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Abstract

The role of European wild horses in horse domestication is poorly understood. While the fossil record for wild horses in
Europe prior to horse domestication is scarce, there have been suggestions that wild populations from various European
regions might have contributed to the gene pool of domestic horses. To distinguish between regions where domestic
populations are mainly descended from local wild stock and those where horses were largely imported, we investigated
patterns of genetic diversity in 24 European horse breeds typed at 12 microsatellite loci. The distribution of high levels of
genetic diversity in Europe coincides with the distribution of predominantly open landscapes prior to domestication, as
suggested by simulation-based vegetation reconstructions, with breeds from Iberia and the Caspian Sea region having
significantly higher genetic diversity than breeds from central Europe and the UK, which were largely forested at the time
the first domestic horses appear there. Our results suggest that not only the Eastern steppes, but also the Iberian Peninsula
provided refugia for wild horses in the Holocene, and that the genetic contribution of these wild populations to local
domestic stock may have been considerable. In contrast, the consistently low levels of diversity in central Europe and the UK
suggest that domestic horses in these regions largely derive from horses that were imported from the Eastern refugium, the
Iberian refugium, or both.
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Introduction

The domestication of horses was a fundamental step in the

history of humankind, providing horse-centred societies with

enormous advantages over agricultural societies with regard to

long-distance travel, warfare and trade. Consistent with the

preference of horses for predominantly open landscapes, the

earliest evidence for horse domestication (morphometric data,

horse milk residues in pots, and tooth wear resembling that of

frequently bitted horses) appears in the Eurasian steppes around

3500 BCE [1,2]. In a recent study, [3] provide further evidence for

the importance of the Eurasian steppe in horse domestication by

showing that coat colours other than the wild type first arose in

Siberia and Eastern Europe, probably reflecting human selection.

Around the time when the first domesticated horses appeared in

the Eurasian steppes, large parts of Europe were still covered by

vast expanses of dense forest [4], a habitat that horses avoid [5].

Accordingly, the fossil record for wild horses at that time is

extremely scarce [6,7], suggesting that European domestic horses

largely descend from stock that was imported from elsewhere in a

process known as demic diffusion [8] (colonisation of an area

through population movement [9]). On the other hand, recent

mitochondrial DNA (mtDNA) sequence data from a large number

of both pre-domestic and domestic horses has shown that

European wild populations also contributed to the gene pool of

domestic horses [10,11]. Unfortunately, it is currently difficult to

distinguish between regions in Europe where the genetic con-

tribution of local wild horses to domestic stock was substantial, and

regions where domestic stock was largely introduced, and back-

crossing with local wild horses played only a minor role.

To identify primary areas of horse domestication in Europe, we

investigate spatial patterns of genetic diversity in horse breeds for

which empirical evidence demonstrates a historic origin in a

distinct region of mainland Europe or the UK (henceforth referred

to as ‘‘traditional breeds’’). For the purpose of this paper, we define

primary areas of horse domestication as regions where local

domestic populations largely descend from local wild stock, be it

through their initial recruitment to found domestic populations
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(‘‘independent’’ domestication), their extensive introgression into

local domestic populations, or both.

If there were only a few, geographically restricted regions in

Europe where the genetic contribution of local wild horses to

domestic stock was substantial, and if domestic populations from

such areas were imported into regions where local wild stock was

scarce, we would expect the former areas to have retained high

levels of genetic diversity, and the latter areas to be characterised

by low levels of diversity. The rationale behind this reasoning is

that, as populations expand out of origins, genetic diversity will be

lost as a consequence of the (usually) small population sizes

involved in such expansions (‘‘founder effect’’), see [12] for review).

Clear declines in autosomal genetic diversity (allelic richness,

heterozygosity) with increasing distance from primary areas of

domestication have been found in a number of livestock species,

such as cattle [13–16], sheep [17,18], and goats [19].

To investigate spatial patterns of autosomal genetic diversity in

European horses, we assembled a unique dataset of more than 1100

horses typed at 12 autosomal microsatellite loci (Table 1), using both

new and previously published data. The combined dataset (Table 2)

represents the largest and most comprehensive microsatellite dataset

on traditional European horse breeds to date.

