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Overexpression of Hdac6 enhances resistance
to virus infection in embryonic stem cells
and in mice

Dear Editor,

Histone deacetylase 6 (Hdac6) is a mostly cytoplasmic class
II HDAC. Many proteins have been identified as substrates
of Hdac6. Among them, the most well characterized sub-
strate of Hdac6 is α-tubulin. Through deacetylating acety-
lated lysine 40 in α-tubulin, Hdac6 modulates the acetylation
of microtubules (Hubbert et al., 2002).

Increasing evidences suggest that infection of various
types of viruses, including HIV and influenza A virus, is
associated with upregulated acetylation level of tubulin or Tat
in cultured cells. Hdac6 activity is downregulated in infected
cells, consequently resulting in elevated levels of acetylated
tubulin or Tat (Huo et al., 2011; Valenzuela-Fernandez et al.,
2005). Consistently, overexpression of active Hdac6 inhibits
the acetylation of α-tubulin, and remarkably, prevents HIV-1
envelope-dependent cell fusion and infection, without
affecting the expression and co-distribution of HIV-1 recep-
tors (Valenzuela-Fernandez et al., 2005). In contrast,
knockdown of Hdac6 or inhibition of its tubulin deacetylase
activity strongly enhances HIV-1 infection and syncytia for-
mation (Valenzuela-Fernandez et al., 2005). Virus replication
is also enhanced in Hdac6-depleted cells, demonstrating
that Hdac6 is an essential component of innate antiviral
immunity (Nusinzon and Horvath, 2006). However, it
remains to be determined whether Hdac6 plays a role in anti-
virus infection in a whole animal model.

To test the anti-virus effect of Hdac6 in an animal model,
we first constructed a Hdac6 transgenic (Hdac6tg) embryonic
stem (ES) cell line. An overexpression vector, containing the
Hdac6-IRES-Puro cassette downstream of the chicken
β-Actin (CAG) promoter, was used to construct the Hdac6tg

ES cells (Fig. S1A). The integration and the expression of
Hdac6 transgene were verified by genomic DNA PCR and
RT-PCR (Fig. S1B–D). Levels of Hdac6 protein also were
remarkably higher in Hdac6tg ES clones than in WT ES
controls by Western blot analysis (Fig. S1E and S1F).
Consistently, the level of tubulin acetylation was reduced in
Hdac6tg ES clones, using β-actin as loading control.

We previously demonstrated efficient generation of
transgenic mice by the method of injection of ES cells into

4–8-cell embryos (Huang et al., 2008). Prior to making
transgenic mice, we tested whether ES clones over-
expressing Hdac6 show resistance to adenovirus infection.
A recombinant human adenovirus type 5 (dE1/E3)
expressing GFP (Ad-GFP) was used to infect WT and
Hdac6tg ES clones, so that the infection of adenovirus can
be indicated by the expression of GFP. Adenovirus infection
does not affect the growth of WT and Hdac6tg ES cell.
Rather, Hdac6tg ES clones showed reduced number of
infected cells, compared to control ES clones at 24, 36, and
48 h after infection (Fig. 1A and 1B). Also, the adenovirus
titers affected the efficiency of infection. At lower titers e.g.
Ad-GFP virus stock at 1 × 106 ifu/mL, similar fractions of
Hdac6tg ES cell and control WT clones were infected by
adenovirus, as indicated by GFP positivity, at 36 h after
infection (Fig. 1C and 1D). However, as virus titers increased
to 1 × 107 or 1 × 108 ifu/mL, less Hdac6tg ES cells, partic-
ularly ES cell clone #43, were infected by adenovirus,
compared to the control WT ES cell clones. Evident resis-
tance to higher titer (108 ifu/mL of Ad-GFP) but similar
resistance to lower titer (106 ifu/mL of Ad-GFP) of adenovirus
infection also were found in another independent Hdac6tg

ES cell clone 9# by flow cytometry, in comparison with
control WT BF10 ES cell clones, at 36 h after infection
(Fig. 1E and 1F). These data suggest that ES cells over-
expressing Hdac6 display resistance to infection by adeno-
virus at high titers.

