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Abstract The “Brainstorming” approach presented in
this paper is a weighted voting method that can
improve the quality of predictions generated by several
machine learning (ML) methods. First, an ensemble of
heterogeneous ML algorithms is trained on available
experimental data, then all solutions are gathered and a
consensus is built between them. The final prediction is
performed using a voting procedure, whereby the vote
of each method is weighted according to a quality
coefficient calculated using multivariable linear regres-
sion (MLR). The MLR optimization procedure is very
fast, therefore no additional computational cost is
introduced by using this jury approach. Here, brain-
storming is applied to selecting actives from large
collections of compounds relating to five diverse
biological targets of medicinal interest, namely HIV-
reverse transcriptase, cyclooxygenase-2, dihydrofolate
reductase, estrogen receptor, and thrombin. The MDL
Drug Data Report (MDDR) database was used for
selecting known inhibitors for these protein targets, and
experimental data was then used to train a set of
machine learning methods. The benchmark dataset
(available at http://bio.icm.edu.pl/∼darman/chemoinfo/
benchmark.tar.gz) can be used for further testing of
various clustering and machine learning methods when
predicting the biological activity of compounds. Depend-
ing on the protein target, the overall recall value is raised

by at least 20% in comparison to any single machine
learning method (including ensemble methods like ran-
dom forest) and unweighted simple majority voting
procedures.
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Abbreviations
SVM Support vector machine
ANN Artificial neural nets
NB Naïve Bayesian
TV Trend vectors
kNN/GA k nearest neighbors with genetic

algorithm optimization
RF Random forest
DT Decision tree

Introduction

The number of potential drug targets is increasing,
mainly through genomic initiatives [1–3], high through-
put experiments [4–7] or microarray or cellular screening
[8]. In the pharmaceutical industry generally, small
chemical compound collections are tested for single or
multiple protein targets. Typical high throughput screen-
ing (HTS) experiments allow selection of thousands of
high activity leads against a given protein target by testing
millions of compounds. Unfortunately, this approach can
be used only with single proteins, and cannot be applied to
larger number of drug targets. Using some initial infor-
mation about known active molecules can reduce the
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scope of the search for a selected protein target. The
knowledge base assists HTS studies by selecting a set of
compounds for further screening in virtual screening (VS).
VS methods typically use 2D fingerprint measures of
structural similarity depend on definition of distance in
descriptor space [9–11]. Another approach, namely data
fusion, combines the results of multiple similarity searches
of chemical databases performed by different algorithms,
or using different features [12–16]. Such models are based
on frequency distributions of similarity values that are
fused using integration over regions defined by the
particular fusion rule. Typically, the use of binary kernel
discrimination (BKD) for identifying potential active
compounds in lead-discovery programs is superior to
methods based on similarity searching and substructural
analysis but inferior to a support vector machine [11, 13,
14, 17, 18]. New methods for ligand-based VS use data
fusion and machine learning (ML) to enhance the
effectiveness of identification of potential actives over
typical similarity searching [19] using a single bioactive
reference. This basic search protocol can be extended by
the use of group fusion to combine the results of similarity
searches when multiple reference structures are available.
Similarity searches are typically based on the assumption
that the nearest neighbors resulting from a similarity
search using a single bioactive reference structure are also
active [19]. Similarly, various ML techniques or more
advanced ensemble methods use certain chemical descrip-
tors in order to represent a molecule.

The most successful approaches for classification of
known drugs that exploit the chemical similarity between
compounds are based on ML. The goal of ML is to
correctly classify the known data, and use the computed
statistical model to describe the activity of a new ligand.
ML methods have progressed significantly over the past
few years, especially in the context of predicting the
characteristics of physicochemical interactions between
organic molecules and metabolic enzymes. Metabolic
stability, drug metabolism and even in vivo clearance is
also addressed [20]. The modeling of relationships between
the chemical structure of a molecule and its metabolic effect
is of great interest to the pharmaceutical industry, especially
given the concurrent expansion of experimental basis. ML
techniques have been used with success in massive
screening, drug metabolism prediction, and in classification
or quantitative prediction for large and diverse compound
sets [20].