Results

Spatial patterns of genetic diversity in traditional
European horse breeds

Geographic variation in gene diversity (H) reveals two hotspots

of diversity, one in the Caspian region of western Asia, our

easternmost sampling location, and one in the Iberian Peninsula

(Fig. 1A). A very similar pattern is obtained for allelic richness (RS,

Fig. 1B). The Iberian hotspot coincides with the only region in

central and western Europe that was characterised by appreciable

expanses of open landscape in the mid-Holocene (Fig.1C, adapted

from [20]), suggesting that not only the Eurasian steppes but also

the Iberian Peninsula served as refugia for wild horses in the early

and mid Holocene, when vast expanses of forest would have

rendered most of Europe unsuitable for this steppe-adapted

species.

In a comparison of diversity between breeds from regions that

were predominantly open versus those that were predominantly

forested at 6 ka, we find that the latter group has significantly

lower diversity (median H = 0.687, median RS = 4.42) than the

former (median H = 0.733, median RS = 5.09; two-sided permu-

tation tests with 10,000 runs; gene diversity H: p = 0.006, Fig. 2A;

allelic richness RS: p = 0.002, Fig. 2B). Low levels of diversity in

breeds from previously forested areas are consistent with a loss of

diversity as small herds of domestic horses were imported into

these areas, following their domestication in Iberia or the Eastern

steppes. Estimating the relative contribution of the two refugial

populations to individual breeds is not possible here due to the

limited number of markers used.

Ancient history or recent demography
The observed genetic pattern could be a consequence of recent

demographic processes: high diversity in Iberia might reflect

disproportionally high levels of admixture from high-diversity non-

Iberian breeds. Similarly, low diversity in central Europe and the

UK (cE/UK) might reflect disproportionally severe recent

bottlenecks or higher levels of inbreeding in breeds from these

areas. Since domestication, horses from the Middle East have been

among the most widely used to ‘‘improve’’ horse breeds across

Europe [21]. We estimated the genetic component of three Middle

Eastern breeds (Arab, Akhal Teke and Caspian) in Iberian and

cE/UK breeds using two different measures of admixture, the

admixture coefficient mY (Table S1A–C) and expected homozy-

gosity FS (Table S2). We found no significant difference in the

level of admixture from Middle Eastern breeds between Iberian

and cE/UK horses (Wilcoxon tests, admixture with Arab: mY:

W = 43, p = 0.877; FS: W = 72.5, p = 0.086; admixture with Akhal

Teke: mY: W = 28, p = 0.183; FS: W = 63.5, p = 0.296; admixture

with Caspian: mY: W = 23, p = 0.081; FS: W = 37, p = 0.389;

Fig. 3A–E). Similarly, there is no significant difference in FIS

between Iberian and cE/UK breeds (Wilcoxon test, W = 70.5,

p = 0.217; median (IQR) Iberia: 0.035 (0.007–0.052); cE/UK:

20.009 (20.037–0.028)), implying that breeding practices are

unlikely to explain the observed pattern in diversity. Furthermore,

cE/UK breeds, but not Iberian ones, would have had to undergo

extreme recent contraction, to average effective population sizes

(Ne) of between ten and 20 individuals, to generate the observed

pattern (equation (3)). While a few individual breeds are known to

have undergone such severe bottlenecks in the recent past, these

include breeds from the proposed refugia [22–24]. Based on the

evidence presented here, we infer that the observed pattern of

genetic diversity is unlikely to be the result of recent demographic

processes.

Discussion

Our investigation of genetic diversity in traditional European

horse breeds reveals two hotspots of genetic diversity, one in the

Caspian region of western Asia and one in the Iberian Peninsula.

