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Significance

Mitochondrial oxidative 
phosphorylation (OXPHOS) 
system is encoded partially by 
mitochondrial DNA (mtDNA). 
Decline of mitochondrial function 
may underlie the pathogenesis of 
many age-related diseases, but 
the mechanisms underlying 
mitochondrial functional decline 
with advancing age remain 
controversial. Our results in this 
study showed the prevalence 
of high-frequency pathogenic 
mutations at the single-cell level. 
Given the high percentage of 
cells harboring these mutations, 
our results demonstrate the 
diversity of single-cell mtDNA 
mutations that were previously 
underappreciated and highlight 
the importance of investigating 
single-cell mtDNA mutations and 
their roles in human aging.
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Decline in mitochondrial function underlies aging and age-related diseases, but the 
role of mitochondrial DNA (mtDNA) mutations in these processes remains elusive. 
To investigate patterns of mtDNA mutations, it is particularly important to quantify 
mtDNA mutations and their associated pathogenic effects at the single-cell level. 
However, existing single-cell mtDNA sequencing approaches remain inefficient due to 
high cost and low mtDNA on-target rates. In this study, we developed a cost-effective 
mtDNA targeted-sequencing protocol called single-cell sequencing by targeted ampli-
fication of multiplex probes (scSTAMP) and experimentally validated its reliability. 
We then applied our method to assess single-cell mtDNA mutations in 768 B lym-
phocytes and 768 monocytes from a 76-y-old female. Across 632 B lymphocyte and 
617 monocytes with medium mtDNA coverage over >100×, our results indicated that 
over 50% of cells carried at least one mtDNA mutation with variant allele frequencies 
(VAFs) over 20%, and that cells carried an average of 0.658 and 0.712 such mutation 
for B lymphocytes and monocytes, respectively. Surprisingly, more than 20% of the 
observed mutations had VAFs of over 90% in either cell population. In addition, over 
60% of the mutations were in protein-coding genes, of which over 70% were nonsyn-
onymous, and more than 50% of the nonsynonymous mutations were predicted to be 
highly pathogenic. Interestingly, about 80% of the observed mutations were singletons 
in the respective cell populations. Our results revealed mtDNA mutations with func-
tional significance might be prevalent at advanced age, calling further investigation 
on age-related mtDNA mutation dynamics at the single-cell level.

aging | single cell | mitochondrial DNA

Mitochondria are double-membraned organelles in cytoplasm of almost all eukaryotic 
cells. They play important roles in energy production, immune response, epigenetic reg-
ulation, apoptosis, and many other metabolic and signaling processes (1–5). Due to their 
symbiotic origin during evolution, mitochondria are the only organelle in animal cells 
that carry their own genomes (6). In humans, the mitochondrial DNA (mtDNA) is an 
approximately 16.6 kb double-stranded molecule that encodes for 13 proteins of the 
oxidative phosphorylation (OXPHOS) complexes, in addition to 22 tRNAs and 2 rRNAs. 
Each human cell contains many copies of mtDNA, and mutations can affect various 
proportions of the mtDNA molecules (6).

Mutations in mtDNA occur at a much higher rate than in nuclear DNA (7). Because 
approximately 95% of the entire mtDNA genome are coding regions, mtDNA mutations 
could lead to mitochondrial functional decline, alterations in cellular activities and even diseases 
(8–11). In addition to well-known mitochondrial diseases such as mitochondrial encephalo-
myopathy with lactic acidosis and stroke-like episodes (MELAS), myoclonic epilepsy with 
ragged-red fibers (MERRF), or neurogenic weakness with ataxia and retinitis pigmentosa 
(NARP), mtDNA mutations might also contribute to age-related complex disorders, such as 
type-2 diabetes, neurodegenerative diseases, and multiple cancers (8–10, –14).

The majority of reported mtDNA mutations implicated in human diseases are heter-
oplasmic, meaning that mutant and wild-type mtDNAs coexist in a cell or tissue (15). 
While research on heteroplasmy has recently expanded (16–30), more effort is needed to 
investigate the pattern of mtDNA heteroplasmy at the single-cell level (31–36). Theoretical 
simulations demonstrated that different mtDNA mutations can drift to high frequencies 
in cell subpopulations as a result of cell division or internal mitochondrial turnover over 
a person’s lifetime (37–39). Sequencing a population of cells with heterogeneous mtDNA 
mutations can potentially mask distinct mtDNA mutations in individual cells. It is there-
fore essential to quantify mtDNA mutations and their associated pathogenic effects at the 
single-cell level to understand the real distribution of mtDNA mutations.