Bruce et al. [21] have carried out an assessment of
different ML techniques in the context of cheminfor-
matics, applying rigorous statistical tests and including
several commonly used techniques, such as bootstrap,
bagging, boosting and random forest (RF) [21]. Bruce et
al. [21] used eight data sets and two different types of

descriptors: 2.5D descriptors and linear fragment descrip-
tors. The percentage of correctly classified molecules was
used to validate the performance of each method on the
basis of a 10-fold cross validation. Using the 2.5D
descriptors, all methods correctly classify between 67%
and 90% of the molecules with a large difference between
individual data sets. Svetnik et al. [22] compared the
performance of non-optimized standard implementations
of RF, decision tree (DT) and partial least squares (PLS)
for six cheminformatics data sets. In terms of prediction
performance, RF ranks amongst the best algorithms. DT
performs uniformly less well than RF, and PLS comes
close to RF except for two datasets on which it performs
less well. For some data sets the authors compared their
findings with published results. For one dataset, RF was
comparable to support vector machines (SVM) and
artificial neural networks (ANN), where the performance
of RF and SVM was similar and both outperformed ANN.
In another article, Svetnik et al. [23] analyzed the
performance of boosting in comparison to stochastic
gradient boosting with a single DT, RF, k-nearest
neighbors (kNN), PLS, naive Bayesian (NB) and SVM
with both linear and radial kernels.

In our previous work, we compared results for several
supervised ML algorithms, including recursive partitioning
(RP), SVM, ANN, NB classification, kNN with genetic
algorithm (GA)-optimized feature selection (kNN/GA), RF,
DT, trend vectors (TV) and ensemble methods [24]. Here, I
focus on the core question, namely how to efficiently
combine these ML algorithms into a single meta-predictor
(or “jury” system). In this manuscript, I present the
“Brainstorming” approach, i.e., an implementation of
consensus learning that combines a variety of strong and
weak ML methods into a single classifier using a weighted
voting procedure. This jury system approach achieves
higher performance than any single method used in
consensus, as confirmed by results coming from different
field of bioinformatics [25–27]. Currently, the field of
protein fold recognition is dominated by meta-predictors
such as 3D-Jury [28, 29], Pcons [30, 31], Robetta [32–34],
and many others. Multiple tests have confirmed that
consensus methods are more powerful than individual
prediction algorithms in terms of both sensitivity and
specificity, despite the fact that some meta-predictors use
as few as three methods to build a consensus model. Here,
different methods are tested to estimate the quality of their
performance as individual predictors, thereby avoiding
some of the shortcomings of ensemble methods. The
methodological details are presented in the Methods section
below. The method effectively combines different powerful
supervised ML methods, trained on an initial set of active
compounds, into a single meta-predictor that can be used to
search for unknown inhibitors.
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Materials and methods

Materials

In our approach, the benchmark dataset of compounds for
further training ofML algorithms was extracted from theMDL
Drug Data Report (MDDR)1. I have selected five protein
targets, namely HIV-reverse transcriptase, cyclooxygenase-2
(COX2), dihydrofolate reductase, estrogen receptor, and
thrombin, from the available targets of medicinal interest.
The MDDR database was used to select known inhibitors for
those protein targets, then the training data was used to train a
set of ML methods. Compounds annotated as “biologically
tested” and ligands that have gone beyond the stage of drug
discovery were excluded. Such compounds were used as
positives (actives) for further training or testing. Negatives
(inactives) are compounds that have not been annotated as a
ligand for a given protein target, but that are considered as
“launched”, “Phase III”, “Phase II”, and “Preclinical”, i.e.,
selective for other targets and with low cross reactivity. Such
compounds are likely to be very highly active and the number
of chemotypes rather restricted. Therefore, the dataset can
only mimic a typical HTS situation, as a “pure” dataset is
not available to the screener. However, our set, or similar
subsets of the MDDR database have been used previously
in various applications for method development and
qualitative evaluation.