The distribution of high genetic diversity in European horses

coincides with the distribution of open vegetation in the mid-

Holocene, suggesting that these areas acted as refugia for wild

Table 1. Summary of microsatellite markers included in this
study.

locus ECA primer 59-39 reference

AHT4 24 AACCGCCTGAGCAAGGAAGT
GCTCCCAGAGAGTTTACCCT

[47]

AHT5 8 ACGGACACATCCCTGCCTGC
GCAGGCTAAGGAGGCTCAGC

[47]

HMS3 9 CCAACTCTTTGTCACATAACAAGA
GCCATCCTCACTTTTTCACTTTGTT

[48]

HMS6 4 CTCCATCTTGTGAAGTGTAACTCA
GAAGCTGCCAGTATTCAACCATTG

[48]

HMS7 1 CAGGAAACTCTCATGTTGATACCATC
GTGTTGTTGAAACATACCTTGACTGT

[48]

HTG4 9 CTATCTCAGTCTTGATTGCAGGAC
GCTCCCTCCCTCCCTCTGTTCTC

[48]

VHL20 30 CAAGTCCTCTTACTTGAAGACTAG
AACTCAGGGAGAATCTTCCTCA

[49]

ASB2 15 CACTAAGTGTCGTTTCAGAAGG
GCACAACTGAGTTCTCTGATAGG

[50]

HTG7 4 CCTGAAGCAGAACATCCCTCCTTG
ATAAAGTGTCTGGGCAGAGCTGCT

[51]

HMS2 10 CTTGCAGTCGAATGTGTATTAAATG
ACGGTGGCAACTGCCAAGGAAG

[48]

HTG10 21 CAATTCCCGCCCCACCCCCGGCA
GTTTTTATTCTGATCTGTCACATTT

[51]

HTG6 15 CCTGCTTGGAGGCTGTGATAAGAT
GTTCACTGAATGTCAAATTGTGCT

[52]

ECA: location on the horse chromosome.
doi:10.1371/journal.pone.0018194.t001
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horses at a time when most of Europe was covered by dense

forest [25].

Although our lack of sampling locations in Central and East

Asia prevents us from pinpointing primary areas of horse

domestication in this region, high diversity in the Caspian area

is in agreement with palaeontological data suggesting that E. ferus

survived the Holocene in South-West Asia and Central Asia [26].

Additional sampling further east will help establish whether there

is a genuine hotspot of genetic diversity in the Caspian region or

whether high diversity in this region merely reflects generally

higher levels of diversity in the Eurasian steppes.

A hotspot of genetic diversity in the Iberian Peninsula indicates

that E. ferus may have also survived in Iberia. The Iberian

Peninsula was the only region in central and western Europe in

which appreciable expanses of open habitat persisted throughout

the Holocene [27,28]. The presence of wild horses in the Iberian

Peninsula prior to domestication is supported by findings of horse

remains in Neolithic and Copper Age sites (sixth to fourth

millennium B.P., [29,30]). More recently, it has been shown that

several pre-domestic Iberian maternal lineages survive in modern

horses of Iberian descent [10,11], thus documenting a genetic

contribution of Iberian wild stock to local domestic horses. Here

we go on to show that the genetic contribution of Iberian

wild stock to local domestic horses may have been substantial: the

high diversity in Iberian horses is consistent with the persistence

of E. ferus in the Iberian Peninsula from the Pleistocene through

the Holocene, and the subsequent extensive use of local Iberian

wild horses in establishing and/or restocking local domestic

populations.

Hypotheses of local domestication in other parts of Europe

could not be confirmed in this study. Levels of genetic diversity in

breeds from previously forested areas are consistently low,

suggesting a scenario whereby these areas primarily relied on an

import of horses from either the Iberian or the Asian or both

refugia (i.e. demic diffusion). This is consistent with the fossil

record for horses, which, in turn, reflects the ecology of this large,

group-living animal. While our results do not imply that wild

horses were entirely absent from forested parts of Holocene

Europe, we suggest that their presence in these regions was

spatially and temporally discontinuous, with local extinctions and

re-colonisations occurring in response to natural forest gap

dynamics.