Multiple sequencing protocols have been developed and utilized for assessment of human 
mtDNA mutations (21–23, 26, 27, 404142–43). However, the majority of these protocols 
are limited to cell population-based samples. In recent years, single-cell approaches to 
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sequencing mtDNA have emerged to uncover the rich diversity of 
mtDNA and resolve clonal dynamics (34–, –46). Single cells assess-
ment of mtDNA mutations was also performed with scRNA-seq 
data to provide insights into the clonal properties in various model 
systems (47, 48). Several protocols based on single-cell assay for 
transposase-accessible chromatin with sequencing (scATAC-seq) 
have been developed to quantify mtDNA mutations in single cells 
and have become increasingly popular (35, 36, 44). However, the 
intrinsic drawback of scATAC-seq associated with allelic dropout 
has been widely ignored in determining the mutational profile of 
mitochondrial genome (49). Meanwhile, it was estimated that only 
about 20% of the total scATAC-seq reads from an individual cell 
were mtDNA fragments (44), resulting in high cost of the protocol, 
insufficient depth of mtDNA coverage, and subsequently unreli-
able mutation calling. Rolling circle amplification (RCA) prefer-
entially amplifies circular mtDNA over linear nuclear genome, and 
it has been adapted by scMito-seq and MitoSV-seq to generate 
enough replicates of mtDNAs from single-cell lysate. In conjugate 
with tagmentation-based library preparation, these techniques have 
enabled the characterization of mtDNA genomes of single cells. 
Although the preamplification step using RCA can mitigate allelic 
dropout in comparison with direct tagmentation of initial mtDNA, 
the amplification products are inevitably contaminated with 
nuclear genome and eventually lead to low mtDNA coverage. 
While scRNA-seq data can help identify mtDNA mutations for 
lineage tracing, it cannot reveal overall single-cell mtDNA muta-
tion load. This raises the need for cost-effective and targeted-
sequencing approaches for single-cell mtDNA.

We recently developed a novel, cost-effective human mtDNA 
sequencing method called sequencing by targeted amplification 
of multiplex probes (STAMP) for assessing mtDNA mutations in 
cell population samples (25). We demonstrated that STAMP has 
both high on-target rates and high sensitivity in detecting sin-
gle-nucleotide mutations (25, 30, 50). Due to its flexibility, 
STAMP can be readily adapted to single-cell mtDNA sequencing. 
In this study, we established a novel method, single-cell STAMP 
(scSTAMP), for cost-effective and sensitive assessment of mtDNA 
mutations in single cells. The method was applied to 768 B lym-
phocytes and 768 monocytes for a human adult aged at 76. We 
systematically evaluated the patterns and dynamics of mtDNA 
mutations at the single-cell level and demonstrated prevalence of 
unique, high-frequency, and functional mutations at the single-cell 
level. Our results indicate that mtDNA mutations, varying among 
different cells in the same person, could potentially be an important 
source of mitochondrial functional decline at the tissue and/or 
organism level with advancing age.

Results

Accurate Detection of mtDNA Mutations at the Single-Cell 
Level. STAMP is a cost-effective targeted-sequencing approach 
developed for assessing mtDNA contents and mutations in bulk 
cell population samples (25). STAMP uses 46 pairs of single-
stranded oligonucleotide probes for capturing the entire human 
mtDNA genome with an extension-ligation (EL) reaction, the 
product of which are then subjected to PCR amplification, 
library purification, and massively parallel sequencing. To extend 
STAMP for assessing mitochondrial genomes in individual cells, 
we incorporated a PCR amplification step before the EL-capture 
reaction to generate sufficient replicates of mtDNA molecules for 
target capturing. Specifically, the whole mtDNA genomes were 
amplified as two overlapping fragments directly from single-cell 
lysates in a single reaction. The resulting amplicons were processed 
by STAMP to generate sequencing libraries (Fig. 1A).

Given the multiplicity of mtDNA molecules in single cells and 
most mtDNA mutations are heteroplasmic, we conducted a vali-
dation experiment to assess the technical variation of scSTAMP. 
We isolated, from a donor of ~60-y-old, 24 B lymphocytes and 24 
monocytes representing the lymphoid lineage and the myeloid 
lineage, respectively (51, 52). We split each cell lysate evenly into 
two aliquots and independently applied scSTAMP to both. To 
stringently control for false positive mutation calls, we decided to 
focus on single-cell mtDNA mutations with over 20% of variant 
allele frequency (VAF). Mathematically, it has been shown that 
high-VAF mutations were unlikely to originate from PCR errors 
(34). Biologically, it was recently reported that transcriptional 
reprogramming starts to occur for some mutations with VAFs as 
low as 20%, and a defect in OXPHOS is usually detectable after 
the corresponding mutations reach high-frequency levels in cells 
(53–56). We additionally required that both aliquots derived from 
the same cells have over 100× median depth of mtDNA coverage, 
which resulted in 22 B lymphocytes and 24 monocytes with 
median coverage ranging from 180.0× to 4489.0×. Across 46 probe 
regions, the distributions of high-quality consensus reads were 
highly correlated between two aliquots of the same cells. In total, 
we identified 27 mutations that were shared by both aliquots of 
the same cells with both VAFs over 20% (Fig. 1B). The correlation 
between VAFs of shared mutations in both aliquots of the same 
cells was 0.88 (p-value = 1.407 × 10−9). Furthermore, 21 out of the 
27 (77.78%) mutations that appeared in both aliquots with VAFs 
over 20% had an absolute VAF difference within 10% (Fig. 1B).