Stable ES cell clones overexpressingHdac6were injected
into 4–8 cell embryos of albino ICR recipient mice. Hdac6tg

chimera mice were generated (Fig. S2A and S2B). Through
germline transmission,Hdac6tg chimera mice gave birth to F1
mice identifiedby coat color (Fig. S2C).Genotyping of F1mice
showed that most of F1 mice harbored the Hdac6 transgene
(Fig. S2D). Consistent with genotyping results, Hdac6tg F1
mice showed elevated expression levels of Hdac6measured
by quantitative RT-PCR, in contrast to minimal Hdac6
expression of non-transgenic mice (#4 and #9) (Fig. S2E).
Thus far, we have obtained more than 100 F1 and F2 mice.
Hdac6 transgenic mice exhibited normal fertility and sex ratio.
All 128Hdac6tgmice are generally healthy, with the exception
of only one mouse showing abnormal neck growth.
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Next, we tested whether the Hdac6tg mice are resistant to
virus infection. Infected with avian H5N1 virus, WT mice died
one day earlier than did Hdac6 transgenic mice (Fig. 2A).
While WT mice had survival rate of 85% (6/7) on day 3, all

Hdac6 transgenic mice survived. Moreover, only 30% of WT
mice survived by the end of experiments day 12, while 70%
of Hdac6 transgenic mice were still alive on day 12. Survival
rate of 11-week-old Hdac6 transgenic mice also was
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Figure 1. ES cells overexpressing Hdac6 show resistance to adenovirus infection. (A) Representative images showing

infection of GFP-expressing adenovirus (Ad-GFP, 1 × 108 ifu/mL) in Hdac6tg V6.5 ES cell clones compared to control V6.5 ES cell

clones, at 24, 36 and 48 h after infection. (B) The proportion of GFP-positive cells out of a total of 300 cells in (A) was analyzed under

a fluorescence microscope. Infection frequencies, referring to the percentage of GFP-positive cells, at various hours after infection,

were plotted. (C) Representative images showing infection of various titers of Ad-GFP in Hdac6tg V6.5 ES cell clones compared to

control ES clones. (D) Infection frequencies of the cells in (C) were plotted. (E) Wild-type BF10 ES cell clones and Hdac6tg BF10 ES

cell clones were infected with 106 ifu/mL of Ad-GFP. At 36 h after infection, the percentage of GFP-positive cells was measured by

flow cytometry. (F) Wild-type BF10 ES clones and Hdac6tg BF10 ES clones were infected with 108 ifu/mL of Ad-GFP. At 36 h after

infection, the percentage of GFP-positive cells was measured by flow cytometry. *P < 0.05, **P < 0.01, compared to controls.
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increased. In addition, the body weight of 5-week-old WT
mice reduced significantly 7 days after infection, whereas
age-matched Hdac6 transgenic mice maintained their body
weight stably (Fig. 2B). Body weight of 11-week-old WT mice
was also reduced 7 days after virus infection. In contrast,
age-matched Hdac6 transgenic mice maintained body
weight by the end of experiment day 12 (Fig. 2C). Statistical
analysis revealed that the body weight did not differ signifi-
cantly between the surviving Hdac6tg mice and WT mice,
likely due to the small number of mice used and loss of dead
mice for comparison. Actually, only one 5-week-old WT

mouse and one 7-week-old WT mouse survived 10 days and
7 days after virus infection, respectively. Expression levels of
Hdac6 in the transgenic mice, regardless of death or live,
were generally higher than those in WT and ICR mouse
controls (Fig. 2D and 2E). However, no correlation between
the expression levels of Hdac6 and the survival of mice was
observed in Hdac6tg mice. These data suggested that pro-
survival effect of Hdac6 overexpression is dose-independent
once its expression level exceeds a threshold.

Furthermore, the virus titers varied among mice infected
with the virus. The virus titers in the trachea of Hdac6
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Figure 2. Survival rate and body weight of Hdac6 transgenic mice after virus infection. (A) Survival rate of Hdac6 transgenic

mice at 5-week (n = 10) or 11-week-old (n = 6) and wide-type mice (n = 10) at 5-week-old. Lethality of avian H5N1 influenza virus was

compared for TG and WT mice. Groups of 10 mice were infected i.n. with 0.8 LD50 virus and examined daily for 12 days. (B) Body

weight of Hdac6 transgenic and wide-type mice at the age of 5 weeks. Mean body weight variation is compared among different TG

and WT mice infected i.n. with 0.8 LD50 or 1.1 LD50 virus and examined daily for 12 days. (C) Body weight of Hdac6 transgenic and