In this study, we have confirmed previous claims whereby

populations of E. ferus persisted in refugial steppe habitat in the

East [26], and provide further evidence for a second Holocene

refugium for wild horses in the Iberian Peninsula. Our results

suggest that primary areas of horse domestication were confined to

regions where considerable expanses of open landscape persisted

throughout the Holocene, and that previously forested regions in

Europe primarily relied on an import of domestic horses. Whether

the knowledge of how to successfully capture, tame and breed

horses reached Iberia through cultural transmission, or whether

Table 2. Horse breeds included in this study.

breed ID origin N H RS (N = 17) U FIS reference

Akhal Teke AT Turkmenistan 55 0.700 6.09 3 0.069 [33]

Connemara CO Ireland (west) 45 0.731 5.73 0 20.052 [33]

Dales DL England (north) 42 0.653 5.11 0 20.076 [33]

Exmoor EX England (southwest) 98 0.611 4.09 1 0.006 [33]

Garrano GR Portugal 37 0.763 6.56 0 0.067 [33]

Haflinger HF Austria (Tyrol) 45 0.634 4.54 0 0.019 [33]

Lusitano LU Portugal 52 0.690 5.57 1 0.022 [33]

Shetland Pony SP Scotland (Shetland Islands) 36 0.666 5.22 0 0.000 [33]

Suffolk Punch SU England (southeast) 41 0.724 5.49 1 0.084 [33]

Comtois COM France (east) 33 0.664 5.16 2 20.012 [32]

Asturcón AST Spain (northwest) 119 0.733 5.79 1 20.009 [23]

Jaca Navarra JNA Spain (north) 122 0.729 5.98 3 0.035 [23]

Losino LOS Spain (north) 66 0.704 5.79 0 20.022 [23]

Caballo Gallego PGL Spain (northwest) 72 0.762 6.82 4 0.060 [23]

Pottoka POT Spain (north) 51 0.775 6.52 0 0.043 [23]

Altmark Draught AMD Germany (east) 31 0.647 4.89 0 20.009 New data

Caspian Horse CAS Iran 30 0.770 6.70 2 20.002 New data

Camargue CMG France (south) 22 0.776 6.43 1 0.111 New data

Highland Pony HIG Scotland 25 0.687 5.03 0 20.033 New data

Hucul HUP Carpathian Mountains 17 0.694 5.55 0 0.103 New data

Posavina POS Croatia 24 0.695 5.58 0 20.062 New data

Schleswig Draught SDH Germany (north) 22 0.693 4.59 1 20.041 New data

Noriker NOS Austria 26 0.652 5.08 0 0.036 New data

Bilgoraj BLG Poland 28 0.724 5.19 na 20.015 [31]

N = sample size, H = Nei’s gene diversity, RS = allelic richness, U = number of private alleles, FIS = inbreeding coefficient, na = not determined because dataset could
not be aligned with the rest due to lack of reference samples.
doi:10.1371/journal.pone.0018194.t002
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Figure 1. High diversity in European horses mirrors the distribution of open landscape in the mid-Holocene. (A) Interpolation of
expected heterozygosity H in 24 old European horse breeds. High levels of genetic diversity, as indicated by dark shading, are found in the Caspian
region of western Asia and the Iberian Peninsula. White circles indicate the approximate location of origin for each breed. (B) Interpolation of allelic
richness RS in 24 native European breeds using a minimum sample size of N = 17. (C) Spatial distribution of biomes in Europe and western Asia 6000
years ago (6 ka) as inferred from model simulations. [Map adapted from 19].
doi:10.1371/journal.pone.0018194.g001

Figure 2. Levels of genetic diversity in Iberia (group: ‘‘open’’) and central Europe/Britain (group: ‘‘forested’’). (A) Average gene
diversity H and (B) average allelic richness RS per group (‘‘open’’: N = 9; ‘‘forested’’: N = 15). Statistical significance was determined using a two-sided
permutation test (* p,0.05) and 10,000 randomisations.
doi:10.1371/journal.pone.0018194.g002
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this knowledge was acquired independently, is an open question

that cannot be answered with genetic data. The approach used

here will provide further insights into the processes involved in

horse domestication when applied to the Eurasian steppes, a

region which has been shown to have played a central role in horse

domestication.

Methods

Datasets
In this paper, we present new genotyping data supplemented by

microsatellite data from four published studies [23,31–33].

Individual datasets were aligned using a minimum of four

reference samples from each participating lab. The dataset from

[32] had been standardised to reference samples from the ISAG

Horse Comparison Test and could therefore be aligned directly.