We further investigated mutations that appeared in only one 
aliquot, which totaled nine mutations. Among these, five muta-
tions were found in both aliquots but were filtered out in the 
further analysis of one of the two aliquots due to stringent quality 
control. The remaining four mutations were present in only one 
aliquot (SI Appendix, Table S1). The uneven split of mitochondrial 
contents during library preparation and/or biased amplification 
of certain mtDNA molecules could potentially contribute to the 
differences in VAFs of mtDNA mutations in two aliquots of the 
same cells. Indeed, three out of the four mutations that were only 
detected in one aliquot had VAFs under 30%, making them sus-
ceptible to these random events. Our results indicated that 
scSTAMP can reliably identify mutations at medium to high VAFs 
in single cells.

mtDNA Mutations are Prevalent in Individual Cells. mtDNA 
is an important target of age-related accumulation of mutations 
(21, 29, 57–59). Our validation results suggested diverse 
mtDNA mutations at the single-cell level (Fig. 1B). To further 
investigate this at the single-cell level, we used scSTAMP to 
assess mitochondrial genomes of individual B lymphocytes and 
monocytes from peripheral blood that was obtained from a second 
donor, a healthy 76-y-old female. We constructed 768 single-cell 
mtDNA libraries for each of the two cell types. High-throughput 
sequencing yielded median depths of mtDNA coverage of 
744.03× and 640.16× for the B lymphocytes and the monocytes, 
respectively (SI Appendix, Fig. S1A). Among these, 632 (82.3%) 
B lymphocytes and 617 (80.3%) monocytes had a median depth 
of coverage over 100×, which were retained for further analysis  
(SI Appendix, Fig. S1B). The distribution of high-quality consensus 
reads across 46 probes was highly correlated between the two 
cell types (Pearson’s correlation = 0.91, SI Appendix, Fig. S2).  
The uniformly high mtDNA coverage enabled us to reliably 
identify and compare mtDNA mutations in these two cell types 
(SI Appendix, Figs. S3 and S4).

We identified 473 mutations with VAF over 20% at 416 
mtDNA sites in the B lymphocytes, and 505 such mutations at 
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439 sites in the monocytes (Fig. 2A). Each B lymphocyte and 
monocyte carried an average of 0.658 and 0.712 mutation sites, 
respectively. We noted that there were no significant differences 
in the number of mutations among plates (SI Appendix, Fig. S5A 
and Table S3) or significant correlations between number of muta-
tions and median depth of coverage in a cell (SI Appendix, Fig. 
S5B and Table S3). Among all sites, 97.37% and 96.83% were 
transitions, respectively, leading to transition/transversion ratios 
of 37.0 and 30.5 in the B lymphocytes and the monocytes pop-
ulations. Transitions G > A and T > C were the two major types 
of mutations (SI Appendix, Fig. S6).

Among studied cells, 318 (50.3%) of B lymphocytes and 346 
(56.1%) of monocytes carried at least one mtDNA mutations 
(Fig. 2B). Interestingly, the majority of mtDNA mutation sites 
were singletons in the studied populations: 390 (82.5%) and 
396 (78.4%) mutation sites were observed only once, which, 
respectively, accounted for 93.8% and 90.2% of all the mutation 
sites identified in the B lymphocyte and the monocyte popula-
tions (SI Appendix, Fig. S7). Among the singletons, 360 B lym-
phocyte singletons and 366 monocyte singletons were still 
singletons even when two cell populations were considered 
together. The distribution of VAFs skewed toward high and low 
ends of the VAF spectrum. Specifically, 24.3% of the observed 
mtDNA mutation sites had median VAF over 90% in B lym-
phocytes, which was significantly higher than that (17.5%) in 
monocytes (two-sided P-value = 0.01921. Fig. 2C). Given that 
we only focused on mutations with VAFs higher than 20%, our 

observations suggested that mtDNA mutations are prevalent at 
the single-cell level.