wide type mice at the age of 11 weeks. Some time points for 11-week-old mice were missing due to collection for other analysis,

including virus replication. (D and E) Relative expression levels of Hdac6 in Hdac6 transgenic mice, compared with WT and ICR

controls at 5-week (D) or 11-week-old (E). D, dead; L, live. (F) Mice were inoculated with 0.8 or 1.1 LD50 of virus. Trachea were then

collected on day 3 and 9 and titrated in embryonated chicken eggs. The mean virus titers (log10EID50/mL) at two time points from two

mice per group are shown (Mean ± S.E., n = 4).
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transgenic mice at the age of 11 weeks were significantly
reduced compared to control (P < 0.05) (Fig. 2F).

High pathogenic avian H5N1 influenza A viruses occa-
sionally infect humans, and a most recent study shows that a
reassortant H5 HA/H1N1 virus—comprising H5 HA (from an
H5N1 virus) with four mutations is capable of viral trans-
mission in mammals (Imai et al., 2012). We show that mice
are readily susceptible to avian H5N1 influenza virus infec-
tion, and that mice with overexpression of Hdac6 show
enhanced resistance to H5N1 virus, as demonstrated by
postponed death, reduced death rate, and body weight
maintenance. We anticipate that these initial findings will
likely be substantiated by a large-scale experiment with
various types of viruses.

We speculate that the increased anti-virus capacity of ES
cells and mice might employ similar mechanisms of sup-
pression of virus infection shown in other cell types. The
plasma membrane is the first site where viruses enter the
cells. The cytoskeletal components underlying plasma
membrane including microtubules and actin are involved in
virus entry into host cells. Several viruses, such as HIV-1
and influenza A virus, induce acetylation of tubulin to enable
efficient infection and spreading (Husain and Harrod, 2011;
Valenzuela-Fernandez et al., 2005). Hdac6 is a cytoplasmic
deacetylase associated with cytoskeleton that uniquely
mediates deacetylation of α-tubulin and cortactin, and pro-
motes cell motility (Hubbert et al., 2002; Zhang et al., 2007).
Deacetylation of α-tubulin by increased expression of Hdac6
reduces fusion of viruses with plasma membrane and
enhances resistance to virus entry, while reduced or inhibi-
tion of Hdac6 increases acetylated tubulin and facilitates
virus-cell fusion and infection (Valenzuela-Fernandez et al.,
2005). The deacetylase activity of Hdac6 on tubulin also
links to immune synapse organization (Serrador et al.,
2004). Moreover, autophagy may protect against virus
infection through recognizing signatures of virus infection,
degradation of viral components (xenophagy), and restriction
of virus replication (Lee and Iwasaki, 2008), and Hdac6
promotes autophagy and stimulates autophagosome-lyso-
some fusion and substrate degradation (Lee et al., 2010).

Concerns still exist about potential risks of Hdac6 over-
expression in tumorigenesis. HDAC6 mRNA appears to
express at higher levels in some cancers, including breast
cancer and oral squamous cell carcinoma (Sakuma et al.,
2006; Zhang et al., 2004). Fibroblasts deficient in Hdac6 are
more resistant to both oncogenic Ras and ErbB2-dependent
transformation, and Hdac6-null mice are more resistant to
chemical carcinogen-induced skin tumors (Lee et al., 2008).
Cell culture in vitro shows that expression of Hdac6 and
deacetylated tubulin are associated with tumorigenesis,
cellular motility and cancer cell migration and invasion (Rey
et al., 2011). Yet, whether high expression of Hdac6 leads to
tumorigenesis in vivo remains unclear. We found that Hdac6
transgenic mice are healthy and actually show high

reproductive performance. These mice still produce litter size
of 12 on average by the age of 7–10 months, like normal
mice of the same genetic background at younger age
(2–3 months). From 128 Hdac6 transgenic mice we obtained
thus far, only one female exhibited abnormal growth of the
neck by the age of 10 months. Thus, mice with overex-
pression of Hdac6 do not show noticeably increased
tumorigenesis. Yet, more extensive studies are required to
follow those mice regarding long-term effects of Hdac6
overexpression. We are undertaking experiments by con-
tinuous monitoring the health conditions. The Hdac6tg mice
reported in this study provide the proof of principle of anti-
virus function by Hdac6 in vivo. In future, site-specific tar-
geted transgenic mice would be more informative to further
validate the function of Hdac6 in anti-virus studies.
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