Due to the lack of reference samples, the dataset of [31] could not

be aligned with the rest. The breed contained in this dataset

(Bilgoraj) was therefore only used in comparisons of within-

population diversity.

Choice of samples
For our final dataset, we excluded all non-European breeds as

well as breeds that are known to have been introduced to various

European islands in recent times. In order to maximise our

chances to detect signals of domestication, we furthermore

excluded modern ‘‘warmblood’’ breeds which, by definition, are

composite breeds with varying contributions of ‘‘heavy’’ draft

horses and ‘‘light’’ riding horses [21]. Our a-priori rules for the

inclusion of breeds therefore focused on pony and draft horse

breeds for which a historic founding date can be demonstrated,

including breeds which are known to have been crossbred with

Middle Eastern breeds and/or the English Thoroughbred. Our

final dataset includes 1167 individuals from 24 traditional breeds

from mainland Europe and the UK (Table 2).

DNA extraction and PCR amplification
Previously unpublished data. DNA was extracted from

blood or hair. For DNA extraction from blood see the Methods

section in [34]. DNA extraction from hair was carried out

according to a protocol adapted from [35] using 15–20 hair roots

per individual. DNA extracts were purified (QIAquick purification

kit, Qiagen) and standardised to a concentration of 10 ng of

DNA/ml. A total of 12 microsatellite loci (Table 1) was amplified in

multiplex polymerase chain reactions (PCRs) adapted from [32].

PCR amplifications were carried out in a total volume of 12.5 ml

using a microsatellite genotyping kit (Qiagen) with 10 ng template

DNA and 1.25 ml of a 1:10 dilution of primer mix. PCR reactions

were performed on a thermal cycler under the following cycling

conditions: 95uC for 6 min; 32 cycles of 95uC for 30 sec, 58uC
for 90 sec, 72uC for 30 sec; 60uC for 30 min. PCR products were

run on an ABI 3730 Genetic Analyser (Applied Biosystems).

Alleles were assigned using GeneMapper Software v37 (Applied

Biosystems).

Figure 3. Levels of admixture from three Middle Eastern breeds in Iberia and central Europe/Britain. (A–C) Relative genetic contribution
of the (A) Arab, (B) Akhal Teke, and (C) Caspian breed to Iberian and cE/UK breeds based on the admixture coefficient mY. (D–F) Relative genetic
contribution of the (D) Arab, (E) Akhal Teke, and (F) Caspian breed to Iberian and cE/UK breeds based on expected homozygosity FS.
doi:10.1371/journal.pone.0018194.g003
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Published datasets. For DNA extraction and PCR ampli-

fication protocols of the previously published datasets, please refer

to the original publications [23,31–33].

Data analysis
Genetic Diversity. Nei’s gene diversity H [36] and the

inbreeding coefficient FIS [37] were estimated using FSTAT v

2.9.3.2 [38]. Allelic richness was estimated using the rarefaction

algorithm implemented in the programme ADZE [39]. The

estimates of allelic richness were standardised to the smallest

sample size in our dataset, N = 17. Private alleles were determined

using GDA [40]. Permutation tests were carried out in FSTAT

and Wilcoxon tests were carried out in R [41].

Spatial interpolation of genetic diversity. Because of the

uneven sampling of populations across Europe, we developed an

approach based on Gaussian kernel interpolation that allows for

an adaptive kernel width. Using a hexagonal grid representation of

Eurasia (grid points spaced approximately 110 km apart, each

land grid point is connected to up to six neighbours as in [42,43])

we calculated the shortest distance dij on land from each grid point

i to each sample location j. United Kingdom, Ireland, and

Shetland were connected to the rest of the graph by creating

suitable ‘‘landbridges’’. For each grid point i we then estimated the

value of genetic diversity (Hi

^
) using Gaussian kernel interpolation,

Hi

^
~
Xn

j~1
e
{d2

ij
=s2

i Hj

�Xn

j~1
e
{d2

ij
=s2

i ð1Þ

where n is the number of sample locations, Hj is the genetic

diversity for location j, and si is the kernel width for the grid point

i. Because sample points are clustered, with dense sampling in

western Europe and very sparse sampling in the East, we chose the

width si of the kernel in grid point i to be proportional to the

harmonic average of the distance to the sample locations (in order

to avoid artefacts from the finite resolution of the grid, distances

are forced to be at least 100 km, the typical distance between

neighbouring grid points):