Single-Cell mtDNA Mutations are Functionally Important. We 
observed positive correlations between the number of mtDNA 
mutation sites located in a specific mtDNA region (genes, 
D-loop, or intergenic regions) in the cell populations and the 
size of the region. Specifically, Pearson’s correlation is 0.958  
(p-value < 2.2 × 10−16) and 0.936 (p-value < 2.2 × 10−16) for the 
B lymphocytes and the monocytes, respectively. On average, 
there were 0.026 and 0.028 mutation sites per base pair across 
the B lymphocytes and the monocytes, respectively. The results 
suggested that single-cell mtDNA mutations might be generated 
mostly at random (60).

The majority of the observed mutations are functionally 
important. In our data, mutations in the protein-coding genes 
are the most common: 312 B lymphocyte mutations at 271 sites 
(65.1%) and 328 monocyte mutations at 264 sites (60.1%) were 
in protein-coding genes (Fig. 3 B and C). The second most com-
mon type of mutations were in rRNA/tRNA-coding genes: 97 
mutations at 84 (20.2%) mtDNA sites for B lymphocytes and 
113 mutations at 103 mtDNA sites (23.5%) for monocytes were 
in rRNA-coding genes, while, respectively, 44 mutations at 42 
sites (10.1%) and 39 mutations at 33 sites (7.5%) were in 
tRNA-coding genes. In total, protein-coding and tRNA/
rRNA-coding mutation sites accounted for over 90% of all iden-
tified sites. Although the D-loop is considered highly variable 

Fig. 1. Experimental workflow for scSTAMP and validation. (A) Schematics of scSTAMP. After single-cell sorting and cell lysis, the whole mtDNA genomes are 
amplified as two overlapping fragments directly from single-cell lysates in a single reaction. The resulted amplicons were processed by STAMP to generate 
sequencing libraries (25). (B) mtDNA mutations with VAFs > 20% in both aliquots derived from the same cells had highly correlated VAFs (Pearson’s correlation 
= 0.88, p-value = 1.407 × 10−9). We constructed 48 libraries each (24 cells × 2 aliquots) for B lymphocytes and monocytes. After sequencing, 2 B lymphocytes 
were excluded because both cells had sequencing reads returned for only one aliquot. The remaining 22 B lymphocytes and 24 monocytes had median 
depth of mtDNA coverage of over 100×.
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among individuals in human populations (61, 62), we observed 
only 20 mutations at 19 sites (4.6%) in B lymphocytes and 23 
mutations at 14 sites (3.2%) in monocytes in the D-loop. 
However, as expected, most of the D-loop mutations were found 
in the two hypervariable regions of the D-loop, HVR1 
(rCRS16024-16383), and HRV2 (HVR-II: rCRS57-372, HVR-
III: rCRS438-574) (61): 18 and 23 mutations at 17 and 14 sites, 
respectively, in the B lymphocytes and the monocytes were found 
in these regions.

In addition, most protein-coding mutation sites were nonsyn-
onymous. Among all identified protein-coding mutation sites, 
70.8% (192 sites), 24.0% (65 sites), and 5.2% (14 sites) were 
nonsynonymous, synonymous, and stop-gain, respectively, in the 
B lymphocytes, and 74.2% (213 sites), 20.6% (59 sites), and 
5.2% (15 sites), respectively, in the monocytes. The Combined 
Annotation-Dependent Depletion (CADD) scores measure the 
deleteriousness of single-nucleotide variants (63). Across all non-
synonymous mutations, 52.2% in B lymphocytes and 59.6% in 
monocytes had CADD scores over 20, which is a threshold for 
predicted high pathogenicity (24). The percentages were reduced 
to 44.2% and 40% among nonsynonymous mutations with VAF 
over 90%, suggesting that purifying selection against highly path-
ogenic mutations might have occurred in both cell types, but 
more efficiently in the monocytes than in the B lymphocytes.

Single-Cell mtDNA Mutation Load Varies by Cell Type. Different 
cell types may have different mtDNA mutation load, for which our 
data provided an interesting opportunity to investigate. Although 
both populations had a median of one mutation per cell, the 
average number of mutations per cell is 0.748 for B lymphocytes 
and 0.818 for monocytes (Figs. 2B and 4A). This ~9% difference 

in mean is statistically significant (two-sided Wilcoxon rank sum 
test, P-value = 0.028; Fig. 4A).

We further conducted a resampling-based simulation to study 
the minimum number of single cells required to represent sin-
gle-cell mutation load of a single-cell population. Our simulation 
showed that with as few as 20 cells, the SD across resampled mean 
mutation load was so large, compared to the real values of mutation 
load in cell populations, that we were not able to reliably quantify 
the mutation load (Fig. 4B). However, with a sample size of 60 
single cells, the differences in mutation load between these two cell 
populations can be reliably detected in the resampling. Our simu-
lation further showed that SD of the mutation load converged to 
around 0.05 if we used 260 or more cells (Fig. 4C). The SD did 
not thereafter decrease too much with more cells in the simulation, 
indicating that we may need as few as about 260 cells to represent 
the mutation load in a single-cell population (Fig. 4C).