The number of negatives is much larger than the number of
positives, therefore a subset of negatives with a size
comparable to the size of the set of positives was randomly
selected. Then all datasets (positives and negatives) were
divided into training and test sets by randomly selecting two-
thirds of actives and a similar number of negatives for training.
The rest, i.e., one-third of the available compounds, were used
for testing. Debate surrounding the influence of this procedure
of selection of negatives for training ofMLmethods is still on-
going, and some remarks regarding the five protein targets
chosen here can be found in my previous works [24, 35].

To represent ligands, DRAGON chemoinformatics soft-
ware was used2. The core idea of the brainstorming

approach is not only to probe differences between types
of ML algorithms, but also to simultaneously describe input
data by different chemical descriptors. Both approaches,
namely probing different features, or different classification
methods, are valuable. Our rationale is that combining
multiple representations with multiple ML methods can
give additional variability to construct better meta-predictor
or jury systems. Each chemical descriptor attempts to
describe a ligand using a different approach, or set of
features. The DRAGON software covers 1,630 descriptors
of various types, including 0D (constitutional descriptors),
1D (charge descriptors and various molecular properties),
2D (walk and path counts, information indices, edge
adjacency, topological charge indices, topological descrip-
tors, connectivity indices, 2D autocorrelations, Burden
eigenvalues, eigenvalue-based indices), and 3D (Randic
molecular profiles, RDF and WHIM descriptors, geometri-
cal, 3D-MoRSE, GATEWAY descriptors), as well as others,
such as functional group counts, and atom-centered frag-
ments. In the first step of this work, the whole set of
descriptors was calculated for actives for all analyzed
protein targets together (i.e., not separately for each protein
target). Then, a principal component analysis (implemented
in DRAGON software) was undertaken in order to remove
dependent descriptors. This procedure divides the large set
of descriptors into clusters that contain only those that are
statistically dependent. In order to avoid the prohibitive
high-dimensionality of chemical descriptor space, we
selected only a subset of such clusters to be used for
training of ML algorithms. Seven clusters were used, where
chemical descriptors are correlated with: (1) regular atom
pair (AP) descriptors, (2) SQ types, (3) TT (regular
topological torsion), (4) DP (pairs using SQ types), (5)
DT (torsions using SQ types), (6) DRUGBITS (substruc-
tures), and (7) a ROF6 set of descriptors. SQ types typically
consider only non-hydrogens atoms [36]. For example,
each atom has a composite “SQ type” that includes
information about atomic number, hybridization, and
physiochemical types (1=cations, 2=anions, 3=neutral
9H-bond donors, 4=neutral H-bond acceptors, 5=polar,
unspecified H-bonding group, 6=hydrophobic, 7=other).
These physiochemical types are meant to represent ioniza-
tion states at physiological pH. The results of training ML
methods using this diverse set of seven descriptors were
previously analyzed for the five protein targets used here in
order to remove those descriptors that do not provide any
significant advantage in terms of recall/precision values
over the simplest atom pair (AP) descriptors [24, 35].
Finally, after carefully checking the quality of the trained
models, only regular AP descriptors were selected as the
final representation of ligand chemical space [37, 38].
These seem to provide overall results similar to more
advanced APs, and are also easy to use, and highly

1 MDDR Drug Data Report, version 2006, MDL, 2006.Coverage:
1988–present; updated monthly. Focus: Drugs launched or under
development, as referenced in the patent literature, conference
proceedings, and other sources; descriptions of therapeutic action
and biological activity; tracking of compounds through development
phases. Size: 132,726 molecules, 129,459 models. Updates add
approximately 10,000 new compounds per year.
2 DRAGON, version 5.0, TALETE srl, Italy, 2006. An application for
the calculation of molecular descriptors originally developed by the
Milano Chemometrics and QSAR Research Group. These descriptors
can be used to evaluate molecular structure-activity or structure-
property relationships, as well as for similarity analysis and HTP
screening of molecule databases. Version 5.0 was used in the present
study.
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interpretable. Our analysis is confirmed by other works in
which AP descriptors were used with success in classifying
compounds for different ML methods [24, 34, 39]. These
descriptors encode molecule structures by counting, for
each AP, the number of bonds that join them. Therefore, a
compound is represented as a binary vector with 1 for all
types of AP present, and 0 for those that are absent in the
molecule.

