger. Of these patients, three (n = 3; 3%) were female,
12 (13%) were male, while for two (2%) the gender had not
been disclosed by the physician. The NRTI cART regimen
combinations administered were ABC plus 3TC (n = 6; 6% of
patients), AZT plus 3TC (n = 6; 6%), stavudine [d4T] plus 3TC
(n = 1; 1%), TDF plus emtricitabine [FTC] (n = 2; 2%), and TDF
plus AZT (n = 1; 1%). Fourteen (15%) had received LPV/r, two
(2%) had received ATV/r and one (1%) had received darunavir
(DRV/r) as their bPIs.

We had a total of 76 adults; 55 (57%) were women, and
22 (23%) were men, while with two (2%) the gender was not
disclosed by the physician. The most commonly used NRTI
combination was AZT plus 3TC (n = 56; 58%), compared with
those receiving ABC plus 3TC (n = 11; 11%) and TDF plus 3TC
(n = 8; 8%). Other regimens given were d4T plus 3TC (n = 2; 2%),
TDF plus FTC (n = 2; 2%), TDF plus etravirine [ETR] (n = 1; 1%)
and AZT plus TDF (n = 1; 1%). Fifty-eight (60%) had received
LPV/r and six (6%) had received ATV/r as their bPIs and three
(3%) are currently receiving DRV/r.

HIV-1 Subtyping
Subtyping was carried out using REGAv3 and COMET. While
REGAv3 provide subtyping for all the RT/PR sequences as well
as IN sequences, COMET failed to subtype the IN sequences as
the majority of the IN sequences were typed as CPZ. Therefore
we used HIV-1 BLAST to identify the nearest subtype for the
IN sequences. Based on the PR/RT sequences (n = 96), 99%
were identified as HIV-1C while one as 02_AG (PT405ZA).
Based on the IN sequences (n = 89), patient samples PT405ZA
identified as 02_AG while 88 (99%) samples as HIV-1C. The
subtyping data is presented in Supplementary Table S1. We
also performed phylogenetic analysis to identify any specific
clusters. The neighbor-joining phylogenetic tree did not identify
any specific cluster of a transmission network (Figure 1).

NRTI Resistance-Associated Mutations
Table 1 shows the number of resistance-associated mutations
(RAMs) observed among the 96 sequences analyzed. We
observed M184V/I as the most prevalent NRTI mutation.
M184V/I was detected in 52 (54%) patients suspected of failing
cART. Of these, 36 (69%) patients were receiving a combination
of AZT plus 3TC, compared with 13 (14%) patients receiving
an ABC plus 3TC combination. M184V/I was also found in two
(4%) patients receiving TDF plus 3TC, compared with those
receiving FTC plus TDF (n = 1; 2%). L74V was detected in five
(5%) patients – three (3%) patients receiving ABC plus 3TC,
and two (2%) patients receiving AZT plus 3TC. The K65R/N
mutation occurred in five (5%) patients; K65R occurred in two
(2%) patients receiving AZT plus 3TC, and in one (1%) patient
receiving TDF plus FTC. The Y115F mutation occurred in five
(5%) patients. However, Y115F occurred more often in patients
receiving AZT plus 3TC (n = 4; 4%); it occured in one (1%)
patient receiving ABC plus 3TC. The A62V mutation occurred

in one (1%) patient receiving AZT plus 3TC. V75I occurred in
one (1%) patient receiving AZT plus 3TC.

Thymidine analog mutations (TAMs) were grouped into
TAMs1 and TAMs2. The most frequent TAMs observed were
K70R/E in 10 (10%) patients receiving AZT plus 3TC, in three
(3%) patients receiving ABC plus 3TC, and in one (1%) patient
receiving FTC plus TDF. D67N occurred in five (5%) patients
receiving AZT plus 3TC and in three (3%) patients receiving
ABC plus 3TC. D67N occurred in one (1%) patient receiving
both TDF plus 3TC and an FTC plus TDF-based regimen. The
K219E/Q mutation occurred in six (6%) patients receiving AZT
plus 3TC, and in two (2%) patients receiving FTC plus TDF. The
M41L mutation occurred in three (3%) patients receiving AZT
plus 3TC, and in one (1%) patient receiving 3TC plus ATV/r.
T215Y occurred in two (2%) patients receiving AZT plus 3TC.