Discussions

Massively parallel single-cell mtDNA sequencing provides an ave-
nue to dissect cell-specific mtDNA heteroplasmy. Recent devel-
opments in scATAC-seq and scMito-seq techniques signified 
critical steps toward inferring mtDNA heteroplasmy and clonal 
relationships in individual cells. However, most existing single-cell 
mtDNA sequencing methods use expensive commercial kits for 
single-cell mtDNA amplification and next-generation sequencing 
(NGS) library preparation. We have developed a cost-effective, 
targeted-sequencing approach for assessing single-cell mtDNA 
mutations. It was based on our previously developed approach, 
STAMP, to assessing single-nucleotide mtDNA mutations from 
cell population samples (25, 50). In comparison with scMito-seq 

A

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5 6 7

B lymphocytes
Monocytes

Number of mutations in a cell

Pe
rc

en
ta

ge
 o

f c
el

ls

0%

5%

10%

15%

20%

25%

[0
.2

, 0
.3

)

[0
.3

, 0
.4

)

[0
.4

, 0
.5

)

[0
.5

, 0
.6

)

[0
.6

, 0
.7

)

[0
.7

, 0
.8

)

[0
.8

, 0
.9

)

[0
.9

, 1
.0

)

VAF

Pe
rc

en
ta

ge
 o

f m
ut

at
io

n 
si

te
s

B

C

Fig. 2. Single-cell mtDNA mutations are prevalent. (A) Distribution of mtDNA mutations (horizontal axis) and their VAFs (vertical axis). Singletons and shared 
mutations in the specific cell populations were labeled in black and red, respectively. (B) Percentages of cells (vertical axis) that carried a specific number of mtDNA 
mutations (Horizontal axis). Chi-squared test of the contingency table of raw cell counts gave P-value = 0.006513, indicating statistically significant differences in 
the mutation burden of the two cell types. (C) Percentages of mtDNA mutation sites (Vertical axis) that had median VAFs within a specific range of VAFs across all 
occurrences of mutations on the same sites (shown in Horizontal axis). Chi-squared test of the contingency table of raw mutation counts gave P-value = 0.1232.
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which subjects circular mtDNA to RCA and tagmentation of the 
concatemeric products by Tn5 transposase, scSTAMP provides 
more streamlined experimental procedure (i.e., no purification 
after single-cell lysis) and improved mitochondrial genome align-
ment rates. We can customize arm sequences of scSTAMP to adapt 
to mtDNA of different species, while scMito-seq requires special-
ized commercial kits with lesser-known primer sequences for 
library preparation. It is important to point out that both methods 
share a similar flexibility for either high- or low-throughput 
applications.

Although single-cell mtDNA mutations have been investigated 
previously in a few studies, these studies did not systematically 
characterize the single-cell mtDNA mutation spectrum or their 
functional significance due to either low coverage of the mtDNA 
genome or small number of cells used in the studies (35, 44, 45). 
We validated scSTAMP by applying the method independently 
on two equal aliquots of the same cell that scSTAMP can reliably 
detect mtDNA mutations of medium to high VAFs (defined as 
>20%). It is worth noting that the current study is the only one 
conducting this approach to demonstrate the reliability of sin-
gle-cell mtDNA sequencing method in our method development 
stage. With validated scSTAMP, we systematically assessed the 
patterns and dynamics of single-cell mtDNA mutations in B lym-
phocytes and monocytes, representing two major lineages of 
hematopoiesis, in an aged individual. We reported that mtDNA 
mutations of median to high VAFs were prevalent at the single-cell 
level and that most of them were singletons in the respective pop-
ulation. We further demonstrated that many of these were non-
synonymous and highly pathogenic. Given that most mutations 
were singletons in the cell populations, they were unlikely to be 
detected with cell population-based sequencing. Interestingly, 

mathematical modeling indicated that it is expected to have many 
somatic mtDNA singleton mutations given the sampled number 
of cells (64). Our results using published scATAC-seq data also 
revealed many functionally important mtDNA singletons  
(SI Appendix, Figs. S9 and S10).