The benchmark dataset (available at http://bio.icm.edu.
pl/∼darman/chemoinfo/benchmark.tar.gz) can be used for
further testing of various clustering and ML methods.
Previously, we compared the accuracy of compound
classification by several single ML methods (including
SVM, RF, ANN, k-NN with GA-optimized feature selec-
tion, TV, NB classification, DT, and others), and significant
differences in the performance of these methods were
observed [24].

As mentioned in the previous section, authors evaluate
different ML methods in terms of the performance for a
given classifier. Typically, the classification error (E),
precision (P) and recall (R) values are reported, some-
times followed by receiver operating characteristic (ROC)
curves analysis. E, P and R are given by following
equations:

E ¼ 100% FPþFN
TPþFPþTNþFN ;

R ¼ 100% TP
TPþFN ;

P ¼ 100% TP
TPþFP

ð1Þ

where TP is the number of true positives, FP the number
of false positives, TN the number of true negatives and FN
the number of false negatives. The classification error, E,
provides an overall error measure, whereas recall, R,
measures the percentage of correct predictions (the
probability of correct prediction), and precision, P, gives
the percentage of observed positives that are correctly
predicted (the measure of the reliability of positive
instances prediction).

Methods

The major goal of this study was to determine how much
one could expect from the weighted voting technique in the
context of virtual HTS. Above, I presented the results of
various supervised ML approaches that are capable of
learning and predicting the target-specific inhibition likeli-
hood for different chemical compounds. The typical
procedure begins initially with some experimental knowl-
edge on inhibitors for a selected protein target; in addition,
data from the MDDR, propetiary compounds collections, or
commercial libraries can be used here. Now, I would like to
compare those single ML algorithms with our brainstorm-
ing approach, i.e., to compare its performance within the

same or similar computational setup. Therefore I decided to
use a previously studied benchmark dataset [24, 40, 41]. I
previously collected results for classification of different
supervised ML methods for this standardized benchmark
and compared their performance with other studies. In
addition, I provided the overall value for classification error
and precision/recall values for those ML algorithms [24].
Here, I show how far one can go with boosting the
accuracy of multiple ML classification models by building
a consensus between them. The meta-learning procedure is
repeated separately for each protein target, therefore
weights are not universal.

Let us assume that all methods have equal recall and
precision values, i.e., all methods have identical quality.
If the number of methods predicting a given input as a
member of the positive class is equal to the number of
methods predicting it as negative example, then the
actual probability of success will be zero. If the negative-
predicting methods have weaker quality than the actual
prediction that would be given by stronger ML algo-
rithms, the item will be classified as active one. Even if
we have only a single high precision learning algorithm,
it will still force the classification, as all other methods
are much weaker in terms of their precision and recall
values.

The model of meta-learning is based on several
assumptions, as detailed in the following sections.

Binary logic

I assume the binary logic of individual predictors, i.e., we
are dealing with N different ML algorithms. For the single
prediction, each algorithm gives one of two opposite
decisions (“YES” or “NO”), described here by the variable
s j ¼ �1. Typically, based on trained models, ML algo-
rithms such as SVM, DT, TV, ANN, and RF predict two
classes for incoming data. Therefore, the prediction of an
ML algorithm addresses a single question: is a query ligand
active (“YES”) or nonactive (“NO”) for a selected protein
target.

Strength parameters

Each ML algorithm is characterized typically by two
parameters: pj ¼ f precision; jð Þ and sj ¼ f recall; jð Þ that
describe the quality of predictions for the individual
algorithm (described by the j index). This depends of
course on the training dataset used, the values of which will
be different for each protein target. Therefore, those values
should be averaged over different protein targets in order to
make them data-independent. The quality of the brain-
storming approach depends on mean values p ¼ P pj

N and
s ¼ P sj

N calculated over the learning algorithms used.
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Probability of success

The weighted majority–minority balance in the system is
given by the equation:

m ¼
P

j
sjþpjð Þs j

N sþpð Þ þ 1

2
: ð2Þ

The normalized and non-negative value of m describes
the probability of correct prediction, i.e., we assume here
the modified or weighted vote rule. Each learner votes for
the final prediction outcome, all votes are gathered, and the
relative probability of correct answer is calculated, as given
by the set of individual learners.