NNRTI Resistance-Associated Mutations
Table 1 shows the number of NNRTI RAMs observed. We
observed that the K103N/S mutation occurred in 41 (43%) of
those patients failing cART. Of the patients with this mutation,
24 (59%) patients were receiving AZT plus 3TC, and five (5%)
patients were receiving ABC plus 3TC. P225H occurred in 10
(10%) patients receiving AZT plus 3TC, in three (3%) patients
receiving ABC plus 3TC, and in two (2%) patients receiving TDF
plus 3TC. V106M occurred in 10 (10%) patients receiving AZT
plus 3TC, and in two (2%) patients receiving ABC plus 3TC. The
patients might have received the EFV or NVP based regiments
as their first-line treatment though the past treatment history
was not available.

Y188L occurred in five (5%) patients receiving AZT plus 3TC,
and in two (2%) patients receiving TDF plus ATV/r, and in
one (1%) patient receiving ABC plus 3TC. G190G/A occurred
in six (6%) patients receiving AZT plus 3TC, and in three (3%)
patients receiving ABC plus 3TC. K101EP occurred in three
(3%) patients receiving AZT plus 3TC, and in one (1%) patient
receiving ABC plus 3TC.

E138QGA occurred in four (4%) patients receiving AZT plus
3TC, in three (3%) patients receiving ABC plus 3TC, and in
one (1%) patient receiving TDF plus 3TC. V108I occurred in
one (1%) patient receiving AZT plus 3TC. H221Y and M230L
occurred in one (1%) patient each; both these patients were
receiving AZT plus 3TC.

PI Resistance-Associated Mutations
Of the 96 patients, 75 (81%) were receiving the LPV/r-containing
regimen, followed by the ATV/r- (n = 8; 8%) and DRV/r-
(n = 4; 4%) containing regimens. We identified 18 (18%) patients
with major PI RAMs. Of those, a substantial majority of 16
(89%) patients were receiving LPV/r as their bPI regimen, while
two (11%) patients were receiving ATV/r (Table 1). The most
common major PI RAMs observed were M46I and V82A (n = 12;
12%); I54V (n = 10; 10%); I84V and L76V (n = 7; 7%); I47A/V
(n = 3; 3%); I50L/V (n = 2; 2%); and V32I (n = 2; 2%) (Table 1).

InSTIs Resistance-Associated Mutations
We successfully sequence 89 INI samples. In our cohort, we
identified major InSTI RAMs in patients who had received
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FIGURE 1 | Neighbor-joining phylogenetic tree. The phylogenetic analysis is carried out using the PR/RT sequences. Bootstrap support > 70% was shown.

the DRV/r-containing regimen. Two (2%) patient had a viral
sequences with Y143R major InSTI mutation in combination
with the accessory T97A mutation, which confers high-
level resistance to raltegravir (RAL), intermediate resistance
to elvitegravir (EVG), and potential low-level resistance to
bictegravir and dolutegravir (DTG). A patient receiving AZT,
3TC, EFV, d4T and LPV/r had a virus sequence with the T66I
mutation (Table 1). The mutation identified and classified as an
‘accessory’ integrase, E157Q, occurred in two (2%) patients. One
patient was receiving EFV, TDF and 3TC and the other AZT, 3TC

and ATV/r. The level of drug resistance against all the cARTs is
presented in Figure 2. The observed RAMs in patient receiving
bPI based treatment regimen shows high-level resistance was
demonstrated in 17 (17%) and 14 (14%) of PLHIV against LPV/r
and (ATV/r), respectively, while seven (7%) showed intermediate
cross-resistance to DRV/r. Despite off-treatment with NNRTIs,
more than half of the patients were shown to have high-level
resistance to NVP (57%, n = 56) and EFV (56%, n = 55). High-
level resistance were also observed with patients receiving NRTI-
based treatment to FTC (60%, n = 59) and 3TC (60%, n = 59).
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FIGURE 2 | The observed resistance in patients receiving bPIs as part of their cART. High-level resistance was shown in 17 (17%) and 14 (14%) of PLHIV against
LPV/r and (ATV/r), respectively, while seven (7%) showed intermediate cross-resistance to DRV/r. Despite off-treatment with NNRTIs, more than half of the patients
were shown to have high-level resistance to NVP (57%, n = 56) and EFV (56%, n = 55).