si~a

�
1

n

Xn

j~1
1
�

max 100,dij

� �� �
: ð2Þ

The scale factor a was chosen to a = 23, such that the kernel

exp {d2
ij

.
s2

i

� 	
&0:5 when the distance dij is twice the distance to

the closest sample point. Finally, we used Arcview v32 (ESRI) to

produce the figures from the grid point estimates.

Potential confounding effects from recent demography
The observed genetic pattern could be a consequence of

recent demographic processes rather than a signal of domestica-

tion. We considered three major confounding factors that would

invalidate the interpretation of genetic hotspots as centres of

origin: admixture, recent population declines, and population

substructure.

Admixture. In the recent past, breeds from the Middle East

have been widely used to ‘‘improve’’ horse breeds throughout

Europe [21]. Since admixture can affect patterns of genetic

diversity, we estimated the contribution of three Middle Eastern

horse breeds (Arab, Akhal Teke, Caspian) to all other breeds in

our dataset. We used two measures of admixture: the admixture

coefficient mY [44] and expected homozygosity FS. mY coefficients

and standard deviations were computed as averages of 1,000

random bootstrap samples using the programme ADMIX [44,45].

The calculation of mY is based on the assumption that allele

frequencies in the admixed populations are linear combinations of

those in the parental populations; contrary to other admixture

coefficients, mY takes into account allele frequency differences as

well as the degree of molecular divergence between alleles and has

been shown to be appropriate for use with microsatellite data [44].

Since the true parental populations (i.e. European populations of

wild horses) are not available, we chose the Hucul, a breed which

has been bred in the Carpathian Basin since the thirteenth century

[21], to represent the genetic component of non-Middle Eastern

breeds. The relative genetic contribution of the Middle Eastern

breeds to central European/UK breeds was established by

individual comparison of each of the three Middle Eastern

breeds with the Hucul breed. Since the surrogate parental

populations chosen here are unlikely to represent the genetic

variability present in the true parental populations, the resulting

mY values merely describe the relative contribution of the surrogate

parental populations to the admixed populations, not their

absolute contributions.

Effect of population substructure on within-population

heterozygosity. If mating is non-random, substructure within

breeds may arise, causing a reduction in overall heterozygosity

(Wahlund effect). This reduction can be measured using FIS

[37]. If the decreased diversity in central Europe/the UK arose

because breeding practices in this area have promoted stronger

population substructure than those in the proposed refugia, we

would expect to see a higher proportion of positive FIS values in

the former.

Recent declines in population sizes. Recent bottlenecks

might have contributed to the low diversity observed in central

Europe and Great Britain (cE/UK), as compared to Iberia and

western Asia. We explored the magnitude of the bottlenecks that

would have been necessary to produce the lower median diversity

found in cE/UK using the recursion

Ht+1 = Ht*(1-1/2Nt), (3)

where Ht is the within-population heterozygosity and Nt the

effective population size in generation t. We set the initial diversity

Ht equal to the median diversity observed in the putative refugial

populations. This is a very conservative estimate, since it

(incorrectly) assumes that the latter did not experience recent

declines in population sizes.

We considered scenarios in which central European and British

populations were reduced to minimum effective population sizes of

N = 10, 20, 30, 40, or 50 either six or three generations ago, and

then recovered at an annual growth rate r equal to 1.1. Using a

generation time of 12 years, the bottlenecks coincide with the

1940s and the 1970s, two periods in which many native horse

breeds in Europe experienced dramatic declines in population

sizes [46].

Supporting Information

Table S1 Admixture coefficients mY for all breeds using
(A) Arab and Hucul, (B) Akhal Teke and Hucul, and (C)
Caspian and Hucul as parental populations.

(PDF)

Table S2 Expected homozygosity (FS) of different Euro-
pean horse breeds with the Arab, Akhal Teke, and
Caspian, respectively.

(PDF)
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