Brainstorming: the procedure of consensus learning

The global preference toward each selected solution in the
brainstorming method is described as the global order
parameter that is calculated using all ML algorithms used.
Each algorithm (so called learner, or intelligent agent)
performs its own and independent training on the available
input data (both the training and testing datasets are identical
for all learners). In the prediction step, a query test inhibitor
is analyzed independently by each agent, which predicts the
query ligand classification (active or nonactive). Then, all
predictions performed by a set of learners are gathered and
integrated into a single prediction via majority rule. This
view of a consensus between various ML algorithms is
especially useful for artificial intelligence, or robotic appli-
cations, where adaptive behavior is given by the integration
of results from a set of ML methods. The consensus building
between various ML algorithms, or, in other words, various
predictions outcomes, is similar to the weakly coupled
statistical systems known from physics. Phase transitions
can be observed in the system, the global new phase
emerging when the system reaches a critical point in terms
of its order parameter. Changes between phases of the
system are induced by certain external factors that can be
modeled as a bias added to the local fields.

The binary classification, i.e., brainstorming outcome r of a
prediction, is given by the sign of weighted majority−minority
difference for the whole system of individual learning
algorithms:

r ¼ sign
X

j

sj þ pj
� �

s j

N sþ pð Þ
� �

; ð3Þ

with the probability of success given by the parameter:

mh i ¼
P

j
sjþpjð Þs j

N sþpð Þ þ 1

2
ð4Þ

Let us assume that all methods have equal recall and
precision values, i.e., all methods have identical quality. If

the number of methods predicting a given input as a
member of the positive class is equal to the number of
methods predicting it as a negative example, then the actual
probability of success will be 0.5. If the negative-predicting
methods have weaker quality than the actual prediction
given by stronger ML algorithms, the item will be classified
as active. Even a single, high precision, learning algorithm,
can force the classification, if all the other methods are
much weaker in terms of their precision and recall values.

The Brainstorming implementation of the consensus
learning protocol is presented in Fig. 1. The first step is
focused on supervised ML training. An input set of
inhibitors is first analyzed by several methods in order to
represent them efficiently. The resulting numerical repre-
sentations for the training data are then decomposed into
their most important features using clustering algorithms
and principal component analysis, and selecting the subset
of representations that are not statistically dependent from
each cluster. Training data prepared in this way is then used
to train several different machine learning methods (SVM,
ANN, RF, DT and others). The second step is the actual
prediction protocol. Here, the heterogeneous predictors
classify the training data differently; therefore, a consensus
is needed to fuse their results. The consensus meta-learner
(jury system) prepared in the classification phase can
further predict the activity of a novel compound using its
chemical descriptors representation.

Results

The results of this approach in the context of activity
prediction for small chemical molecules are presented in
Table 1.

First, I have prepared two training datasets for each
protein target: positives and negatives. Then, I have
represented the training examples using a predefined set
of chemical descriptors (see Materials and methods for
details). For each type of descriptor, a different ML
algorithm was selected as the best performing. In most
cases, SVM and RF were among the best. The recall and
precision values for these best performing ML algorithms
were then compared to a simple voting procedure. The
“voting 1” method predicts a ligand as positive if at least
one ML algorithm predicts it as being active. In the case of
“voting n”, at least n ML algorithms must be in agreement
in order to predict a given ligand as active. Finally, the
results were compared to the brainstorming approach, when
each method votes for the final decision, with weight given
by the method’s recall and precision values, as computed
for the training dataset. The results for different voting
schemes are adopted from our previous studies [24]. Here, I
compare those findings with the results of the novel
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brainstorming procedure (summarized in last row of
Table 1). Almost all the compounds were retrieved by at
least one of the seven ML methods for each target; almost
all were found to be actives. However, because the recall

values obtained with the best performing ML method alone
are already close to or above 90%, any improvement
compared to this approach is small. In addition, a
significant reduction in precision compared to the best