DISCUSSION

In this study, we analyzed 96 HIV-1 RT/PR and 89 IN sequences
from PI-experienced and InSTI-naïve patients for major RAMs.
The patients were being treated with a bPI second-line cART
regimen and were suspected of virological failure. Second-line
cART consisted of two NRTIs, backboned by a PI, if previously
treated with an NNRTI-based regimen, and vice versa.

As expected, major DRMs against NRTIs and NNRTIs were
present at a rate of 65% (n = 65) and 62% (n = 62), respectively.
Despite being on a bPI, only 18% (n = 18) of our study sequences
harbored major PI RAMs. This is in line with a previous study
conducted in Sweden, where it was predicted that HIV-1 subtype
C would be more prone to failure in bPIs (Amanda et al.,
2016). We identified 27 (27%) sequences not showing any DRM
against the drug classes mentioned above and therefore could
indicate a problem of poor adherence, rather than the selection
of resistant variants.

M184V, the most common NRTI RAM, occurred more
frequently in patients receiving AZT plus 3TC, in comparison
with patients receiving the ABC plus 3TC regimen. Our findings
correspond with previous studies conducted in South Africa with
PLHIV, showing M184V/I as the most prevalent NRTI mutation
(Marconi et al., 2008; Van Zyl et al., 2011, 2013; Wallis et al.,
2011; Lombaard et al., 2016; Neogi et al., 2016; Steegen et al.,
2016a,b; Rossouw et al., 2017; Penrose et al., 2018). The K65R
and Y115F RAMs occurred more frequently in patients receiving
AZT plus 3TC, rather than in patients receiving ABC plus 3TC.
TAMS 1 and 2 pathway mutations occurred more frequently in
patients receiving the AZT plus 3TC cART regimen but were low
in patients receiving ABC plus 3TC, TDF plus 3TC, and FTC
plus TDF. The most frequent TAM was K70R/E, which occurred

mostly in patients receiving AZT plus 3TC, as opposed to ABC
plus 3TC and FTC plus TDF. In our study, M184V, L74V, K65R,
and Y115F were the most common major NRTI RAMs in patients
receiving LPV/r as their bPIs.

The K103N mutation occurred at a higher frequency in
patients receiving AZT plus 3TC or ABC plus 3TC than in those
receiving TDF plus 3TC, and 3TC plus d4T. The high rate of
K103N RAM is also well documented and has been observed in
several previous studies−(Bronze et al., 2012; Steegen et al., 2017).
The group receiving AZT plus 3TC or ABC plus 3TC showed
the highest rates of NNRTI mutations such as P225H, V106M,
E138A/G/K/Q, G190A/S, and Y188L occurred most frequently in
patients receiving AZT plus 3TC or ABC plus 3TC. The presence
of NNRTI RAMs when they were off the NNRTI indicating either
the carryover NNRTI RAMs from the failed first-line therapy or
could be the transmitted DRMs in children from the mother due
to vertical transmission prophylaxis.

The majority of our patients were receiving LPV/r as their
bPIs. The M46I and V82A RAMs were the most common
mutations observed in patients receiving LPV/r compared with
ATV/r. We identified a low frequency of M46I and V82A in
patients receiving ATV/r as their bPIs. The group receiving
AZT plus 3TC or ABC plus 3TC showed the highest rate
of PIs such as I54V, I84V, L76V, I47A/V, I50L/V, and V32I.
Our findings are in agreement with Neogi et al.’s (2016) study
where major PI RAMs were observed in 5% of patients; among
them, V82A 65% (28/43), I54V 63% (27/43), L76V 23% (10/43),
and L90M 16% (7/43) were the most frequent (Neogi et al.,
2016). Our findings also showed M46I and V82A RAMs as the
most prevalent major PI RAMs. Furthermore, these findings are
in agreement with Rossouw et al. (2015) that observed both
V82A and M46I has the most common mutation in infected
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children receiving PI-based cART. Chimbetete et al. (2018)
observed similar results, with all three drug classes showing their
DRMs at similar rates. The most common PI RAM reported
by Chimbetete et al. (2018) was M46I 28 (33%), followed
by I50V 18 (21%) and V82A 18 (21%). We observed more
high-level resistance to patients receiving LPV/r compared with
ATV/r and DRV/r. Van Zyl et al. (2013) findings are consistent
with ours, as they also identified more high-level resistance
in patients receiving LPV/r compared with those receiving
ATV/r and DRV/r.