Selection and genetic drift are considered important evolution-
ary forces shaping the mtDNA mutation spectrum in individual 
cells (53, 64, 65). Our results are consistent with the possibility 
that the mtDNA quality control system in cells is less efficient at 
purging pathogenic mutations with advancing age (66). The prev-
alence of high-VAF pathogenic mutations that we identified 
implied weak purifying selection or damaged mtDNA quality 
control in aged cells (67). Differences in mtDNA copy number 
in different cell types may also impact the dynamics of mtDNA 
mutations, because they represent differences in the effective pop-
ulation sizes of mtDNA molecules (29). In this study, we observed 
higher percentages of fixed or nearly fixed mutations in the B 
lymphocytes than in the monocytes. Furthermore, there are 
greater number of mutations and more efficient purifying selection 
against pathogenic mutations in monocytes than B lymphocytes. 
All these observations are expected if B lymphocytes have lower 
mtDNA copy number, and thus lower effective population size, 
than monocytes (68). Indeed, B lymphocytes are much smaller in 
size than monocytes (69), supporting possible differences in 
mtDNA copy numbers between two cell types. It remains to be 
studied in the future whether there is a relationship among 
mtDNA copy number, single-cell mtDNA mutation dynamics, 
and the rate of mitochondrial functional decline in different cell 
types.

We recently reported an increase in mtDNA mutations with age 
in the females from the UK10K project (21), which is consistent 
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(Vertical axis) and the size of the region (Horizontal axis). (B) VAF distribution (Vertical axis) of different categories (Horizontal axis) of mtDNA mutations.  
Syn.: synonymous mutations. Nsy.: nonsynonymous mutations. Asterisks indicated the significance levels of Wilcoxon two-sided tests. ns: P > 0.05, *P ≤ 0.05, 
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Nsy.: nonsynonymous mutations. (D) The VAFs (Vertical axis) and CADD score (Horizontal axis) of single-cell mtDNA mutations. The dotted vertical line represents 
a CADD score of 20.
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with other studies (26, 70, 71). However, the resolution of these 
previous studies was limited by the use of peripheral blood mon-
onuclear cells that were mixtures of different types of cells and by 
the use of bulk samples that masked mutations at the single-cell 
level. In this study, using only 24 B lymphocytes and 24 mono-
cytes from the validation sample, we showed that the mutation 
load of B lymphocytes from the first donor (~60-y-old) was lower 
than that from the second donor (76-y-old), but the mutation 
load of monocytes was similar between the two donors  
(SI Appendix, Fig. S8). It is important to note that variation in 
mutation load calculation increases when the number of cells sam-
pled is small (Fig. 4C). Therefore, we need to consider randomness 
in sampling, cell types, and/or other features related to the donors 
in interpreting the observation between these two individuals. A 
systematic characterization of single-cell mtDNA mutations during 
healthy aging and in different disease settings is warranted.

Aging is a process marked by a progressive degradation of 
cellular functions (66). Mitochondrial dysfunction is considered 
a hallmark of aging, where OXPHOS functionality tends to 
decline along time (72–74). Decline in mitochondrial function 
was also hypothesized to be causal to many other age-related 
features (66, 75, 76). However, the mechanisms underlying 
mitochondrial functional decline with advancing age remain 
controversial. mtDNA is prone to accumulation of point muta-
tions, insertions and deletions, and large structural arrange-
ments in aging (21, 29, 57–59), which has been suggested to 
be causal to age-related human multisystem disorders, impaired 
mitochondrial functions, premature aging, and reduced life span 
in mice (60, 65, 77, 78). It has been reported that some path-
ogenic mitochondrial tRNA mutations are associated with the 

systematic disruption of cellular epigenetic pathways, the sever-
ity of which depends on the levels of the mutations (4, 28, 56). 
Nevertheless, most of these studies were conducted using bulk 
mtDNA analysis, and the mtDNA mutations observed in cell 
populations were too low in frequency to be functionally signif-
icant. Our results in this study showed the prevalence of 
high-frequency pathogenic mutations at the single-cell level. 
Furthermore, most pathogenic mutations were singletons in the 
cell population, preventing them from being detected in the 
bulk mtDNA analysis. Given the high percentage of cells har-
boring these mutations, they could collectively lead to mito-
chondrial functional decline at the tissue and organism level.

Heteroplasmic pathogenic mtDNA mutations are associated 
with age-related neurodegeneration, including Alzheimer's disease, 
but the dynamics of the mitochondrial genome in neurological 
disorders is largely unexplored. Single-cell analysis of heteroplasmy 
holds promise for revealing complexities in mtDNA heteroplasmic 
dynamics. We believe that development of a cost-effective tool, 
like scSTAMP, as well as large-scale assessment of dynamics of 
mtDNA mutations at single-cell level will accelerate our under-
standing of the roles of mtDNA variations in human diseases and 
facilitate discovery of new therapies for neurodegenerative diseases 
by targeting mitochondria-related pathways (79, 80).