INPUT:actives and negatives
for five protein targets

Representations

Atoms
Pairs

Topological
Torsions

DP DT DRUGBITS ROF6
DRAGON

2D/3D
…

Benchmark datasets

Structural
Similarity

Chemical
Similarity

Features
Similarity

SVM
Neural

Networks
Random
Forest

Decision
Trees

Weighted
Voting

OUTPUT:

Model
Features
Decision

Reliability Score

annotations generation

feature
decomposition

machine learning

Kernel
Methods

k-nearest
neighbors

Trend
Vectors

Naive
Bayesian

Fig. 1 Input ligands for each protein target are characterized by a set
of chemical descriptors. Thus, each ligand is represented as a vector of
real or binary numbers in a high dimensional abstract space of
features. All training inhibitors, their features, and some additional
information are then processed by feature decomposition module in
order to evaluate the statistical significance of each chemical
descriptor or representation, and to find some similarities between
features, or annotations. In this way, the algorithms prepare a set of
benchmark datasets with which to probe different representations of
training data. Such preprocessed datasets are then used for training
seven different machine learning (ML) methods [support vector

machines (SVM), random forest (RF), artificial neural networks
(ANN), k-nearest-neighbor (kNN) classification with genetic-
algorithm (GA)-optimized feature selection, trend vectors (TV), naïve
Bayesian (NB) classification, and decision trees (DT)]. Each ML is
used independently to predict class membership for a query object.
The results of such ensemble prediction are then fused into the single
consensus prediction by a simple weighted voting procedure. The final
output includes predicted class membership, a statistical model with
performances of each learning module, trained consensus and
reliability scores for prediction (calculated as described in Methods)

Table 1 The recall (R) and precision (P) values for the brainstorming method, as compared with the simple vote procedure or single machine
learning (ML) prediction

Prediction method Cyclooxygenase-2 Dihydrofolate
reductase

Thrombin HIV reverse
transcriptase

Estrogen
receptor

R P R P R P R P R P

Best performing single ML method 92 71 96 79 96 82 83 55 92 61

Voting 1 93 28 100 19 99 35 94 20 93 21

Voting 2 85 57 97 54 95 67 87 47 94 53

Voting 3 87 79 96 76 98 79 84 74 86 73

Voting 4 82 90 98 86 91 82 79 88 83 78

Voting 5 75 93 91 92 89 89 64 90 76 82

Voting 6 72 98 89 97 83 92 49 96 33 86

Voting 7 64 100 75 99 52 94 24 100 23 100

Brainstorming 87 92 100 92 95 89 84 89 89 82
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ML method is observed. On the other hand, if the “voting
7” procedure is applied, recall values drop to around 20%
for HIV reverse transcriptase and estrogen receptor. Yet,
even with this method, the number of false positives is very
small and the precision is over 95% for all targets. With
intermediate simple voting methods, an improvement in
precision is observed when going from compounds found at
least 1, 2, 3 and so on to those found 4, 5 or 7 times. At the
same time, recall does not decrease significantly. In the case
of brainstorming, one is able to retrieve active compounds
with very high efficiency, exceeding both simple voting
procedures and the best performing single ML method.
Thus, whereas the consensus learning approach offer a
significant advantage in terms of recall compared to single
ML algorithms, at the same time precision improves
significantly for the consensus results compared to any
ML method applied alone. The brainstorming approach is
able to boost the overall recall value by at least 20–50%
with only a very small drop in precision (∼8–18%).

Here, the brainstorming algorithm was compared with
seven simple voting procedures. All differ in the number of
methods assumed to be in agreement when activity prediction
is performed. Themost conservativemethod identifies a query
compound as active if all ML methods agree with their
predictions. The most liberal predict activity if at least oneML
method predicts it as being active. As reported in our previous
studies [24], the most liberal voting scheme achieves a very
high improvement in recall value (∼25%) as compared to
any single ML method (even the best performing methods, i.
e., SVM and RF); however, precision is lowered significant-
ly (∼30%). This method is quite useful in cases in which
only a small number of actives is known—selecting all
actives identified by at least one method helps to improve
recall. On the contrary, when all methods are thought to
agree with their predictions, the actual value of precision for
that method reaches a maximal value (∼95–100%), but recall
is significantly lower (∼20%). At intermediate numbers of
agreed voting methods, an improvement in precision is
observed when going from compounds found at least once to
those found twice and three times. At the same time, recall
decreases significantly. This consensus approach is particu-
larly successful in identifying false positives and thus
improving precision. In addition, I reported that, whereas
the consensus approach does not offer any significant
advantage in terms of recall compared to SVM, precision
improves significantly for the consensus results compared to
SVM or RF applied alone. In the case of the combination of
two methods, the results somehow fall in the middle between
the two extremes [24]. In order to avoid false negatives, the
results for any pair of methods are combined in such a way
that compounds identified by any two methods as active are
considered to be active. Similarly, only compounds predicted
to be inactive by both methods were counted as nonactives.