We analyzed the integrase gene for the presence of treatment-
compromising polymorphisms and DRMs against InSTIs. We
observed the presence of Y143R in combination with T97A
in one of our patients receiving ABC, 3TC, LPV/r. N155H,
Q148H/R/K, and Y143R/C/H are the three major recognized
pathways of genotypic resistance against InSTIs (Doyle et al.,
2015). We confirmed Y143R in our study and this mutation
in combination with T97A also impaired EVG susceptibility
and showed possible low-level resistance. Furthermore, our data
suggest that EVG activity is compromised in the presence of any
RAL RAM, in this case Y143R. We also identified the presence
of E157Q in 2 (2%) patients. The presence of this mutation
is concerning, as these mutations are associated with potential
low-level resistance to both RAL and EVG. In a previous study
conducted by Brado et al. (2018), we also found E157Q on
HIV-1-infected South African sequences retrieved from the HIV
database. Viruses having E157Q were found to be associated
with treatment failure of a DTG-containing regimen (Brado
et al., 2018). A study has shown that eight patients who had
the E157Q mutation and were initiated with DTG-based therapy
did not experience viremia suppression below detection level
(Neogi et al., 2018).

Furthermore, we identified the presence of T66I mutation
in 1 (1%) patient. T66I confers low-level resistance to RAL
and high-level resistance to EVG. The low prevalence of DRMs
to InSTIs in our cohort should not be underestimated. RAMs
against InSTI raises the question about the positioning of DTG
in the treatment guidelines for South Africa. Previous studies
have shown that a considerable minority of patients develop
cross-resistance to DTG after exposure to RAL and EVG;
resistance to DTG has not yet been reported in patients from
South Africa (Fourati et al., 2015; Mesplède and Wainberg,
2015). As DTG was proposed as the first-line drug, it is essential
to conduct studies in real-life clinical settings to identify the
efficacy of DTG as limited viral load monitoring and without
drug resistance genotyping may compromise the next-generation
InSTIs to be used.

Our study had some limitations that merit comments. First,
the sample size was small compared to the total number of
patients who are receiving cART in South Africa. However, to the
best of our knowledge, there has not been any statistical study that
reports on the number of patients receiving second-line cART
from South Africa. Second, the majority of our patients were
receiving LPV/r as their bPIs compared to other bPI regimens.
We cannot tell for certain whether the patients having RAL
resistance according to the sequence have had access to an RAL-
based treatment regimen. Finally, we did not have any adherence

data for these patients and the DRM data were only based on
population sequencing, therefore we could not detect minor
mutations below 20% of the population.

CONCLUSION

We identified patterns of RAMs against reverse transcriptase
inhibitors and PIs from patients suspected of failing on the
South African second-line national cART program. Very low or
no primary InSTI RAMs were detected in second-line failure
patients. The majority of them had M184V mutations that
could have been carried over from the first-line cART. Given
the negative effect of M184V mutations on viral fitness, it
is more plausible to the recycling of 3TC/FTC in second-
line cART maintains the presence of M184V. The non-
identification of any RAMs in one-third of the patients and
the presence of PI RAM in only one-fifth of the patients
indicate that the failure may not be due to RAM, but might
be due to adherence. Given the limited cART drug availability
and high public health burden, we propose for genotypic
resistance testing should be performed before switching to
InSTIs-based regimen in our setting. This will not only detect
treatment failure earlier but will also identify poor treatment
adherence. Data generated from this study can assist in the
development of cART guidelines for patients who experience
treatment failure in resource-limited settings where genotyping
is not available. Studies that address operational issues, such
as the optimal use of treatment monitoring tools, should be a
research priority.
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