It is worth noting that there are two limitations in our study. 
One limitation is that we have only investigated mtDNA sin-
gle-nucleotide variants, so our results likely underestimated the 
prevalence of mtDNA mutations given the possible existence of 
insertions/deletions (indels) and structural variants. In addition, 
we only studied single-nucleotide variants with VAFs over 20%, 
which underestimates the functional significance of single-cell 

Fig. 4. Single-cell mtDNA mutation load between B lymphocytes and the monocytes. (A) Comparison of the number of mutations carried by a cell (Vertical axis) 
between the B lymphocytes and the monocytes. The P-value shown was calculated by two-sided, unpaired Wilcoxon rank sum test. (B) A down-sampling-based 
simulation to examine the number of cells required to represent the mutation load. We sampled a specific number of cells (indicated in the Horizontal axis) 
without replacement and computed the mean number of mutations, for 50 times each. Asterisks indicated the significance levels of Wilcoxon two-sided tests. 
ns: P > 0.05, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, and ****P ≤ 0.0001. All P-values are two-sided and unpaired by the Wilcoxon rank sum test. (C) SD of mean 
mutation load across 50 resamples for each specific number of cells down-sampled.

http://www.pnas.org/lookup/doi/10.1073/pnas.2201518120#supplementary-materials
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mtDNA mutations because low VAF mutations and larger-scale 
mutations spanning two or more base pairs were not investigated. 
Another limitation is that our samples were drawn from only two 
female donors at their advanced ages. It is possible that the prev-
alence of single-cell mtDNA mutations was unique to these two 
females instead of being a norm in human population. We believe 
this is unlikely because using the published scATAC-seq data, we 
were also able to identify many highly diverse and functionally 
important mtDNA mutations at the single-cell level (SI Appendix, 
Figs. S9 and 10). Taken together, our results demonstrate the diver-
sity of single-cell mtDNA mutations that were previously under-
appreciated and highlight the importance of investigating 
age-related mtDNA mutation dynamics at the single-cell level and 
their functional consequence in aging and age-related diseases.

Materials and Methods

Study Samples. A validation sample (buffy coat from human blood, a ~60-y-old 
female) was used to establish the scSTAMP workflow and assess the performance. 
A second sample (buffy coat from human blood, a 76-y-old female) was used for 
analysis of single-cell mtDNA mutation spectrum. Both human samples were 
collected in the Human Metabolic Research Unit at Cornell University. The study 
was approved by the Cornell University Institutional Review Board, and all the 
subjects provided written informed consent in accordance with the Declaration 
of Helsinki.

Single-Cell Mitochondrial Genome Sequencing. Mononuclear cells, from the 
buffy coat of peripheral blood, were separated by density gradient centrifugation 
and washed with phosphate-buffered saline (PBS). The cells were suspended in 
PBS containing 1% bovine serum albumin (BSA) to 1 × 107 cells/mL. PE Anti-
Human CD19 (eBioscience), Qdot 705 CD14 antibody (Thermo Fisher Scientific), 
and LIVE/DEAD fixable dead cell stain kit (Thermo Fisher Scientific) with far red 
fluorescent reactive dye (Thermo Fisher Scientific Inc) were used for staining of 
the cells according to the manufacturer’s instructions. Single live CD19 and Qdot 
705 positive cells were sorted by a BD FACSAria cell sorter directly into individual 
wells of a 384 well plate predispensed with 1 μL of lysis buffer (200 mM NaOH 
and 50 mM dithiothreitol). The cells were spun down briefly and stored at −80 
°C until ready for processing.

Directly before amplification, single cells were incubated at 65 °C for 10 min 
to liberate total DNA. After the lysis step, 12 μL of PCR master mix containing 1 μL 
of 200 mM tricine, 2.6 μL of 5× LongAmp Taq reaction buffer, 0.39 μL of 10mM 
dNTPs, 0.52 μL of each primer (5 μM, SI Appendix, Supplementary Tables), and 
0.52 μL (1.25 units) of LongAmp Taq DNA polymerase were added directly to 
each well. Amplification was performed with the following cycling parameters: 
an initial denaturation of 94 °C for 30 s; followed by 45 cycles of 94 °C for 15 s, 
61 °C for 30 s, 65 °C for 8 min and 20 s, and 72 °C for 30 s. After cycling, there 
was a final extension step of 72 °C for 10 min.

The amplified product for each cell was diluted 200-fold into 1× TE (10 mM 
Tris-HCl, 0.1 mM EDTA, pH 8.0). 3.2 μL of diluted product was then input into an 
8 μL hybridization reaction containing 1× Ampligase buffer and 1× probe-mix-
ture pool. Hybridization was started with denaturation at 95 °C for 10 min, 
followed by a gradual decrease in temperature of 1 °C per min to 55 °C and 
hybridized for 20 h in a thermocycler. Then 6 µL gap-filling mix (0.1 mM dNTPs, 
0.6M Betaine, 0.1 M (NH4)2SO4, 0.5 U of TSP DNA polymerase, and 0.5 U of 
Ampligase in 1× Ampligase buffer) was added to the reaction and incubated at 
55 °C for another 20 h for gap filling.