Most combinations did not show any significant improve-
ment in recall compared to results obtained from SVM or RF
alone. Some combinations led to improved recall, yet for
others no improvement in recall was observed, while
precision was lowered significantly.

When one method is significantly better in predicting
activity, then combining it with a set of much weaker
methods does not improve quality unless we do not
adjust its relative weight. For example, in the case where
SVM alone yields excellent recall values for all protein
targets, precision is reduced for each simple combination
with respect to SVM alone [24]. The improvement in
recall is explained by the fact that more than one ML
method is used to select active compounds. Precision is
retained as compared to the best performing method,
because weaker ones are weighted less. If, within the
whole set of ML algorithms, there are more better
performing algorithms, the effective combinations of
several best performing methods demonstrate a more
substantial improvement of recall. However, if simple
voting only is performed, the lowering of the number of
false negatives will always reduce precision with respect
to the best performing SVM alone. On the contrary, if
votes of methods are weighted by their quality, then the
overall gain in recall is accompanied by reasonable
stability of precision. A combination of methods seems
to be particularly useful for datasets poor in active
compounds, where high values of recall are somehow
crucial for further virtual screening procedures.

Conclusions

Ensemble methods that use several different ML algorithms
together with several types of chemical descriptors to
properly classify groups of compounds were proven here
to be the more successful in terms of recall and precision in
comparison to single ML methods and vote counting.
Consensus learning appears to enrich datasets more than
any single scoring function. Multiple scoring functions are
similar to repeated samplings (the mean is closer to the true
value than any single value). Considering all compounds
retrieved by at least one of the seven methods for each
target, almost all actives were found in the dataset of all
active compounds. The number of false negatives for each
target is smaller than 10% (recall>90%). However, the
sample size is large since, for each target, more than 60% of
the compounds predicted to be active by at least one
method are false positives. If only compounds retrieved by
all methods are considered, recall drops but is still
substantial. At intermediate consensus numbers, a large
improvement in precision is observed when going from
compounds found at least once to those found twice and
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three times. At the same time, recall does not decrease
significantly. Thus, for compounds retrieved by at least
three methods, the average recall is 90%, whereas precision
is 75% on average. Considering higher consensus numbers,
recall values are lower than for SVM or RF applied alone,
but a significant improvement in precision is observed,
suggesting that a consensus approach is particularly
effective at reducing the number of false positives. Two
possible applications of the consensus approach are
proposed. In cases in which only a small number of actives
is known, selecting all actives identified by at least one
method helps to reduce the number of false negatives. If the
objective is to reduce the number of compounds to be
tested, considering compounds that were found by several
methods helps to reduce the number of false positives.
Summarizing, we observed significant differences in the
performance of the methods used; however, the consensus
learning that integrates these classification schemes is able
to boost precision and recall values independently of the
protein target, or compound class. I conclude that brain-
storming is a more efficient way to predict a compound’s
biological activity that any single ML algorithm.

Some shortcomings of this method should be stressed.
First, it requires extensive calculation of weights for used ML
methods, which is very elaborate to perform. Second, results
depend on the diversity of learning algorithms. Third, when
the number of known actives is too low, it is impossible to
train a set of ML algorithms. In such practical situations, I
would suggest performing more elaborate QSAR studies and
detailed analysis of the protein target active site, or that
docking software should be used to prepare an initial dataset
of possible positives for further application of ML algorithms
as described in some of our previous publications [35, 40, 41].
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