For each capture reaction, captured targets were amplified and barcoded 
with customized P5i5 indexing primer (SI Appendix, Supplementary Tables) 
and P7i7 indexing primer (SI Appendix, Supplementary Tables). The PCR con-
ditions were as follows: 1 μL of captured product, 1× Phusion HF buffer (NEB), 
0.2 mM dNTP, 0.5 μM of each of the indexing primers, and 0.01 U/μL Phusion 
Hot-Start II DNA polymerase (NEB) in a 50 μL final reaction volume which was 
incubated at 98 °C for 30 s followed by 25 cycles of 98 °C for 10 s, 65 °C for 
15 s, and 72 °C for 15 s and a final extension for 2 min at 72 °C. 10 μL of 
product from each sample were pooled, and then the pooled libraries were first 
purified with 0.65× volumes of SPRI beads, eluted in 20 µL of nuclease free 

water. The corresponding expected size of 550 to 600 bp was gel extracted and 
resuspended in 15 μL of TE buffer. The pool was quantified by a Qubit dsDNA 
HS assay kit (Thermo Fisher Scientific).

The pool was sequenced with 2 × 250 paired-end reads, on a HiSeq flow cell 
with customized sequencing primers. The first sequence read (251 nt) was obtained 
using the Read 1 primer (SI Appendix, Supplementary Tables). The first index, located 
at the 3′ end of the fragment, was sequenced using the i7 Index primer (SI Appendix, 
Supplementary Tables). The second index read was then performed to obtain the index 
sequence at the 5′ end of the fragment using the adapter lawn on the surface of 
the sequencing flow cells. Finally, the second sequence read (251 nt) was obtained 
using the Read 2 primer (SI Appendix, Supplementary Tables). The overall process of 
cluster generation, sequencing, image processing, demultiplexing, and quality score 
calculation was performed on the HiSeq 2500.

mtDNA Variant Identification. We used the STAMP toolkit (https://github.
com/mtstamp/stamp) developed in (25) to process sequencing reads gen-
erated from scSTAMP. A brief workflow was as follows. Ligation arms, exten-
sion arms, and molecular barcodes were first trimmed from raw paired-end 
reads, and the trimmed read pairs were sorted into clusters of capture 
products based on EL arm sequences. The resulted paired-end reads were 
then mapped in a first round to the complete human genome (GRCh38 full 
assembly plus decoy, alternate contigs and HLA sequences, ftp://ftp.1000ge-
nomes.ebi.ac.uk) by BWA-MEM (version 0.7.17) (81) and were mapped in a 
second round to a modified mtDNA sequence with the final 120 bp copied 
to the start. Reads mapped to the target regions were locally realigned with 
Freebayes bamleftalign (version 1.1.0) (82), and their base qualities were 
recalibrated with samtools calmd (version 1.6) (83). For paired-end reads 
with the same molecular barcode, the base information at corresponding 
sites was corrected and merged using a Bayesian approach to generate a 
consensus read representation (25). The same approach was also used to 
correct and merge base information within the overlapping region of the 
paired-end reads. Nuclear-mitochondrial segment (NUMT) sequences are 
determined and removed by the STAMP toolkit (25). Finally, information on 
consensus reads was output into a pileup file with samtools and was used 
to call mtDNA variants.

Quality Control and Bioinformatics Annotations. To ensure accurate iden-
tification of mtDNA variants, we discarded single-cell libraries with median 
depth of mtDNA coverage <100×. 82.3% (n = 632) of B lymphocytes and 
80.3% (n = 617) of monocytes were retained for downstream analysis. To 
ensure the quality of mtDNA variant calling results, we stringently filtered 
the results to retain only mutations with (1) depth of coverage > 100, (2) ≥ 5 
supporting reads for mutations, and (3) VAF ≥ 20% relative to the consensus 
mtDNA sequences of the respective cell populations. The functional impact 
of mtDNA variants was annotated with the ANNOVAR pipeline (84), and path-
ogenicity of mtDNA variants was evaluated using CADD (63), both of which 
were provided by the STAMP pipeline.

Statistical Analysis.
All statistical analyses and plotting were conducted with the R language (version 
4.03) (85). Base R plotting and ggplot2 were used for figure generation. Unless 
otherwise specified, all statistical comparisons between two samples were con-
ducted unpaired, and the P-values were two-sided.

Data, Materials, and Software Availability. The sequencing data have 
been submitted to the GenBank Sequence Read Archive under the accession 
number PRJNA804226.
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